Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 607(7918): 393-398, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768503

RESUMEN

In flies, Argonaute2 (Ago2) and small interfering RNA (siRNA) form an RNA-induced silencing complex to repress viral transcripts1. The RNase III enzyme Dicer-2 associates with its partner protein R2D2 and cleaves long double-stranded RNAs to produce 21-nucleotide siRNA duplexes, which are then loaded into Ago2 in a defined orientation2-5. Here we report cryo-electron microscopy structures of the Dicer-2-R2D2 and Dicer-2-R2D2-siRNA complexes. R2D2 interacts with the helicase domain and the central linker of Dicer-2 to inhibit the promiscuous processing of microRNA precursors by Dicer-2. Notably, our structure represents the strand-selection state in the siRNA-loading process, and reveals that R2D2 asymmetrically recognizes the end of the siRNA duplex with the higher base-pairing stability, and the other end is exposed to the solvent and is accessible by Ago2. Our findings explain how R2D2 senses the thermodynamic asymmetry of the siRNA and facilitates the siRNA loading into Ago2 in a defined orientation, thereby determining which strand of the siRNA duplex is used by Ago2 as the guide strand for target silencing.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Drosophila , ARN Helicasas , ARN Bicatenario , ARN Interferente Pequeño , Proteínas de Unión al ARN , Ribonucleasa III , Animales , Proteínas Argonautas/metabolismo , Emparejamiento Base , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestructura , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , MicroARNs/metabolismo , Multimerización de Proteína , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , Interferencia de ARN , ARN Bicatenario/química , ARN Bicatenario/metabolismo , ARN Bicatenario/ultraestructura , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Complejo Silenciador Inducido por ARN/metabolismo , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Ribonucleasa III/ultraestructura
2.
Nature ; 607(7918): 399-406, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768513

RESUMEN

Small interfering RNAs (siRNAs) are the key components for RNA interference (RNAi), a conserved RNA-silencing mechanism in many eukaryotes1,2. In Drosophila, an RNase III enzyme Dicer-2 (Dcr-2), aided by its cofactor Loquacious-PD (Loqs-PD), has an important role in generating 21 bp siRNA duplexes from long double-stranded RNAs (dsRNAs)3,4. ATP hydrolysis by the helicase domain of Dcr-2 is critical to the successful processing of a long dsRNA into consecutive siRNA duplexes5,6. Here we report the cryo-electron microscopy structures of Dcr-2-Loqs-PD in the apo state and in multiple states in which it is processing a 50 bp dsRNA substrate. The structures elucidated interactions between Dcr-2 and Loqs-PD, and substantial conformational changes of Dcr-2 during a dsRNA-processing cycle. The N-terminal helicase and domain of unknown function 283 (DUF283) domains undergo conformational changes after initial dsRNA binding, forming an ATP-binding pocket and a 5'-phosphate-binding pocket. The overall conformation of Dcr-2-Loqs-PD is relatively rigid during translocating along the dsRNA in the presence of ATP, whereas the interactions between the DUF283 and RIIIDb domains prevent non-specific cleavage during translocation by blocking the access of dsRNA to the RNase active centre. Additional ATP-dependent conformational changes are required to form an active dicing state and precisely cleave the dsRNA into a 21 bp siRNA duplex as confirmed by the structure in the post-dicing state. Collectively, this study revealed the molecular mechanism for the full cycle of ATP-dependent dsRNA processing by Dcr-2-Loqs-PD.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Drosophila , Drosophila melanogaster , ARN Helicasas , ARN Bicatenario , ARN Interferente Pequeño , Proteínas de Unión al ARN , Ribonucleasa III , Adenosina Trifosfato , Animales , Sitios de Unión , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestructura , Fosfatos/metabolismo , Conformación Proteica , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , ARN Bicatenario/química , ARN Bicatenario/metabolismo , ARN Bicatenario/ultraestructura , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Ribonucleasa III/ultraestructura
3.
Mol Cell ; 82(4): 756-769.e8, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35120588

