Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Science ; 385(6706): eadm9238, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39024447

RESUMEN

The human mitochondrial genome encodes crucial oxidative phosphorylation system proteins, pivotal for aerobic energy transduction. They are translated from nine monocistronic and two bicistronic transcripts whose native structures remain unexplored, posing a gap in understanding mitochondrial gene expression. In this work, we devised the mitochondrial dimethyl sulfate mutational profiling with sequencing (mitoDMS-MaPseq) method and applied detection of RNA folding ensembles using expectation-maximization (DREEM) clustering to unravel the native mitochondrial messenger RNA (mt-mRNA) structurome in wild-type (WT) and leucine-rich pentatricopeptide repeat-containing protein (LRPPRC)-deficient cells. Our findings elucidate LRPPRC's role as a holdase contributing to maintaining mt-mRNA folding and efficient translation. mt-mRNA structural insights in WT mitochondria, coupled with metabolic labeling, unveil potential mRNA-programmed translational pausing and a distinct programmed ribosomal frameshifting mechanism. Our data define a critical layer of mitochondrial gene expression regulation. These mt-mRNA folding maps provide a reference for studying mt-mRNA structures in diverse physiological and pathological contexts.


Asunto(s)
Regulación de la Expresión Génica , Genoma Mitocondrial , Proteínas Mitocondriales , Proteínas de Neoplasias , Pliegue del ARN , ARN Mensajero , ARN Mitocondrial , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Biosíntesis de Proteínas/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Mitocondrial/química , ARN Mitocondrial/genética , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Nat Commun ; 15(1): 4683, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824131

RESUMEN

The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.


Asunto(s)
Mitocondrias , ARN de Transferencia , Ribonucleasa P , ARNt Metiltransferasas , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , Mitocondrias/metabolismo , Ribonucleasa P/metabolismo , Ribonucleasa P/genética , Ribonucleasa P/química , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/química , Procesamiento Postranscripcional del ARN , Microscopía por Crioelectrón , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/química , Metilación , Conformación de Ácido Nucleico , Modelos Moleculares , Precursores del ARN/metabolismo , Precursores del ARN/genética
3.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37373258

RESUMEN

Mitochondrial RNA editing in trypanosomes represents an attractive target for developing safer and more efficient drugs for treating infections with trypanosomes because this RNA editing pathway is not found in humans. Other workers have targeted several enzymes in this editing system, but not the RNA. Here, we target a universal domain of the RNA editing substrate, which is the U-helix formed between the oligo-U tail of the guide RNA and the target mRNA. We selected a part of the U-helix that is rich in G-U wobble base pairs as the target site for the virtual screening of 262,000 compounds. After chemoinformatic filtering of the top 5000 leads, we subjected 50 representative complexes to 50 nanoseconds of molecular dynamics simulations. We identified 15 compounds that retained stable interactions in the deep groove of the U-helix. The microscale thermophoresis binding experiments on these five compounds show low-micromolar to nanomolar binding affinities. The UV melting studies show an increase in the melting temperatures of the U-helix upon binding by each compound. These five compounds can serve as leads for drug development and as research tools to probe the role of the RNA structure in trypanosomal RNA editing.


Asunto(s)
Edición de ARN , Bibliotecas de Moléculas Pequeñas , Tripanocidas , Trypanosoma , Trypanosoma/efectos de los fármacos , Edición de ARN/efectos de los fármacos , ARN Protozoario/química , ARN Mitocondrial/química , Tripanocidas/química , Tripanocidas/farmacología , Conformación de Ácido Nucleico/efectos de los fármacos , Simulación de Dinámica Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
4.
Nat Commun ; 13(1): 209, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017528

RESUMEN

Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.


