Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 971
Filtrar
1.
BMC Cancer ; 24(1): 354, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504172

RESUMEN

Colorectal cancer (CRC) is a worldwide health concern. Chronic inflammation is a risk factor for CRC, and interleukin-6 (IL-6) plays a pivotal role in this process. Arginine-specific mono-ADP-ribosyltransferase-1 (ART1) positively regulates inflammatory cytokines. ART1 knockdown reduces the level of glycoprotein 130 (gp130), a key transducer in the IL-6 signalling pathway. However, the relationship between ART1 and IL-6 and the resulting effects on IL-6-induced proliferation in CRC cells remain unclear. The aims of this study were to investigate the effects of ART1 knockdown on IL-6-induced cell proliferation in vitro and use an in vivo murine model to observe the growth of transplanted tumours. The results showed that compared with the control, ART1-sh cancer cells induced by IL-6 exhibited reduced viability, a lower rate of colony formation, less DNA synthesis, decreased protein levels of gp130, c-Myc, cyclin D1, Bcl-xL, and a reduced p-STAT3/STAT3 ratio (P < 0.05). Moreover, mice transplanted with ART1-sh CT26 cells that had high levels of IL-6 displayed tumours with smaller volumes (P < 0.05). ART1 and gp130 were colocalized in CT26, LoVo and HCT116 cells, and their expression was positively correlated in human CRC tissues. Overall, ART1 may serve as a promising regulatory factor for IL-6 signalling and a potential therapeutic target for human CRC.


Asunto(s)
Neoplasias Colorrectales , Interleucina-6 , Humanos , Animales , Ratones , Interleucina-6/genética , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Receptor gp130 de Citocinas/genética , Línea Celular Tumoral , Poli(ADP-Ribosa) Polimerasas/genética , Proliferación Celular , Neoplasias Colorrectales/patología , Proteínas Ligadas a GPI/metabolismo
2.
J Mol Cell Biol ; 15(7)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381178

RESUMEN

Mono-ADP-ribosylation (MARylation) is a post-translational modification that regulates a variety of biological processes, including DNA damage repair, cell proliferation, metabolism, and stress and immune responses. In mammals, MARylation is mainly catalyzed by ADP-ribosyltransferases (ARTs), which consist of two groups: ART cholera toxin-like (ARTCs) and ART diphtheria toxin-like (ARTDs, also known as PARPs). The human ARTC (hARTC) family is composed of four members: two active mono-ADP-ARTs (hARTC1 and hARTC5) and two enzymatically inactive enzymes (hARTC3 and hARTC4). In this study, we systematically examined the homology, expression, and localization pattern of the hARTC family, with a particular focus on hARTC1. Our results showed that hARTC3 interacted with hARTC1 and promoted the enzymatic activity of hARTC1 by stabilizing hARTC1. We also identified vesicle-associated membrane protein-associated protein B (VAPB) as a new target of hARTC1 and pinpointed Arg50 of VAPB as the ADP-ribosylation site. Furthermore, we demonstrated that knockdown of hARTC1 impaired intracellular calcium homeostasis, highlighting the functional importance of hARTC1-mediated VAPB Arg50 ADP-ribosylation in regulating calcium homeostasis. In summary, our study identified a new target of hARTC1 in the endoplasmic reticulum and suggested that ARTC1 plays a role in regulating calcium signaling.


Asunto(s)
ADP-Ribosilación , Calcio , Animales , Humanos , Calcio/metabolismo , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Procesamiento Proteico-Postraduccional , Homeostasis , Mamíferos , Proteínas de Transporte Vesicular/metabolismo
3.
Ageing Res Rev ; 94: 102176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141734

RESUMEN

ADP-ribosylation (ADPr) is a dynamically reversible post-translational modification (PTM) driven primarily by ADP-ribosyltransferases (ADPRTs or ARTs), which have ADP-ribosyl transfer activity. ADPr modification is involved in signaling pathways, DNA damage repair, metabolism, immunity, and inflammation. In recent years, several studies have revealed that new targets or treatments for tumors, cardiovascular diseases, neuromuscular diseases and infectious diseases can be explored by regulating ADPr. Here, we review the recent research progress on ART-mediated ADP-ribosylation and the latest findings in the diagnosis and treatment of related diseases.