RESUMEN

The superkiller (SKI) complex is the cytoplasmic co-factor and regulator of the RNA-degrading exosome. In human cells, the SKI complex functions mainly in co-translational surveillance-decay pathways, and its malfunction is linked to a severe congenital disorder, the trichohepatoenteric syndrome. To obtain insights into the molecular mechanisms regulating the human SKI (hSKI) complex, we structurally characterized several of its functional states in the context of 80S ribosomes and substrate RNA. In a prehydrolytic ATP form, the hSKI complex exhibits a closed conformation with an inherent gating system that effectively traps the 80S-bound RNA into the hSKI2 helicase subunit. When active, hSKI switches to an open conformation in which the gating is released and the RNA 3' end exits the helicase. The emerging picture is that the gatekeeping mechanism and architectural remodeling of hSKI underpin a regulated RNA channeling system that is mechanistically conserved among the cytoplasmic and nuclear helicase-exosome complexes.


Asunto(s)
Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , ARN Helicasas/metabolismo , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN/metabolismo , Subunidades Ribosómicas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Exorribonucleasas/genética , Exorribonucleasas/ultraestructura , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/ultraestructura , Células HEK293 , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN/genética , ARN/ultraestructura , ARN Helicasas/genética , ARN Helicasas/ultraestructura , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/ultraestructura , Relación Estructura-Actividad
4.
Nucleic Acids Res ; 49(19): e112, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34417617

RESUMEN

Single-molecule (particle) tracking is a powerful method to study dynamic processes in cells at highest possible spatial and temporal resolution. We have developed SMTracker, a graphical user interface for automatic quantifying, visualizing and managing of data. Version 2.0 determines distributions of positional displacements in x- and y-direction using multi-state diffusion models, discriminates between Brownian, sub- or superdiffusive behaviour, and locates slow or fast diffusing populations in a standardized cell. Using SMTracker, we show that the Bacillus subtilis RNA degradosome consists of a highly dynamic complex of RNase Y and binding partners. We found similar changes in molecule dynamics for RNase Y, CshA, PNPase and enolase, but not for phosphofructokinase, RNase J1 and J2, to inhibition of transcription. However, the absence of PfkA or of RNase J2 affected molecule dynamics of RNase Y-mVenus, indicating that these two proteins are indeed part of the degradosome. Molecule counting suggests that RNase Y is present as a dimer in cells, at an average copy number of about 500, of which 46% are present in a slow-diffusive state and thus likely engaged within degradosomes. Thus, RNase Y, CshA, PNPase and enolase likely play central roles, and RNase J1, J2 and PfkA more peripheral roles, in degradosome architecture.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , ARN Bacteriano/genética , Imagen Individual de Molécula/métodos , Interfaz Usuario-Computador , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/genética , Difusión , Endorribonucleasas/genética , Endorribonucleasas/ultraestructura , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Cinética , Simulación de Dinámica Molecular , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/ultraestructura , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/ultraestructura , Unión Proteica , Multimerización de Proteína , ARN Helicasas/genética , ARN Helicasas/ultraestructura , ARN Bacteriano/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Transcripción Genética
5.
Science ; 359(6373): 329-334, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29269422

RESUMEN

Invertebrates rely on Dicer to cleave viral double-stranded RNA (dsRNA), and Drosophila Dicer-2 distinguishes dsRNA substrates by their termini. Blunt termini promote processive cleavage, while 3' overhanging termini are cleaved distributively. To understand this discrimination, we used cryo-electron microscopy to solve structures of Drosophila Dicer-2 alone and in complex with blunt dsRNA. Whereas the Platform-PAZ domains have been considered the only Dicer domains that bind dsRNA termini, unexpectedly, we found that the helicase domain is required for binding blunt, but not 3' overhanging, termini. We further showed that blunt dsRNA is locally unwound and threaded through the helicase domain in an adenosine triphosphate-dependent manner. Our studies reveal a previously unrecognized mechanism for optimizing antiviral defense and set the stage for the discovery of helicase-dependent functions in other Dicers.


