Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 721
Filtrar
1.
BMC Cancer ; 24(1): 354, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504172

RESUMEN

Colorectal cancer (CRC) is a worldwide health concern. Chronic inflammation is a risk factor for CRC, and interleukin-6 (IL-6) plays a pivotal role in this process. Arginine-specific mono-ADP-ribosyltransferase-1 (ART1) positively regulates inflammatory cytokines. ART1 knockdown reduces the level of glycoprotein 130 (gp130), a key transducer in the IL-6 signalling pathway. However, the relationship between ART1 and IL-6 and the resulting effects on IL-6-induced proliferation in CRC cells remain unclear. The aims of this study were to investigate the effects of ART1 knockdown on IL-6-induced cell proliferation in vitro and use an in vivo murine model to observe the growth of transplanted tumours. The results showed that compared with the control, ART1-sh cancer cells induced by IL-6 exhibited reduced viability, a lower rate of colony formation, less DNA synthesis, decreased protein levels of gp130, c-Myc, cyclin D1, Bcl-xL, and a reduced p-STAT3/STAT3 ratio (P < 0.05). Moreover, mice transplanted with ART1-sh CT26 cells that had high levels of IL-6 displayed tumours with smaller volumes (P < 0.05). ART1 and gp130 were colocalized in CT26, LoVo and HCT116 cells, and their expression was positively correlated in human CRC tissues. Overall, ART1 may serve as a promising regulatory factor for IL-6 signalling and a potential therapeutic target for human CRC.


Asunto(s)
Neoplasias Colorrectales , Interleucina-6 , Humanos , Animales , Ratones , Interleucina-6/genética , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Receptor gp130 de Citocinas/genética , Línea Celular Tumoral , Poli(ADP-Ribosa) Polimerasas/genética , Proliferación Celular , Neoplasias Colorrectales/patología , Proteínas Ligadas a GPI/metabolismo
2.
J Mol Cell Biol ; 15(7)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381178

RESUMEN

Mono-ADP-ribosylation (MARylation) is a post-translational modification that regulates a variety of biological processes, including DNA damage repair, cell proliferation, metabolism, and stress and immune responses. In mammals, MARylation is mainly catalyzed by ADP-ribosyltransferases (ARTs), which consist of two groups: ART cholera toxin-like (ARTCs) and ART diphtheria toxin-like (ARTDs, also known as PARPs). The human ARTC (hARTC) family is composed of four members: two active mono-ADP-ARTs (hARTC1 and hARTC5) and two enzymatically inactive enzymes (hARTC3 and hARTC4). In this study, we systematically examined the homology, expression, and localization pattern of the hARTC family, with a particular focus on hARTC1. Our results showed that hARTC3 interacted with hARTC1 and promoted the enzymatic activity of hARTC1 by stabilizing hARTC1. We also identified vesicle-associated membrane protein-associated protein B (VAPB) as a new target of hARTC1 and pinpointed Arg50 of VAPB as the ADP-ribosylation site. Furthermore, we demonstrated that knockdown of hARTC1 impaired intracellular calcium homeostasis, highlighting the functional importance of hARTC1-mediated VAPB Arg50 ADP-ribosylation in regulating calcium homeostasis. In summary, our study identified a new target of hARTC1 in the endoplasmic reticulum and suggested that ARTC1 plays a role in regulating calcium signaling.


Asunto(s)
ADP-Ribosilación , Calcio , Animales , Humanos , Calcio/metabolismo , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Procesamiento Proteico-Postraduccional , Homeostasis , Mamíferos , Proteínas de Transporte Vesicular/metabolismo
3.
J Biol Chem ; 300(2): 105604, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159861

RESUMEN

ADP-ribosylation is a post-translational modification involved in regulation of diverse cellular pathways. Interestingly, many pathogens have been identified to utilize ADP-ribosylation as a way for host manipulation. A recent study found that CteC, an effector from the bacterial pathogen Chromobacterium violaceum, hinders host ubiquitin (Ub) signaling pathways via installing mono-ADP-ribosylation on threonine 66 of Ub. However, the molecular basis of substrate recognition by CteC is not well understood. In this article, we probed the substrate specificity of this effector at protein and residue levels. We also determined the crystal structure of CteC in complex with NAD+, which revealed a canonical mono-ADP-ribosyltransferase fold with an additional insertion domain. The AlphaFold-predicted model differed significantly from the experimentally determined structure, even in regions not used in crystal packing. Biochemical and biophysical studies indicated unique features of the NAD+ binding pocket, while showing selectivity distinction between Ub and structurally close Ub-like modifiers and the role of the insertion domain in substrate recognition. Together, this study provides insights into the enzymatic specificities and the key structural features of a novel bacterial ADP-ribosyltransferase involved in host-pathogen interaction.