Asunto(s)
ADP Ribosa Transferasas , ADP-Ribosilación , Humanos , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Transducción de Señal/fisiología
4.
J Biol Chem ; 300(2): 105604, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159861

RESUMEN

ADP-ribosylation is a post-translational modification involved in regulation of diverse cellular pathways. Interestingly, many pathogens have been identified to utilize ADP-ribosylation as a way for host manipulation. A recent study found that CteC, an effector from the bacterial pathogen Chromobacterium violaceum, hinders host ubiquitin (Ub) signaling pathways via installing mono-ADP-ribosylation on threonine 66 of Ub. However, the molecular basis of substrate recognition by CteC is not well understood. In this article, we probed the substrate specificity of this effector at protein and residue levels. We also determined the crystal structure of CteC in complex with NAD+, which revealed a canonical mono-ADP-ribosyltransferase fold with an additional insertion domain. The AlphaFold-predicted model differed significantly from the experimentally determined structure, even in regions not used in crystal packing. Biochemical and biophysical studies indicated unique features of the NAD+ binding pocket, while showing selectivity distinction between Ub and structurally close Ub-like modifiers and the role of the insertion domain in substrate recognition. Together, this study provides insights into the enzymatic specificities and the key structural features of a novel bacterial ADP-ribosyltransferase involved in host-pathogen interaction.


Asunto(s)
ADP Ribosa Transferasas , Proteínas Bacterianas , Modelos Moleculares , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , ADP-Ribosilación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Chromobacterium/química , Chromobacterium/enzimología , Chromobacterium/genética , Cristalografía por Rayos X , NAD/química , NAD/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , Especificidad por Sustrato , Ubiquitina/metabolismo
5.
Front Biosci (Landmark Ed) ; 28(11): 295, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-38062812

RESUMEN

BACKGROUND: Patients with type 2 diabetes mellitus have a higher susceptibility for colorectal cancer and poorer prognosis, but the mechanism is still unknown. Here, we investigated the effect of ADP-ribosyltransferase 1 (ART1) on the growth of colorectal cancer in an animal model of diabetes with high norepinephrine status, as well as the potential mechanism. METHODS: We evaluated the size and weight of transplanted CT26 cell tumors with different ART1 expression levels in a mouse model of diabetes, as well as the survival time. CCK8 and flow cytometry were used to evaluate the growth of CT26 cells in vitro. Western blot was performed to analyze differentially expressed proteins in the ART1-modulated pathway. RESULTS: High levels of norepinephrine and ART1 favored the proliferation of CT26 cells in vitro and in vivo. Moreover, inhibition of norepinephrine-dependent proliferation was observed in ART1-silenced CT26 cells compared to those with normal ART1 expression. Following reduction of the serum norepinephrine level by surgery, the size and weight of transplanted CT26 cell tumors was significantly reduced compared to non-operated and sham-operated mice. Furthermore, the expression of ART1, mTOR, STAT3, and p-AKT protein in the tumor tissue of diabetic mice was higher than in non-diabetic mice. Following reduction of the norepinephrine level by renal denervation (RD), expression of the proliferation-related proteins mTOR, STAT3, p-AKT protein decreased, but no change was seen for ART1 expression. At the same concentration of norepinephrine, ART1 induced the expression of p-AKT, mTOR, STAT3, CyclinD1 and c-myc in CT26 cells in vitro. CONCLUSIONS: We conclude that faster growth of colorectal cancer in high norepinephrine conditions requires the expression of ART1, and that high ART1 expression may be a novel target for the treatment of diabetes-associated colorectal cancer.


Asunto(s)
ADP Ribosa Transferasas , Neoplasias Colorrectales , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Norepinefrina , Animales , Ratones , ADP Ribosa Transferasas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Norepinefrina/farmacología , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR
6.
Mol Cells ; 46(12): 764-777, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38052492

RESUMEN

Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.