Asunto(s)
Anticodón/química , Metiltransferasas/genética , Mitocondrias/genética , ARN Mitocondrial/química , ARN de Transferencia de Serina/química , ARN de Transferencia de Treonina/química , Anticodón/metabolismo , Emparejamiento Base , Citosina/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Metilación , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Serina/genética , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Transducción de Señal
5.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055110

RESUMEN

Guanine quadruplexes (G4s) are highly polymorphic four-stranded structures formed within guanine-rich DNA and RNA sequences that play a crucial role in biological processes. The recent discovery of the first G4 structures within mitochondrial DNA has led to a small revolution in the field. In particular, the G-rich conserved sequence block II (CSB II) can form different types of G4s that are thought to play a crucial role in replication. In this study, we decipher the most relevant G4 structures that can be formed within CSB II: RNA G4 at the RNA transcript, DNA G4 within the non-transcribed strand and DNA:RNA hybrid between the RNA transcript and the non-transcribed strand. We show that the more abundant, but unexplored, G6AG7 (37%) and G6AG8 (35%) sequences in CSB II yield more stable G4s than the less profuse G5AG7 sequence. Moreover, the existence of a guanine located 1 bp upstream promotes G4 formation. In all cases, parallel G4s are formed, but their topology changes from a less ordered to a highly ordered G4 when adding small amounts of potassium or sodium cations. Circular dichroism was used due to discriminate different conformations and topologies of nucleic acids and was complemented with gel electrophoresis and fluorescence spectroscopy studies.


Asunto(s)
ADN Mitocondrial/química , Mitocondrias/genética , ARN Mitocondrial/química , Dicroismo Circular , G-Cuádruplex , Espectrometría de Fluorescencia
6.
Mol Cell ; 81(23): 4810-4825.e12, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34774131

RESUMEN

Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.


Asunto(s)
Metiltransferasas/metabolismo , ARN Mitocondrial/química , ARN de Transferencia/química , Animales , Anticodón , Proliferación Celular , Codón , Citoplasma , ADN Mitocondrial/metabolismo , Transporte de Electrón , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Mitocondrias/metabolismo , Membranas Mitocondriales , Proteínas Mitocondriales/química , Consumo de Oxígeno , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Ribosomas/metabolismo , Regulación hacia Arriba
7.
Methods Mol Biol ; 2277: 157-173, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34080151

RESUMEN

Mitochondria have complex ultrastructure which includes continuous subcompartments, such as matrix, intermembrane space, and two membranes, as well as focal structures, such as nucleoids, RNA granules, and mitoribosomes. Comprehensive studies of the spatial distribution of proteins and RNAs inside the mitochondria are necessary to understand organellar gene expression processes and macromolecule targeting pathways. Here we give examples of distribution analysis of mitochondrial proteins and transcripts by conventional microscopy and the super-resolution technique 3D STORM. We provide detailed protocols and discuss limitations of immunolabeling of mitochondrial proteins and newly synthesized mitochondrial RNAs by bromouridine incorporation and single-molecule RNA FISH in hepatocarcinoma cells.


Asunto(s)
Inmunohistoquímica/métodos , Hibridación Fluorescente in Situ/métodos , Microscopía Confocal/métodos , Proteínas Mitocondriales/metabolismo , Bromouracilo/análogos & derivados , Bromouracilo/química , Células Hep G2 , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , ARN Mitocondrial/química , Imagen Individual de Molécula/métodos , Uridina/análogos & derivados , Uridina/química
8.
Methods Mol Biol ; 2275: 247-263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34118042

RESUMEN

Mitochondrial physiology and metabolism are closely linked to replication and transcription of mitochondrial DNA (mtDNA). However, the characterization of mtDNA processing is poorly defined at the single-cell level. We developed mTRIP (mitochondrial Transcription and Replication Imaging Protocol), an imaging approach based on modified fluorescence in situ hybridization (FISH), which simultaneously reveals mitochondrial structures committed to mtDNA initiation of replication as well as the mitochondrial RNA (mtRNA) content at the single-cell level in human cells. Also specific RNA regions, rather than global RNA, can be tracked with mTRIP. In addition, mTRIP can be coupled to immunofluorescence for in situ protein tracking, or to MitoTracker, thereby allowing for simultaneous labeling of mtDNA, mtRNA, and proteins or mitochondria, respectively. Altogether, qualitative and quantitative alterations of the dynamics of mtDNA processing are detected by mTRIP in human cells undergoing physiological changes, as well as stress and dysfunction. mTRIP helped elucidating mtDNA processing alterations in cancer cells, and has a potential for diagnostic of mitochondrial diseases.