Asunto(s)
Proteínas de Drosophila/química , ARN Helicasas/química , ARN Bicatenario/química , Ribonucleasa III/química , Adenosina Trifosfato/química , Animales , Microscopía por Crioelectrón , Proteínas de Drosophila/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , División del ARN , ARN Helicasas/ultraestructura , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Ribonucleasa III/ultraestructura , Especificidad por Sustrato
6.
Virology ; 515: 74-80, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29272748

RESUMEN

Dengue virus (DENV) is an arbovirus, which replicates in the endoplasmic reticulum. Although replicative cycle takes place in the cytoplasm, some viral proteins such as NS5 and C are translocated to the nucleus during infection in mosquitoes and mammalian cells. To localized viral proteins in DENV-infected C6/36 cells, an immunofluorescence (IF) and immunoelectron microscopy (IEM) analysis were performed. Our results indicated that C, NS1, NS3 and NS5 proteins were found in the nucleus of DENV-infected C6/36 cells. Additionally, complex structures named strand-like structures (Ss) were observed in the nucleus of infected cells. Interestingly, the NS5 protein was located in these structures. Ss were absent in mock-infected cells, suggesting that DENV induces their formation in the nucleus of infected mosquito cells.


Asunto(s)
Culicidae/virología , Virus del Dengue/ultraestructura , Dengue/virología , Proteínas no Estructurales Virales/ultraestructura , Animales , Línea Celular , Núcleo Celular/ultraestructura , Núcleo Celular/virología , Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Humanos , Ratones Endogámicos BALB C , ARN Helicasas/ultraestructura , Serina Endopeptidasas/ultraestructura , Replicación Viral
7.
Methods ; 125: 63-69, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28668587

RESUMEN

The splicing of eukaryotic precursor mRNAs requires the activity of at least three DEAD-box helicases, one Ski2-like helicase and four DEAH-box helicases. High resolution structures for five of these spliceosomal helicases were obtained by means of X-ray crystallography. Additional low resolution structural information could be derived from single particle cryo electron microscopy and small angle X-ray scattering. The functional characterization includes biochemical methods to measure the ATPase and helicase activities. This review gives an overview on the techniques used to gain insights in to the structure and function of spliceosomal helicases.


Asunto(s)
Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , ARN Helicasas/ultraestructura , Empalme del ARN/genética , Empalmosomas/enzimología , Modelos Moleculares , Mutación , Conformación Proteica , ARN Helicasas/química , ARN Helicasas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos
8.
Nature ; 546(7660): 617-621, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28530653

RESUMEN

Intron removal requires assembly of the spliceosome on precursor mRNA (pre-mRNA) and extensive remodelling to form the spliceosome's catalytic centre. Here we report the cryo-electron microscopy structure of the yeast Saccharomyces cerevisiae pre-catalytic B complex spliceosome at near-atomic resolution. The mobile U2 small nuclear ribonucleoprotein particle (snRNP) associates with U4/U6.U5 tri-snRNP through the U2/U6 helix II and an interface between U4/U6 di-snRNP and the U2 snRNP SF3b-containing domain, which also transiently contacts the helicase Brr2. The 3' region of the U2 snRNP is flexibly attached to the SF3b-containing domain and protrudes over the concave surface of tri-snRNP, where the U1 snRNP may reside before its release from the pre-mRNA 5' splice site. The U6 ACAGAGA sequence forms a hairpin that weakly tethers the 5' splice site. The B complex proteins Prp38, Snu23 and Spp381 bind the Prp8 N-terminal domain and stabilize U6 ACAGAGA stem-pre-mRNA and Brr2-U4 small nuclear RNA interactions. These results provide important insights into the events leading to active site formation.