Asunto(s)
ADP Ribosa Transferasas , Proteínas Bacterianas , Modelos Moleculares , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , ADP-Ribosilación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Chromobacterium/química , Chromobacterium/enzimología , Chromobacterium/genética , Cristalografía por Rayos X , NAD/química , NAD/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , Especificidad por Sustrato , Ubiquitina/metabolismo
4.
Ageing Res Rev ; 94: 102176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141734

RESUMEN

ADP-ribosylation (ADPr) is a dynamically reversible post-translational modification (PTM) driven primarily by ADP-ribosyltransferases (ADPRTs or ARTs), which have ADP-ribosyl transfer activity. ADPr modification is involved in signaling pathways, DNA damage repair, metabolism, immunity, and inflammation. In recent years, several studies have revealed that new targets or treatments for tumors, cardiovascular diseases, neuromuscular diseases and infectious diseases can be explored by regulating ADPr. Here, we review the recent research progress on ART-mediated ADP-ribosylation and the latest findings in the diagnosis and treatment of related diseases.


Asunto(s)
ADP Ribosa Transferasas , ADP-Ribosilación , Humanos , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Transducción de Señal/fisiología
5.
Mol Cells ; 46(12): 764-777, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38052492

RESUMEN

Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.


Asunto(s)
Antineoplásicos , Toxinas Bacterianas , Inmunotoxinas , Neoplasias , Anticuerpos de Dominio Único , Animales , Ratones , Humanos , Exotoxinas/genética , Exotoxinas/farmacología , Exotoxinas/química , Inmunotoxinas/genética , Inmunotoxinas/farmacología , Inmunotoxinas/química , Mesotelina , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/farmacología , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Dominio Catalítico , Línea Celular Tumoral , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Neoplasias/tratamiento farmacológico
6.
Nucleic Acids Res ; 51(22): 12492-12507, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37971310

RESUMEN

PARP4 is an ADP-ribosyltransferase that resides within the vault ribonucleoprotein organelle. Our knowledge of PARP4 structure and biochemistry is limited relative to other PARPs. PARP4 shares a region of homology with PARP1, an ADP-ribosyltransferase that produces poly(ADP-ribose) from NAD+ in response to binding DNA breaks. The PARP1-homology region of PARP4 includes a BRCT fold, a WGR domain, and the catalytic (CAT) domain. Here, we have determined X-ray structures of the PARP4 catalytic domain and performed biochemical analysis that together indicate an active site that is open to NAD+ interaction, in contrast to the closed conformation of the PARP1 catalytic domain that blocks access to substrate NAD+. We have also determined crystal structures of the minimal ADP-ribosyltransferase fold of PARP4 that illustrate active site alterations that restrict PARP4 to mono(ADP-ribose) rather than poly(ADP-ribose) modifications. We demonstrate that PARP4 interacts with vault RNA, and that the BRCT is primarily responsible for the interaction. However, the interaction does not lead to stimulation of mono(ADP-ribosylation) activity. The BRCT-WGR-CAT of PARP4 has lower activity than the CAT alone, suggesting that the BRCT and WGR domains regulate catalytic output. Our study provides first insights into PARP4 structure and regulation and expands understanding of PARP structural biochemistry.


Asunto(s)
Poli Adenosina Difosfato Ribosa , Poli(ADP-Ribosa) Polimerasas , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Humanos
7.
Chem Commun (Camb) ; 59(93): 13843-13846, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37921487

RESUMEN

An NAD+ featuring an adenosyl 4'-azido functions as a general substrate for poly-ADP-ribose polymerases. Its derived mono- and poly-ADP-ribosylated proteins can be adequately recognized by distinct ADP-ribosylation-specific readers. This molecule represents the first ribose-functionalized NAD+ with versatile activities across different ADP-ribosyltransferases and provides insight into developing new probes for ADP-ribosylation.