Asunto(s)
Antineoplásicos , Toxinas Bacterianas , Inmunotoxinas , Neoplasias , Anticuerpos de Dominio Único , Animales , Ratones , Humanos , Exotoxinas/genética , Exotoxinas/farmacología , Exotoxinas/química , Inmunotoxinas/genética , Inmunotoxinas/farmacología , Inmunotoxinas/química , Mesotelina , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/farmacología , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Dominio Catalítico , Línea Celular Tumoral , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Neoplasias/tratamiento farmacológico
7.
Proc Natl Acad Sci U S A ; 120(49): e2309047120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011562

RESUMEN

PARP7 was reported to promote tumor growth in a cell-autonomous manner and by repressing the antitumor immune response. Nevertheless, the molecular mechanism of how PARP7-mediated ADP-ribosylation exerts these effects in cancer cells remains elusive. Here, we identified PARP7 as a nuclear and cysteine-specific mono-ADP-ribosyltransferase that modifies targets critical for regulating transcription, including the AP-1 transcription factor FRA1. Loss of FRA1 ADP-ribosylation via PARP7 inhibition by RBN-2397 or mutation of the ADP-ribosylation site C97 increased FRA1 degradation by the proteasome via PSMC3. The reduction in FRA1 protein levels promoted IRF1- and IRF3-dependent cytokine as well as proapoptotic gene expression, culminating in CASP8-mediated apoptosis. Furthermore, high PARP7 expression was indicative of the PARP7 inhibitor response in FRA1-positive lung and breast cancer cells. Collectively, our findings highlight the connected roles of PARP7 and FRA1 and emphasize the clinical potential of PARP7 inhibitors for FRA1-driven cancers.


Asunto(s)
ADP-Ribosilación , Neoplasias , Proteínas de Transporte de Nucleósidos , Proteínas Proto-Oncogénicas c-fos , Humanos , ADP Ribosa Transferasas/metabolismo , Apoptosis , Transformación Celular Neoplásica , Regulación de la Expresión Génica , Factor 1 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Neoplasias/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
8.
Nucleic Acids Res ; 51(22): 12492-12507, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37971310

RESUMEN

PARP4 is an ADP-ribosyltransferase that resides within the vault ribonucleoprotein organelle. Our knowledge of PARP4 structure and biochemistry is limited relative to other PARPs. PARP4 shares a region of homology with PARP1, an ADP-ribosyltransferase that produces poly(ADP-ribose) from NAD+ in response to binding DNA breaks. The PARP1-homology region of PARP4 includes a BRCT fold, a WGR domain, and the catalytic (CAT) domain. Here, we have determined X-ray structures of the PARP4 catalytic domain and performed biochemical analysis that together indicate an active site that is open to NAD+ interaction, in contrast to the closed conformation of the PARP1 catalytic domain that blocks access to substrate NAD+. We have also determined crystal structures of the minimal ADP-ribosyltransferase fold of PARP4 that illustrate active site alterations that restrict PARP4 to mono(ADP-ribose) rather than poly(ADP-ribose) modifications. We demonstrate that PARP4 interacts with vault RNA, and that the BRCT is primarily responsible for the interaction. However, the interaction does not lead to stimulation of mono(ADP-ribosylation) activity. The BRCT-WGR-CAT of PARP4 has lower activity than the CAT alone, suggesting that the BRCT and WGR domains regulate catalytic output. Our study provides first insights into PARP4 structure and regulation and expands understanding of PARP structural biochemistry.


Asunto(s)
Poli Adenosina Difosfato Ribosa , Poli(ADP-Ribosa) Polimerasas , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Humanos
9.
Chem Commun (Camb) ; 59(93): 13843-13846, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37921487

RESUMEN

An NAD+ featuring an adenosyl 4'-azido functions as a general substrate for poly-ADP-ribose polymerases. Its derived mono- and poly-ADP-ribosylated proteins can be adequately recognized by distinct ADP-ribosylation-specific readers. This molecule represents the first ribose-functionalized NAD+ with versatile activities across different ADP-ribosyltransferases and provides insight into developing new probes for ADP-ribosylation.