Asunto(s)
Microscopía por Crioelectrón , Saccharomyces cerevisiae , Empalmosomas/química , Empalmosomas/ultraestructura , Secuencia de Bases , Biocatálisis , Dominio Catalítico , Intrones/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , Precursores del ARN/genética , Precursores del ARN/metabolismo , Precursores del ARN/ultraestructura , Sitios de Empalme de ARN/genética , Empalme del ARN , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/metabolismo
9.
Biochem Biophys Res Commun ; 492(4): 643-651, 2017 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-28341122

RESUMEN

America is still suffering with the outbreak of Zika virus (ZIKV) infection. Congenital ZIKV syndrome has already caused a public health emergency of international concern. However, there are still no vaccines to prevent or drugs to treat the infection caused by ZIKV. The ZIKV NS3 helicase (NS3h) protein is a promising target for drug discovery due to its essential role in viral genome replication. NS3h unwinds the viral RNA to enable the replication of the viral genome by the NS5 protein. NS3h contains two important binding sites: the NTPase binding site and the RNA binding site. Here, we used molecular dynamics (MD) simulations to study the molecular behavior of ZIKV NS3h in the presence and absence of ssRNA and the potential implications for NS3h activity and inhibition. Although there is conformational variability and poor electron densities of the RNA binding loop in various apo flaviviruses NS3h crystallographic structures, the MD trajectories of NS3h-ssRNA demonstrated that the RNA binding loop becomes more stable when NS3h is occupied by RNA. Our results suggest that the presence of RNA generates important interactions with the RNA binding loop, and these interactions stabilize the loop sufficiently that it remains in a closed conformation. This closed conformation likely keeps the ssRNA bound to the protein for a sufficient duration to enable the unwinding/replication activities of NS3h to occur. In addition, conformational changes of this RNA binding loop can change the nature and location of the optimal ligand binding site, according to ligand binding site prediction results. These are important findings to help guide the design and discovery of new inhibitors of NS3h as promising compounds to treat the ZIKV infection.


Asunto(s)
Modelos Químicos , Simulación de Dinámica Molecular , ARN Viral/química , ARN Viral/ultraestructura , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/ultraestructura , Virus Zika/enzimología , Sitios de Unión , Activación Enzimática , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , ARN Helicasas/química , ARN Helicasas/ultraestructura , Serina Endopeptidasas/química , Serina Endopeptidasas/ultraestructura
10.
Nature ; 542(7641): 377-380, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28076345

RESUMEN

The spliceosome excises introns from pre-mRNAs in two sequential transesterifications-branching and exon ligation-catalysed at a single catalytic metal site in U6 small nuclear RNA (snRNA). Recently reported structures of the spliceosomal C complex with the cleaved 5' exon and lariat-3'-exon bound to the catalytic centre revealed that branching-specific factors such as Cwc25 lock the branch helix into position for nucleophilic attack of the branch adenosine at the 5' splice site. Furthermore, the ATPase Prp16 is positioned to bind and translocate the intron downstream of the branch point to destabilize branching-specific factors and release the branch helix from the active site. Here we present, at 3.8 Å resolution, the cryo-electron microscopy structure of a Saccharomyces cerevisiae spliceosome stalled after Prp16-mediated remodelling but before exon ligation. While the U6 snRNA catalytic core remains firmly held in the active site cavity of Prp8 by proteins common to both steps, the branch helix has rotated by 75° compared to the C complex and is stabilized in a new position by Prp17, Cef1 and the reoriented Prp8 RNase H-like domain. This rotation of the branch helix removes the branch adenosine from the catalytic core, creates a space for 3' exon docking, and restructures the pairing of the 5' splice site with the U6 snRNA ACAGAGA region. Slu7 and Prp18, which promote exon ligation, bind together to the Prp8 RNase H-like domain. The ATPase Prp22, bound to Prp8 in place of Prp16, could interact with the 3' exon, suggesting a possible basis for mRNA release after exon ligation. Together with the structure of the C complex, our structure of the C* complex reveals the two major conformations of the spliceosome during the catalytic stages of splicing.