Asunto(s)
NAD , Ribosa , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , ADP-Ribosilación
8.
Nucleic Acids Res ; 51(14): 7649-7665, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37334830

RESUMEN

Nucleic acid ADP-ribosylation has been established as a novel modification found in a wide diversity of prokaryotic and eukaryotic organisms. tRNA 2'-phosphotransferase 1 (TRPT1/TPT1/KptA) possesses ADP-ribosyltransferase (ART) activity and is able to ADP-ribosylate nucleic acids. However, the underlying molecular mechanism remains elusive. Here, we determined crystal structures of TRPT1s in complex with NAD+ from Homo sapiens, Mus musculus and Saccharomyces cerevisiae. Our results revealed that the eukaryotic TRPT1s adopt common mechanisms for both NAD+ and nucleic acid substrate binding. The conserved SGR motif induces a significant conformational change in the donor loop upon NAD+ binding to facilitate the catalytic reaction of ART. Moreover, the nucleic acid-binding residue redundancy provides structural flexibility to accommodate different nucleic acid substrates. Mutational assays revealed that TRPT1s employ different catalytic and nucleic acid-binding residues to perform nucleic acid ADP-ribosylation and RNA 2'-phosphotransferase activities. Finally, cellular assays revealed that the mammalian TRPT1 is able to promote endocervical HeLa cell survival and proliferation. Together, our results provide structural and biochemical insights into the molecular mechanism of TRPT1 for nucleic acid ADP-ribosylation.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol) , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Ratones , Adenosina Difosfato Ribosa/metabolismo , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , ADP-Ribosilación , Células HeLa , NAD/metabolismo , Ácidos Nucleicos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Mol Cell ; 83(13): 2303-2315.e6, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37390817

RESUMEN

Modification of nucleic acids by ADP-ribosylation is catalyzed by various ADP-ribosyltransferases, including the DarT enzyme. The latter is part of the bacterial toxin-antitoxin (TA) system DarTG, which was shown to provide control of DNA replication and bacterial growth as well as protection against bacteriophages. Two subfamilies have been identified, DarTG1 and DarTG2, which are distinguished by their associated antitoxins. While DarTG2 catalyzes reversible ADP-ribosylation of thymidine bases employing a macrodomain as antitoxin, the DNA ADP-ribosylation activity of DarTG1 and the biochemical function of its antitoxin, a NADAR domain, are as yet unknown. Using structural and biochemical approaches, we show that DarT1-NADAR is a TA system for reversible ADP-ribosylation of guanosine bases. DarT1 evolved the ability to link ADP-ribose to the guanine amino group, which is specifically hydrolyzed by NADAR. We show that guanine de-ADP-ribosylation is also conserved among eukaryotic and non-DarT-associated NADAR members, indicating a wide distribution of reversible guanine modifications beyond DarTG systems.


Asunto(s)
Antitoxinas , Guanosina , ADP-Ribosilación , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Células Eucariotas/metabolismo , Antitoxinas/genética , Adenosina Difosfato Ribosa/metabolismo
10.
Cancer Res Commun ; 3(4): 592-606, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37077937

RESUMEN

The ADP-ribosyltransferase PARP7 modulates protein function by conjugating ADP-ribose to the side chains of acceptor amino acids. PARP7 has been shown to affect gene expression in prostate cancer cells and certain other cell types by mechanisms that include transcription factor ADP-ribosylation. Here, we use a recently developed catalytic inhibitor to PARP7, RBN2397, to study the effects of PARP7 inhibition in androgen receptor (AR)-positive and AR-negative prostate cancer cells. We find that RBN2397 has nanomolar potency for inhibiting androgen-induced ADP-ribosylation of the AR. RBN2397 inhibits the growth of prostate cancer cells in culture when cells are treated with ligands that activate the AR, or the aryl hydrocarbon receptor, and induce PARP7 expression. We show that the growth-inhibitory effects of RBN2397 are distinct from its enhancement of IFN signaling recently shown to promote tumor immunogenicity. RBN2397 treatment also induces trapping of PARP7 in a detergent-resistant fraction within the nucleus, which is reminiscent of how inhibitors such as talazoparib affect PARP1 compartmentalization. Because PARP7 is expressed in AR-negative metastatic tumors and RBN2397 can affect cancer cells through multiple mechanisms, PARP7 may be an actionable target in advanced prostate cancer. Significance: RBN2397 is a potent and selective inhibitor of PARP7 that reduces the growth of prostate cancer cells, including a model for treatment-emergent neuroendocrine prostate cancer. RBN2397 induces PARP7 trapping on chromatin, suggesting its mechanism of action might be similar to clinically used PARP1 inhibitors.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Neoplasias de la Próstata/tratamiento farmacológico , Próstata/metabolismo , ADP Ribosa Transferasas/genética , Andrógenos
11.
Appl Microbiol Biotechnol ; 107(5-6): 1765-1784, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36808279