Asunto(s)
NAD , Ribosa , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , ADP-Ribosilación
10.
Cell ; 186(21): 4475-4495, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37832523

RESUMEN

ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.


Asunto(s)
ADP-Ribosilación , Humanos , Proteínas/metabolismo , ADN/metabolismo , ARN/metabolismo , Animales , Transducción de Señal , Procesamiento Proteico-Postraduccional , ADP Ribosa Transferasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
11.
Nature ; 620(7976): 1054-1062, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587340

RESUMEN

The mechanisms by which viruses hijack the genetic machinery of the cells they infect are of current interest. When bacteriophage T4 infects Escherichia coli, it uses three different adenosine diphosphate (ADP)-ribosyltransferases (ARTs) to reprogram the transcriptional and translational apparatus of the host by ADP-ribosylation using nicotinamide adenine dinucleotide (NAD) as a substrate1,2. NAD has previously been identified as a 5' modification of cellular RNAs3-5. Here we report that the T4 ART ModB accepts not only NAD but also NAD-capped RNA (NAD-RNA) as a substrate and attaches entire RNA chains to acceptor proteins in an 'RNAylation' reaction. ModB specifically RNAylates the ribosomal proteins rS1 and rL2 at defined Arg residues, and selected E. coli and T4 phage RNAs are linked to rS1 in vivo. T4 phages that express an inactive mutant of ModB have a decreased burst size and slowed lysis of E. coli. Our findings reveal a distinct biological role for NAD-RNA, namely the activation of the RNA for enzymatic transfer to proteins. The attachment of specific RNAs to ribosomal proteins might provide a strategy for the phage to modulate the host's translation machinery. This work reveals a direct connection between RNA modification and post-translational protein modification. ARTs have important roles far beyond viral infections6, so RNAylation may have far-reaching implications.


Asunto(s)
ADP Ribosa Transferasas , Bacteriófago T4 , Proteínas de Escherichia coli , Escherichia coli , NAD , ARN , Proteínas Virales , ADP Ribosa Transferasas/metabolismo , Bacteriófago T4/enzimología , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virología , NAD/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Virales/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , ARN/química , ARN/genética , ARN/metabolismo , Biosíntesis de Proteínas , Regulación Bacteriana de la Expresión Génica , Procesamiento Proteico-Postraduccional
12.
Toxins (Basel) ; 15(7)2023 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-37505681

RESUMEN

Bordetella pertussis toxin (PT) and Clostridium botulinum C2 toxin are ADP-ribosylating toxins causing severe diseases in humans and animals. They share a common translocation mechanism requiring the cellular chaperones Hsp90 and Hsp70, cyclophilins, and FK506-binding proteins to transport the toxins' enzyme subunits into the cytosol. Inhibitors of chaperone activities have been shown to reduce the amount of transported enzyme subunits into the cytosol of cells, thus protecting cells from intoxication by these toxins. Recently, domperidone, an approved dopamine receptor antagonist drug, was found to inhibit Hsp70 activity. Since Hsp70 is required for cellular toxin uptake, we hypothesized that domperidone also protects cells from intoxication with PT and C2. The inhibition of intoxication by domperidone was demonstrated by analyzing the ADP-ribosylation status of the toxins' specific substrates. Domperidone had no inhibitory effect on the receptor-binding or enzyme activity of the toxins, but it inhibited the pH-driven membrane translocation of the enzyme subunit of the C2 toxin and reduced the amount of PTS1 in cells. Taken together, our results indicate that domperidone is a potent inhibitor of PT and C2 toxins in cells and therefore might have therapeutic potential by repurposing domperidone to treat diseases caused by bacterial toxins that require Hsp70 for their cellular uptake.