Asunto(s)
Microscopía por Crioelectrón , Exones , Empalme del ARN , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Empalmosomas/ultraestructura , Adenosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Biocatálisis , Dominio Catalítico , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/ultraestructura , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Exones/genética , Unión Proteica , Dominios Proteicos , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , Sitios de Empalme de ARN/genética , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/ultraestructura , ARN Nuclear Pequeño/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Ribonucleasa H/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/ultraestructura , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/ultraestructura , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/química
11.
Mol Plant Microbe Interact ; 27(3): 215-26, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24405034

RESUMEN

A unique feature shared by all plant viruses of the Potyviridae family is the induction of characteristic pinwheel-shaped inclusion bodies in the cytoplasm of infected cells. These cylindrical inclusions are composed of the viral-encoded cylindrical inclusion helicase (CI protein). Its helicase activity was characterized and its involvement in replication demonstrated through different reverse genetics approaches. In addition to replication, the CI protein is also involved in cell-to-cell and long-distance movements, possibly through interactions with the recently discovered viral P3N-PIPO protein. Studies over the past two decades demonstrate that the CI protein is present in several cellular compartments interacting with viral and plant protein partners likely involved in its various roles in different steps of viral infection. Furthermore, the CI protein acts as an avirulence factor in gene-for-gene interactions with dominant-resistance host genes and as a recessive-resistance overcoming factor. Although a significant amount of data concerning the potential functions and subcellular localization of this protein has been published, no synthetic review is available on this important multifunctional protein. In this review, we compile and integrate all information relevant to the current understanding of this viral protein structure and function and present a mode of action for CI, combining replication and movement.


Asunto(s)
Genoma Viral/fisiología , Cuerpos de Inclusión Viral/metabolismo , Enfermedades de las Plantas/virología , Plantas/virología , Potyviridae/enzimología , ARN Helicasas/metabolismo , Secuencia de Aminoácidos , Interacciones Huésped-Patógeno , Cuerpos de Inclusión Viral/química , Cuerpos de Inclusión Viral/ultraestructura , Modelos Biológicos , Datos de Secuencia Molecular , Virus de Plantas/enzimología , Virus de Plantas/fisiología , Virus de Plantas/ultraestructura , Plantas/ultraestructura , Plasmodesmos/ultraestructura , Plasmodesmos/virología , Potyviridae/fisiología , Potyviridae/ultraestructura , ARN Helicasas/química , ARN Helicasas/ultraestructura , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura
12.
Methods Enzymol ; 511: 385-403, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22713330

RESUMEN

RNA helicases are associated with every aspect of RNA metabolism and function. A diverse range of RNA helicases are encoded by essentially every organism. While RNA helicases alter gene expression, RNA helicase expression is itself regulated, frequently in response to abiotic stress. Photosynthetic cyanobacteria present a unique model system to investigate RNA helicase expression and function. This chapter describes methodology to study the expression and cellular localization of RNA helicases, providing insights into the metabolic pathway(s) in which these enzymes function in cyanobacteria. The approaches are applicable to other systems as well.


Asunto(s)
Cianobacterias/enzimología , ARN Helicasas/metabolismo , Cianobacterias/ultraestructura , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , ARN Helicasas/ultraestructura
13.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 10): 1116-20, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20944244

RESUMEN

The 2C protein, which is an essential ATPase and one of the most conserved proteins across the Picornaviridae family, is an emerging antiviral target for which structural and functional characterization remain elusive. Based on a distant relationship to helicases of small DNA viruses, piconavirus 2C proteins have been predicted to unwind double-stranded RNAs. Here, a terminally extended variant of the 2C protein from echovirus 30 has been studied by means of enzymatic activity assays, transmission electron microscopy, atomic force microscopy and dynamic light scattering. The transmission electron-microscopy technique showed the existence of ring-shaped particles with ∼12 nm external diameter. Image analysis revealed that these particles were hexameric and resembled those formed by superfamily 3 DNA virus helicases.