RESUMEN

The ADP-ribosyl transferase activity of P. aeruginosa PE24 moiety expressed by E. coli BL21 (DE3) was assessed on nitrobenzylidene aminoguanidine (NBAG) and in vitro cultured cancer cell lines. Gene encoding PE24 was isolated from P. aeruginosa isolates, cloned into pET22b( +) plasmid, and expressed in E. coli BL21 (DE3) under IPTG induction. Genetic recombination was confirmed by colony PCR, the appearance of insert post digestion of engineered construct, and protein electrophoresis using sodium dodecyl-sulfate polyacrylamide gel (SDS-PAGE). The chemical compound NBAG has been used to confirm PE24 extract ADP-ribosyl transferase action through UV spectroscopy, FTIR, c13-NMR, and HPLC before and after low-dose gamma irradiation (5, 10, 15, 24 Gy). The cytotoxicity of PE24 extract alone and in combination with paclitaxel and low-dose gamma radiation (both 5 Gy and one shot 24 Gy) was assessed on adherent cell lines HEPG2, MCF-7, A375, OEC, and Kasumi-1 cell suspension. Expressed PE24 moiety ADP-ribosylated NBAG as revealed by structural changes depicted by FTIR and NMR, and the surge of new peaks at different retention times from NBAG in HPLC chromatograms. Irradiating recombinant PE24 moiety was associated with a reduction in ADP-ribosylating activity. The PE24 extract IC50 values were < 10 µg/ml with an acceptable R2 value on cancer cell lines and acceptable cell viability at 10 µg/ml on normal OEC. Overall, the synergistic effects were observed upon combining PE24 extract with low-dose paclitaxel demonstrated by the reduction in IC50 whereas antagonistic effects and a rise in IC50 values were recorded after irradiation by low-dose gamma rays. KEY POINTS: • Recombinant PE24 moiety was successfully expressed and biochemically analyzed. • Low-dose gamma radiation and metal ions decreased the recombinant PE24 cytotoxic activity. • Synergism was observed upon combining recombinant PE24 with low-dose paclitaxel.


Asunto(s)
ADP Ribosa Transferasas , Pseudomonas aeruginosa , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Pseudomonas aeruginosa/genética , Rayos gamma , Escherichia coli/genética
12.
Biochem J ; 479(24): 2511-2527, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36504127

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa is one of leading causes of disability and mortality worldwide and the world health organisation has listed it with the highest priority for the need of new antimicrobial therapies. P. aeruginosa strains responsible for the poorest clinical outcomes express either ExoS or ExoU, which are injected into target host cells via the type III secretion system (T3SS). ExoS is a bifunctional cytotoxin that promotes intracellular survival of invasive P. aeruginosa by preventing targeting of the bacteria to acidified intracellular compartments. ExoU is a phospholipase which causes destruction of host cell plasma membranes, leading to acute tissue damage and bacterial dissemination. Fluoroquinolones are usually employed as a first line of therapy as they have been shown to be more active against P. aeruginosa in vitrothan other antimicrobial classes. Their overuse over the past decade, however, has resulted in the emergence of antibiotic resistance. In certain clinical situations, aminoglycosides have been shown to be more effective then fluoroquinolones, despite their reduced potency towards P. aeruginosa in vitro. In this study, we evaluated the effects of fluoroquinolones (moxifloxacin and ciprofloxacin) and aminoglycosides (tobramycin and gentamycin) on T3SS expression and toxicity, in corneal epithelial cell infection models. We discovered that tobramycin disrupted T3SS expression and reduced both ExoS and ExoU mediated cytotoxicity, protecting infected HCE-t cells at concentrations below the minimal inhibitory concentration (MIC). The fluoroquinolones moxifloxacin and ciprofloxacin, however, up-regulated the T3SS and did not inhibit and may have increased the cytotoxic effects of ExoS and ExoU.