Asunto(s)
Toxinas Bacterianas , Toxinas Botulínicas , Animales , Humanos , Bordetella pertussis/metabolismo , Domperidona/farmacología , Toxinas Botulínicas/toxicidad , Toxinas Bacterianas/metabolismo , Toxina del Pertussis , ADP Ribosa Transferasas/metabolismo
13.
Nucleic Acids Res ; 51(14): 7649-7665, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37334830

RESUMEN

Nucleic acid ADP-ribosylation has been established as a novel modification found in a wide diversity of prokaryotic and eukaryotic organisms. tRNA 2'-phosphotransferase 1 (TRPT1/TPT1/KptA) possesses ADP-ribosyltransferase (ART) activity and is able to ADP-ribosylate nucleic acids. However, the underlying molecular mechanism remains elusive. Here, we determined crystal structures of TRPT1s in complex with NAD+ from Homo sapiens, Mus musculus and Saccharomyces cerevisiae. Our results revealed that the eukaryotic TRPT1s adopt common mechanisms for both NAD+ and nucleic acid substrate binding. The conserved SGR motif induces a significant conformational change in the donor loop upon NAD+ binding to facilitate the catalytic reaction of ART. Moreover, the nucleic acid-binding residue redundancy provides structural flexibility to accommodate different nucleic acid substrates. Mutational assays revealed that TRPT1s employ different catalytic and nucleic acid-binding residues to perform nucleic acid ADP-ribosylation and RNA 2'-phosphotransferase activities. Finally, cellular assays revealed that the mammalian TRPT1 is able to promote endocervical HeLa cell survival and proliferation. Together, our results provide structural and biochemical insights into the molecular mechanism of TRPT1 for nucleic acid ADP-ribosylation.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol) , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Ratones , Adenosina Difosfato Ribosa/metabolismo , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , ADP-Ribosilación , Células HeLa , NAD/metabolismo , Ácidos Nucleicos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Mol Cell ; 83(13): 2303-2315.e6, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37390817

RESUMEN

Modification of nucleic acids by ADP-ribosylation is catalyzed by various ADP-ribosyltransferases, including the DarT enzyme. The latter is part of the bacterial toxin-antitoxin (TA) system DarTG, which was shown to provide control of DNA replication and bacterial growth as well as protection against bacteriophages. Two subfamilies have been identified, DarTG1 and DarTG2, which are distinguished by their associated antitoxins. While DarTG2 catalyzes reversible ADP-ribosylation of thymidine bases employing a macrodomain as antitoxin, the DNA ADP-ribosylation activity of DarTG1 and the biochemical function of its antitoxin, a NADAR domain, are as yet unknown. Using structural and biochemical approaches, we show that DarT1-NADAR is a TA system for reversible ADP-ribosylation of guanosine bases. DarT1 evolved the ability to link ADP-ribose to the guanine amino group, which is specifically hydrolyzed by NADAR. We show that guanine de-ADP-ribosylation is also conserved among eukaryotic and non-DarT-associated NADAR members, indicating a wide distribution of reversible guanine modifications beyond DarTG systems.


Asunto(s)
Antitoxinas , Guanosina , ADP-Ribosilación , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Células Eucariotas/metabolismo , Antitoxinas/genética , Adenosina Difosfato Ribosa/metabolismo
15.
Mol Microbiol ; 119(6): 695-710, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37038088

RESUMEN

Unlike other cholera-like toxins that contain separate binding/translocation and catalytic subunits, C3-like mono-ADP-ribosyltransferases consist of a single subunit that serves both functions. The manner whereby C3 toxins reach the host cell cytoplasm is poorly understood and was addressed in this study by monitoring the fate of fluorescently labeled C3larvinA. Following binding to the macrophage membrane in a discontinuous punctate pattern, the toxin was internalized, traversing the endocytic pathway to reach lysosomes. Strikingly, the lysosomes of C3larvinA-treated cells underwent massive swelling over the course of 1-4 h. Lysosomal swelling preceded the extensive rearrangement of the cellular F-actin caused by ADP-ribosylation of cytosolic Rho-GTPases. This suggested that lysosome swelling might be required for the escape of the toxin into the cytoplasm where the GTPases reside. Accordingly, preventing swelling by osmotic manipulation or by arresting macropinocytosis precluded the F-actin rearrangement. Toxin-induced swelling was associated with leakage of sulforhodamine B and dextran from the lysosomes, implying membrane rupture or activation of mechano-sensitive pores, enabling the toxin itself to reach the cytosol. Finally, comparison of the cellular traffic and actin remodeling activities of C3larvinA with that of two related toxins, C3larvintrunc and Plx2A, highlighted the importance of the N-terminal α1 -helix for lysosomal swelling and successful intoxication.