Asunto(s)
Virus ADN/fisiología , Enterovirus Humano B/fisiología , ARN Helicasas/química , Proteínas Recombinantes/química , Proteínas Virales/química , Virión/química , Técnicas In Vitro , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Conformación Proteica , Multimerización de Proteína , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Homología Estructural de Proteína , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura , Virión/ultraestructura
14.
Nat Struct Mol Biol ; 15(11): 1206-12, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18953335

RESUMEN

The U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP) is a major, evolutionarily highly conserved spliceosome subunit. Unwinding of its U4/U6 snRNA duplex is a central event of spliceosome activation that requires several components of the U5 portion of the tri-snRNP, including the RNA helicase Brr2, Prp8 and the GTPase Snu114. Here we report the EM projection structure of the Saccharomyces cerevisiae tri-snRNP. It shows a modular organization comprising three extruding domains that contact one another in its central portion. We have visualized genetically tagged tri-snRNP proteins by EM and show here that U4/U6 snRNP forms a domain termed the arm. Conversely, a separate head domain adjacent to the arm harbors Brr2, whereas Prp8 and the GTPase Snu114 are located centrally. The head and arm adopt variable relative positions. This molecular organization and dynamics suggest possible scenarios for structural events during catalytic activation.


Asunto(s)
ARN Helicasas/ultraestructura , Ribonucleoproteína Nuclear Pequeña U4-U6/ultraestructura , Ribonucleoproteína Nuclear Pequeña U5/ultraestructura , Ribonucleoproteínas Nucleares Pequeñas/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Activación Enzimática , Sustancias Macromoleculares/química , Microscopía Electrónica , Conformación de Ácido Nucleico , Conformación Proteica , ARN Helicasas/genética , ARN Helicasas/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo
15.
J Virol ; 82(17): 8838-48, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18562541

RESUMEN

The hepatitis C virus (HCV) RNA replication complex (RC), which is composed of viral nonstructural (NS) proteins and host cellular proteins, replicates the viral RNA genome in association with intracellular membranes. Two viral NS proteins, NS3 and NS5A, are essential elements of the RC. Here, by using immunoprecipitation and fluorescence resonance energy transfer assays, we demonstrated that NS3 and NS5A interact with tubulin and actin. Furthermore, immunofluorescence microscopy and electron microscopy revealed that HCV RCs were aligned along microtubules and actin filaments in both HCV replicon cells and HCV-infected cells. In addition, the movement of RCs was inhibited when microtubules or actin filaments were depolymerized by colchicine and cytochalasin B, respectively. Based on our observations, we propose that microtubules and actin filaments provide the tracks for the movement of HCV RCs to other regions in the cell, and the molecular interactions between RCs and microtubules, or RCs and actin filaments, are mediated by NS3 and NS5A.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo , Replicón , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Citoesqueleto de Actina/ultraestructura , Anticuerpos Monoclonales/inmunología , Carbocianinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular , Línea Celular Tumoral , Colchicina/farmacología , Citocalasina B/farmacología , Fluoresceína-5-Isotiocianato/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Técnica del Anticuerpo Fluorescente Directa , Colorantes Fluorescentes/metabolismo , Hepacivirus/metabolismo , Humanos , Indoles/metabolismo , Riñón/citología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Microtúbulos/ultraestructura , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , ARN Viral/biosíntesis , ARN Viral/genética , ARN Viral/metabolismo , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/ultraestructura , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología , Proteínas no Estructurales Virales/ultraestructura
16.
Annu Rev Biophys ; 37: 317-36, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18573084