Asunto(s)
Antiinfecciosos , Infecciones por Pseudomonas , Humanos , Fluoroquinolonas/farmacología , Fluoroquinolonas/metabolismo , Fluoroquinolonas/uso terapéutico , Aminoglicósidos/farmacología , Pseudomonas aeruginosa , Factores de Virulencia/metabolismo , Moxifloxacino/farmacología , Genotipo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , ADP Ribosa Transferasas/genética , Antibacterianos/metabolismo , Tobramicina/metabolismo , Tobramicina/farmacología , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacología , Antiinfecciosos/farmacología , Proteínas Bacterianas/metabolismo
13.
Oncotarget ; 13: 1078-1091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187556

RESUMEN

PARP10 is a mono-ADP-ribosyltransferase with multiple cellular functions, including proliferation, apoptosis, metabolism and DNA repair. PARP10 is overexpressed in a significant proportion of tumors, particularly breast and ovarian cancers. Identifying genetic susceptibilities based on PARP10 expression levels is thus potentially relevant for finding new targets for precision oncology. Here, we performed a series of CRISPR genome-wide loss-of-function screens in isogenic control and PARP10-overexpressing or PARP10-knockout cell lines, to identify genetic determinants of PARP10-mediated cellular survival. We found that PARP10-overexpressing cells rely on multiple DNA repair genes for survival, including ATM, the master regulator of the DNA damage checkpoint. Moreover, we show that PARP10 impacts the recruitment of ATM to nascent DNA upon replication stress. Finally, we identify the CDK2-Cyclin E1 complex as essential for proliferation of PARP10-knockout cells. Our work identifies a network of functionally relevant PARP10 synthetic interactions, and reveals a set of factors which can potentially be targeted in personalized cancer therapy.


Asunto(s)
Neoplasias , Poli(ADP-Ribosa) Polimerasas , ADP Ribosa Transferasas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN , Humanos , Neoplasias/genética , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Medicina de Precisión , Proteínas Proto-Oncogénicas/genética
14.
Protein Eng Des Sel ; 352022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36130221

RESUMEN

Human mono-ADP-ribosylating PARP enzymes have been linked to several clinically relevant processes and many of these PARPs have been suggested as potential drug targets. Despite recent advances in the field, efforts to discover inhibitors have been hindered by the lack of tools to rapidly screen for high potency compounds and profile them against the different enzymes. We engineered mono-ART catalytic fragments to be incorporated into a cellulosome-based octavalent scaffold. Compared to the free enzymes, the scaffold-based system results in an improved activity for the tested PARPs due to improved solubility, stability and the proximity of the catalytic domains, altogether boosting their activity beyond 10-fold in the case of PARP12. This allows us to measure their activity using a homogeneous NAD+ conversion assay, facilitating its automation to lower the assay volume and costs. The approach will enable the discovery of more potent compounds due to increased assay sensitivity.


Asunto(s)
ADP Ribosa Transferasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Catálisis , Humanos , NAD , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ingeniería de Proteínas
15.
Clin Transl Med ; 12(10): e1030, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36178085