Asunto(s)
Toxinas Bacterianas , Toxinas Botulínicas , Citosol/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/farmacología , Actinas/metabolismo , ADP Ribosa Transferasas/metabolismo , GTP Fosfohidrolasas/metabolismo , Lisosomas/metabolismo
16.
Appl Microbiol Biotechnol ; 107(5-6): 1765-1784, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36808279

RESUMEN

The ADP-ribosyl transferase activity of P. aeruginosa PE24 moiety expressed by E. coli BL21 (DE3) was assessed on nitrobenzylidene aminoguanidine (NBAG) and in vitro cultured cancer cell lines. Gene encoding PE24 was isolated from P. aeruginosa isolates, cloned into pET22b( +) plasmid, and expressed in E. coli BL21 (DE3) under IPTG induction. Genetic recombination was confirmed by colony PCR, the appearance of insert post digestion of engineered construct, and protein electrophoresis using sodium dodecyl-sulfate polyacrylamide gel (SDS-PAGE). The chemical compound NBAG has been used to confirm PE24 extract ADP-ribosyl transferase action through UV spectroscopy, FTIR, c13-NMR, and HPLC before and after low-dose gamma irradiation (5, 10, 15, 24 Gy). The cytotoxicity of PE24 extract alone and in combination with paclitaxel and low-dose gamma radiation (both 5 Gy and one shot 24 Gy) was assessed on adherent cell lines HEPG2, MCF-7, A375, OEC, and Kasumi-1 cell suspension. Expressed PE24 moiety ADP-ribosylated NBAG as revealed by structural changes depicted by FTIR and NMR, and the surge of new peaks at different retention times from NBAG in HPLC chromatograms. Irradiating recombinant PE24 moiety was associated with a reduction in ADP-ribosylating activity. The PE24 extract IC50 values were < 10 µg/ml with an acceptable R2 value on cancer cell lines and acceptable cell viability at 10 µg/ml on normal OEC. Overall, the synergistic effects were observed upon combining PE24 extract with low-dose paclitaxel demonstrated by the reduction in IC50 whereas antagonistic effects and a rise in IC50 values were recorded after irradiation by low-dose gamma rays. KEY POINTS: • Recombinant PE24 moiety was successfully expressed and biochemically analyzed. • Low-dose gamma radiation and metal ions decreased the recombinant PE24 cytotoxic activity. • Synergism was observed upon combining recombinant PE24 with low-dose paclitaxel.


Asunto(s)
ADP Ribosa Transferasas , Pseudomonas aeruginosa , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Pseudomonas aeruginosa/genética , Rayos gamma , Escherichia coli/genética
17.
Nucleic Acids Res ; 50(22): 13114-13127, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36484105

RESUMEN

Rearrangement hot spot (Rhs) proteins are members of the broad family of polymorphic toxins. Polymorphic toxins are modular proteins composed of an N-terminal region that specifies their mode of secretion into the medium or into the target cell, a central delivery module, and a C-terminal domain that has toxic activity. Here, we structurally and functionally characterize the C-terminal toxic domain of the antibacterial Rhsmain protein, TreTu, which is delivered by the type VI secretion system of Salmonella enterica Typhimurium. We show that this domain adopts an ADP-ribosyltransferase fold and inhibits protein synthesis by transferring an ADP-ribose group from NAD+ to the elongation factor Tu (EF-Tu). This modification is specifically placed on the side chain of the conserved D21 residue located on the P-loop of the EF-Tu G-domain. Finally, we demonstrate that the TriTu immunity protein neutralizes TreTu activity by acting like a lid that closes the catalytic site and traps the NAD+.