RESUMEN

Helicases and remodeling enzymes are ATP-dependent motor proteins that play a critical role in every aspect of RNA and DNA metabolism. Most RNA-remodeling enzymes are members of helicase superfamily 2 (SF2), which includes many DNA helicase enzymes that display similar structural and mechanistic features. Although SF2 enzymes are typically called helicases, many of them display other types of functions, including single-strand translocation, strand annealing, and protein displacement. There are two mechanisms by which RNA helicase enzymes unwind RNA: The nonprocessive DEAD group catalyzes local unwinding of short duplexes adjacent to their binding sites. Members of the processive DExH group often translocate along single-stranded RNA and displace paired strands (or proteins) in their path. In the latter case, unwinding is likely to occur by an active mechanism that involves Brownian motor function and stepwise translocation along RNA. Through structural and single-molecule investigations, researchers are developing coherent models to explain the functions and dynamic motions of helicase enzymes.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/ultraestructura , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/ultraestructura , Transporte de Proteínas , ARN Helicasas/química , ARN Helicasas/ultraestructura , Simulación por Computador , Modelos Químicos , Modelos Moleculares , Movimiento (Física) , Conformación Proteica
17.
Mol Biol Cell ; 17(3): 1126-40, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16371507

RESUMEN

DDX1 bodies, cleavage bodies, Cajal bodies (CBs), and gems are nuclear suborganelles that contain factors involved in RNA transcription and/or processing. Although all four nuclear bodies can exist as distinct entities, they often colocalize or overlap with each other. To better understand the relationship between these four nuclear bodies, we examined their spatial distribution as a function of the cell cycle. Here, we report that whereas DDX1 bodies, CBs and gems are present throughout interphase, CPSF-100-containing cleavage bodies are predominantly found during S and G2 phases, whereas CstF-64-containing cleavage bodies are primarily observed during S phase. All four nuclear bodies associate with each other during S phase, with cleavage bodies colocalizing with DDX1 bodies, and cleavage bodies/DDX1 bodies residing adjacent to gems and CBs. Although inhibitors of RNA transcription had no effect on DDX1 bodies or cleavage bodies, inhibitors of DNA replication resulted in loss of CstF-64-containing cleavage bodies. A striking effect on nuclear structures was observed with latrunculin B, an inhibitor of actin polymerization, resulting in the formation of needlelike nuclear spicules made up of CstF-64, CPSF-100, RNA, and RNA polymerase II. Our results suggest that cleavage body components are highly dynamic in nature.


Asunto(s)
Cuerpos Enrollados/química , Cuerpos Enrollados/metabolismo , ARN Helicasas/química , ARN Helicasas/metabolismo , Actinas/metabolismo , Animales , Células COS , Ciclo Celular , Chlorocebus aethiops , Factor de Estimulación del Desdoblamiento , ARN Helicasas DEAD-box , Replicación del ADN/efectos de los fármacos , Perros , Fibroblastos/citología , Células HeLa , Humanos , Ratones , Modelos Moleculares , Células 3T3 NIH , Polímeros , Unión Proteica , Transporte de Proteínas , ARN/genética , ARN/metabolismo , ARN Helicasas/ultraestructura , Proteínas de Unión al ARN/metabolismo , Transcripción Genética/efectos de los fármacos
18.
Nat Struct Mol Biol ; 13(1): 35-43, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16369485

RESUMEN

The structure of the multisubunit yeast DNA polymerase epsilon (Pol epsilon) was determined to 20-A resolution using cryo-EM and single-particle image analysis. A globular domain comprising the catalytic Pol2 subunit is flexibly connected to an extended structure formed by subunits Dpb2, Dpb3 and Dpb4. Consistent with the reported involvement of the latter in interaction with nucleic acids, the Dpb portion of the structure directly faces a single cleft in the Pol2 subunit that seems wide enough to accommodate double-stranded DNA. Primer-extension experiments reveal that Pol epsilon processivity requires a minimum length of primer-template duplex that corresponds to the dimensions of the extended Dpb structure. Together, these observations suggest a mechanism for interaction of Pol epsilon with DNA that might explain how the structure of the enzyme contributes to its intrinsic processivity.