RESUMEN

BACKGROUND: Prostate cancer is a clinically heterogeneous disease with a subset of patients rapidly progressing to lethal-metastatic prostate cancer. Current clinicopathological measures are imperfect predictors of disease progression. Epigenetic changes are amongst the earliest molecular changes in tumourigenesis. To find new prognostic biomarkers to enable earlier intervention and improved outcomes, we performed methylome sequencing of DNA from patients with localised prostate cancer and long-term clinical follow-up. METHODS: We used whole-genome bisulphite sequencing (WGBS) to comprehensively map and compare DNA methylation of radical prostatectomy tissue between patients with lethal disease (n = 7) and non-lethal (n = 8) disease (median follow-up 19.5 years). Validation of differentially methylated regions (DMRs) was performed in an independent cohort (n = 185, median follow-up 15 years) using targeted multiplex bisulphite sequencing of candidate regions. Survival was assessed via univariable and multivariable analyses including clinicopathological measures (log-rank and Cox regression models). RESULTS: WGBS data analysis identified cancer-specific methylation patterns including CpG island hypermethylation, and hypomethylation of repetitive elements, with increasing disease risk. We identified 1420 DMRs associated with prostate cancer-specific mortality (PCSM), which showed enrichment for gene sets downregulated in prostate cancer and de novo methylated in cancer. Through comparison with public prostate cancer datasets, we refined the DMRs to develop an 18-gene prognostic panel. Applying this panel to an independent cohort, we found significant associations between PCSM and hypermethylation at EPHB3, PARP6, TBX1, MARCH6 and a regulatory element within CACNA2D4. Strikingly in a multivariable model, inclusion of CACNA2D4 methylation was a better predictor of PCSM versus grade alone (Harrell's C-index: 0.779 vs. 0.684). CONCLUSIONS: Our study provides detailed methylome maps of non-lethal and lethal prostate cancer and identifies novel genic regions that distinguish these patient groups. Inclusion of our DNA methylation biomarkers with existing clinicopathological measures improves prognostic models of prostate cancer mortality, and holds promise for clinical application.


Asunto(s)
Epigenoma , Neoplasias de la Próstata , ADP Ribosa Transferasas/genética , ADN , Epigénesis Genética/genética , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Sulfitos
16.
Eur J Cancer ; 172: 311-322, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35816972

RESUMEN

INTRODUCTION: Hepatoblastoma (HB) is the most common paediatric liver tumour, and epigenetic aberrations may be important in HB development. Recently, the Children's Hepatic Tumors International Collaboration-Hepatoblastoma Stratification (CHIC-HS) developed risk stratification based on clinicopathological factors. This study aimed to construct a more accurate model by integrating CHIC-HS with molecular factors based on DNA methylation. METHODS: HB tumour specimens (N = 132) from patients treated with the Japanese Pediatric Liver Tumors Group-2 protocol were collected and subjected to methylation analysis by bisulfite pyrosequencing. Associations between methylation status and clinicopathological factors, overall survival (OS), and event-free survival (EFS) were retrospectively analysed. We investigated the effectiveness of the evaluation of methylation status in each CHIC-HS risk group and generated a new risk stratification model. RESULTS: Most specimens (82%) were from post-chemotherapy tissue. Hypermethylation in ≥2 of the four genes (RASSF1A, PARP6, OCIAD2, and MST1R) was significantly associated with poorer OS and EFS. Multivariate analysis indicated that ≥2 methylated genes was an independent prognostic factor (hazard ratios of 6.014 and 3.684 for OS and EFS, respectively). Two or more methylated genes was also associated with poorer OS in the CHIC-very low (VL)-/low (L)-risk and CHIC-intermediate (I) risk groups (3-year OS rates were 83% vs. 98% and 50% vs. 95%, respectively). The 3-year OS rates of the VL/L, I, and high-risk groups in the new stratification model were 98%, 90%, and 62% (vs. CHIC-HS [96%, 82%, and 65%, respectively]), optimising CHIC-HS. CONCLUSIONS: Our proposed stratification system considers individual risk in HB and may improve patient clinical management.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/uso terapéutico , Niño , ADN , Metilación de ADN , Hepatoblastoma/genética , Hepatoblastoma/patología , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas de Neoplasias/genética , Estudios Retrospectivos , Medición de Riesgo
17.
Biomolecules ; 12(3)2022 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-35327636

RESUMEN

Cellular functions are regulated through the gene expression program by the transcription of new messenger RNAs (mRNAs), alternative RNA splicing, and protein synthesis. To this end, the post-translational modifications (PTMs) of proteins add another layer of complexity, creating a continuously fine-tuned regulatory network. ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules, regulating a multitude of key functional processes as diverse as DNA damage repair (DDR), transcriptional regulation, intracellular transport, immune and stress responses, and cell survival. Additionally, due to the emerging role of ADP-ribosylation in pathological processes, ADP-ribosyltransferases (ARTs), the enzymes involved in ADPr, are attracting growing interest as new drug targets. In this review, an overview of human ARTs and their related biological functions is provided, mainly focusing on the regulation of ADP-ribosyltransferase Diphtheria toxin-like enzymes (ARTD)-dependent RNA functions. Finally, in order to unravel novel gene functional relationships, we propose the analysis of an inventory of human gene clusters, including ARTDs, which share conserved sequences at 3' untranslated regions (UTRs).