Asunto(s)
Dominio AAA , Factor Tu de Elongación Peptídica , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , ADP-Ribosilación , NAD/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Salmonella , Pliegue de Proteína
18.
Cells ; 11(22)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36429089

RESUMEN

Clostridioides bacteria are responsible for life threatening infections. Here, we show that in addition to actin, the binary toxins CDT, C2I, and Iota from Clostridioides difficile, botulinum, and perfrigens, respectively, ADP-ribosylate the actin-related protein Arp2 of Arp2/3 complex and its additional components ArpC1, ArpC2, and ArpC4/5. The Arp2/3 complex is composed of seven subunits and stimulates the formation of branched actin filament networks. This activity is inhibited after ADP-ribosylation of Arp2. Translocation of the ADP-ribosyltransferase component of CDT toxin into human colon carcinoma Caco2 cells led to ADP-ribosylation of cellular Arp2 and actin followed by a collapse of the lamellipodial extensions and F-actin network. Exposure of isolated mouse colon pieces to CDT toxin induced the dissolution of the enterocytes leading to luminal aggregation of cellular debris and the collapse of the mucosal organization. Thus, we identify the Arp2/3 complex as hitherto unknown target of clostridial ADP-ribosyltransferases.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Toxinas Bacterianas , Animales , Ratones , Humanos , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Clostridioides , Actinas/metabolismo , Toxinas Bacterianas/farmacología , Toxinas Bacterianas/metabolismo , Células CACO-2 , ADP Ribosa Transferasas/farmacología , ADP Ribosa Transferasas/metabolismo , ADP-Ribosilación , Adenosina Difosfato/metabolismo
19.
Toxins (Basel) ; 14(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36287979

RESUMEN

The protein toxin C3bot from Clostridium botulinum is a mono-ADP-ribosyltransferase that selectively intoxicates monocyte-derived cells such as macrophages, osteoclasts, and dendritic cells (DCs) by cytosolic modification of Rho-A, -B, and -C. Here, we investigated the application of C3bot as well as its non-toxic variant C3botE174Q as transporters for selective delivery of cargo molecules into macrophages and DCs. C3bot and C3botE174Q facilitated the uptake of eGFP into early endosomes of human-monocyte-derived macrophages, as revealed by stimulated emission depletion (STED) super-resolution microscopy. The fusion of the cargo model peptide eGFP neither affected the cell-type selectivity (enhanced uptake into human macrophages ex vivo compared to lymphocytes) nor the cytosolic release of C3bot. Moreover, by cell fractionation, we demonstrated that C3bot and C3botE174Q strongly enhanced the cytosolic release of functional eGFP. Subsequently, a modular system was created on the basis of C3botE174Q for covalent linkage of cargos via thiol-maleimide click chemistry. The functionality of this system was proven by loading small molecule fluorophores or an established reporter enzyme and investigating the cellular uptake and cytosolic release of cargo. Taken together, non-toxic C3botE174Q is a promising candidate for the cell-type-selective delivery of small molecules, peptides, and proteins into the cytosol of macrophages and DCs.


Asunto(s)
Toxinas Botulínicas , Clostridium botulinum , Humanos , Toxinas Botulínicas/química , Clostridium botulinum/metabolismo , Macrófagos/metabolismo , ADP Ribosa Transferasas/metabolismo , Maleimidas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Células Dendríticas/metabolismo
20.
Nat Commun ; 13(1): 6119, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253419

RESUMEN

Some bacteria express a binary toxin translocation system, consisting of an enzymatic subunit and translocation pore, that delivers enzymes into host cells through endocytosis. The most clinically important bacterium with such a system is Clostridioides difficile (formerly Clostridium). The CDTa and CDTb proteins from its system represent important therapeutic targets. CDTb has been proposed to be a di-heptamer, but its physiological heptameric structure has not yet been reported. Here, we report the cryo-EM structure of CDTa bound to the CDTb-pore, which reveals that CDTa binding induces partial unfolding and tilting of the first CDTa α-helix. In the CDTb-pore, an NSS-loop exists in 'in' and 'out' conformations, suggesting its involvement in substrate translocation. Finally, 3D variability analysis revealed CDTa movements from a folded to an unfolded state. These dynamic structural information provide insights into drug design against hypervirulent C. difficile strains.


Asunto(s)
Clostridioides difficile , ADP Ribosa Transferasas/metabolismo , Proteínas Bacterianas/metabolismo , Clostridioides , Microscopía por Crioelectrón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...