Asunto(s)
ADN Polimerasa II/química , ADN Polimerasa II/ultraestructura , Saccharomyces cerevisiae/enzimología , Catálisis , Microscopía por Crioelectrón , ARN Helicasas DEAD-box , ADN Polimerasa II/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , ADN de Hongos/ultraestructura , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
19.
Mol Biol Cell ; 12(10): 3046-59, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11598190

RESUMEN

DEAD box proteins are putative RNA helicases that function in all aspects of RNA metabolism, including translation, ribosome biogenesis, and pre-mRNA splicing. Because many processes involving RNA metabolism are spatially organized within the cell, we examined the subcellular distribution of a human DEAD box protein, DDX1, to identify possible biological functions. Immunofluorescence labeling of DDX1 demonstrated that in addition to widespread punctate nucleoplasmic labeling, DDX1 is found in discrete nuclear foci approximately 0.5 microm in diameter. Costaining with anti-Sm and anti-promyelocytic leukemia (PML) antibodies indicates that DDX1 foci are frequently located next to Cajal (coiled) bodies and less frequently, to PML bodies. Most importantly, costaining with anti-CstF-64 antibody indicates that DDX1 foci colocalize with cleavage bodies. By microscopic fluorescence resonance energy transfer, we show that labeled DDX1 resides within a Förster distance of 10 nm of labeled CstF-64 protein in both the nucleoplasm and within cleavage bodies. Coimmunoprecipitation analysis indicates that a proportion of CstF-64 protein resides in the same complex as DDX1. These studies are the first to identify a DEAD box protein associating with factors involved in 3'-end cleavage and polyadenylation of pre-mRNAs.


Asunto(s)
Núcleo Celular/metabolismo , ARN Helicasas/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Ciclo Celular/fisiología , Células Cultivadas , ARN Helicasas DEAD-box , Fibroblastos , Células HeLa , Humanos , Ratones , Microscopía Confocal , Pruebas de Precipitina , ARN Helicasas/ultraestructura , Precursores del ARN/ultraestructura , ARN Mensajero/ultraestructura , Proteínas de Unión al ARN/ultraestructura , Fracciones Subcelulares/metabolismo , Células Tumorales Cultivadas , Factores de Escisión y Poliadenilación de ARNm
20.
Proc Natl Acad Sci U S A ; 98(1): 63-8, 2001 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-11134527

RESUMEN

RNase E isolated from Escherichia coli is contained in a multicomponent "degradosome" complex with other proteins implicated in RNA decay. Earlier work has shown that the C-terminal region of RNase E is a scaffold for the binding of degradosome components and has identified specific RNase E segments necessary for its interaction with polynucleotide phosphorylase (PNPase), RhlB RNA helicase, and enolase. Here, we report electron microscopy studies that use immunogold labeling and freeze-fracture methods to show that degradosomes exist in vivo in E. coli as multicomponent structures that associate with the cytoplasmic membrane via the N-terminal region of RNase E. Whereas PNPase and enolase are present in E. coli in large excess relative to RNase E and therefore are detected in cells largely as molecules unlinked to the RNase E scaffold, immunogold labeling and biochemical analyses show that helicase is present in approximately equimolar amounts to RNase E at all cell growth stages. Our findings, which establish the existence and cellular location of RNase E-based degradosomes in vivo in E. coli, also suggest that RNA processing and decay may occur at specific sites within cells.


Asunto(s)
Membrana Celular/metabolismo , Endorribonucleasas/metabolismo , Endorribonucleasas/ultraestructura , Escherichia coli/enzimología , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/ultraestructura , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Polirribonucleótido Nucleotidiltransferasa/ultraestructura , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , ARN Bacteriano/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Western Blotting , Membrana Celular/ultraestructura , Endorribonucleasas/química , Endorribonucleasas/aislamiento & purificación , Escherichia coli/citología , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Técnica de Fractura por Congelación , Inmunohistoquímica , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Microscopía Electrónica , Complejos Multienzimáticos/aislamiento & purificación , Polirribonucleótido Nucleotidiltransferasa/aislamiento & purificación , Unión Proteica , ARN Helicasas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...