Asunto(s)
ADP-Ribosilación , ARN , ADP Ribosa Transferasas/genética , Biología , Humanos , Procesamiento Proteico-Postraduccional , ARN/metabolismo
18.
Open Biol ; 12(3): 210365, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35317661

RESUMEN

Tankyrases are ADP-ribosylating enzymes that regulate many physiological processes in the cell and are considered promising drug targets for cancer and fibrotic diseases. The catalytic ADP-ribosyltransferase domain of tankyrases contains a unique zinc-binding motif of unknown function. Recently, this motif was suggested to be involved in the catalytic activity of tankyrases. In this work, we set out to study the effect of the zinc-binding motif on the activity, stability and structure of human tankyrases. We generated mutants of human tankyrase (TNKS) 1 and TNKS2, abolishing the zinc-binding capabilities, and characterized the proteins biochemically and biophysically in vitro. We further generated a crystal structure of TNKS2, in which the zinc ion was oxidatively removed. Our work shows that the zinc-binding motif in tankyrases is a crucial structural element which is particularly important for the structural integrity of the acceptor site. While mutation of the motif rendered TNKS1 inactive, probably due to introduction of major structural defects, the TNKS2 mutant remained active and displayed an altered activity profile compared to the wild-type.


Asunto(s)
Neoplasias , Tanquirasas , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Dominio Catalítico , Humanos , Tanquirasas/química , Tanquirasas/metabolismo , Zinc
19.
Sci Transl Med ; 14(636): eabe8195, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35294260

RESUMEN

Most patients with non-small cell lung cancer (NSCLC) do not achieve durable clinical responses from immune checkpoint inhibitors, suggesting the existence of additional resistance mechanisms. Nicotinamide adenine dinucleotide (NAD)-induced cell death (NICD) of P2X7 receptor (P2X7R)-expressing T cells regulates immune homeostasis in inflamed tissues. This process is mediated by mono-adenosine 5'-diphosphate (ADP)-ribosyltransferases (ARTs). We found an association between membranous expression of ART1 on tumor cells and reduced CD8 T cell infiltration. Specifically, we observed a reduction in the P2X7R+ CD8 T cell subset in human lung adenocarcinomas. In vitro, P2X7R+ CD8 T cells were susceptible to ART1-mediated ADP-ribosylation and NICD, which was exacerbated upon blockade of the NAD+-degrading ADP-ribosyl cyclase CD38. Last, in murine NSCLC and melanoma models, we demonstrate that genetic and antibody-mediated ART1 inhibition slowed tumor growth in a CD8 T cell-dependent manner. This was associated with increased infiltration of activated P2X7R+CD8 T cells into tumors. In conclusion, we describe ART1-mediated NICD as a mechanism of immune resistance in NSCLC and provide preclinical evidence that antibody-mediated targeting of ART1 can improve tumor control, supporting pursuit of this approach in clinical studies.


Asunto(s)
ADP Ribosa Transferasas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Subgrupos de Linfocitos T , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Adenosina Difosfato , Animales , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Proteínas Ligadas a GPI/genética , Humanos , Neoplasias Pulmonares/inmunología , Ratones
20.
Methods Mol Biol ; 2446: 489-512, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35157290

RESUMEN

The discovery of single-domain antibodies has opened new avenues for drug development. Single-domain antibodies, also known as nanobodies, can access buried epitopes that are inaccessible to conventional antibodies. These antigen-binding domains have a high level of solubility and stability, which makes them well suited for therapeutic development. This chapter will discuss the design, production, and testing of single-domain antibody-based recombinant immunotoxins. Recombinant immunotoxins are chimeric proteins that combine the specificity of an antibody with the ribosomal-inhibitory domain of a bacterial toxin. Immunotoxins using the Pseudomonas exotoxin domain have been well studied in clinical trials. Recently, an anti-CD22 immunotoxin was granted marketing approval for use in patients with relapsed or refractory hairy cell leukemia. This supports the idea that treatment with recombinant immunotoxins can be explored for cancers that have not responded to standard therapies.


Asunto(s)
Toxinas Bacterianas , Inmunotoxinas , Neoplasias , Anticuerpos de Dominio Único , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Humanos , Inmunotoxinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes de Fusión/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...