Asunto(s)
ADN Mitocondrial/química , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Análisis de la Célula Individual/métodos , Animales , Humanos , Hibridación Fluorescente in Situ , Ratones , ARN Mitocondrial/química , Transcripción Genética
9.
Nucleic Acids Res ; 49(6): 3557-3572, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33677542

RESUMEN

Uridine insertion/deletion editing of mitochondrial mRNAs is a characteristic feature of kinetoplastids, including Trypanosoma brucei. Editing is directed by trans-acting gRNAs and catalyzed by related RNA Editing Core Complexes (RECCs). The non-catalytic RNA Editing Substrate Binding Complex (RESC) coordinates interactions between RECC, gRNA and mRNA. RESC is a dynamic complex comprising GRBC (Guide RNA Binding Complex) and heterogeneous REMCs (RNA Editing Mediator Complexes). Here, we show that RESC10 is an essential, low abundance, RNA binding protein that exhibits RNase-sensitive and RNase-insensitive interactions with RESC proteins, albeit its minimal in vivo interaction with RESC13. RESC10 RNAi causes extensive RESC disorganization, including disruption of intra-GRBC protein-protein interactions, as well as mRNA depletion from GRBC and accumulation on REMCs. Analysis of mitochondrial RNAs at single nucleotide resolution reveals transcript-specific effects: RESC10 dramatically impacts editing progression in pan-edited RPS12 mRNA, but is critical for editing initiation in mRNAs with internally initiating gRNAs, pointing to distinct initiation mechanisms for these RNA classes. Correlations between sites at which editing pauses in RESC10 depleted cells and those in knockdowns of previously studied RESC proteins suggest that RESC10 acts upstream of these factors and that RESC is particularly important in promoting transitions between uridine insertion and deletion RECCs.


Asunto(s)
Proteínas Protozoarias/fisiología , Edición de ARN , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/fisiología , Trypanosoma brucei brucei/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/química , ARN Mitocondrial/química , Proteínas de Unión al ARN/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo , Uridina/metabolismo
10.
Methods Mol Biol ; 2192: 59-68, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33230765

RESUMEN

Posttranscriptional RNA modifications have recently emerged as essential posttranscriptional regulators of gene expression. Here we present two methods for single nucleotide resolution detection of 5-formylcytosine (f5C) in RNA. The first relies on chemical protection of f5C against bisulfite treatment, the second method is based on chemical reduction of f5C to hm5C. In combination with regular bisulfite treatment of RNA, the methods allow for precise mapping of f5C. The protocol is used for f5C detection in mtDNA-encoded RNA, however, it can be straightforwardly applied for transcriptome-wide analyses.


Asunto(s)
Citosina/análogos & derivados , Mitocondrias/metabolismo , Nucleótidos/análisis , ARN Mitocondrial/química , Transcriptoma , Citosina/análisis , ADN Mitocondrial/genética , Perfilación de la Expresión Génica , Procesamiento Postranscripcional del ARN/efectos de los fármacos , RNA-Seq/métodos , Sulfitos/farmacología
11.
Methods Mol Biol ; 2192: 89-101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33230768

RESUMEN

Mitochondrial RNAs are modified posttranscriptionally. These modifications are required for proper functioning of RNA molecules, and thereby contribute to essential mitochondrial processes. Herein, we describe our latest mass spectrometry-based platform for analysis of posttranscriptional modifications of mitochondrial tRNAs, and measuring the in vitro activity of mitochondrial RNA-modifying enzymes.


Asunto(s)
Espectrometría de Masas/métodos , Mitocondrias/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Biocatálisis , Humanos , Conformación de Ácido Nucleico , Nucleósidos/química , ARN Mitocondrial/aislamiento & purificación , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , ARN de Transferencia/aislamiento & purificación , ARNt Metiltransferasas/metabolismo
12.
Methods Mol Biol ; 2192: 133-146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33230771

RESUMEN

RNA turnover is an essential part of the gene expression pathway, and there are several experimental approaches for its determination. High-throughput measurement of global RNA turnover rates can provide valuable information about conditions or proteins that impact gene expression. Here, we present a protocol for mitochondrial RNA turnover analysis which involves metabolic labeling of RNA coupled with quantitative high-throughput fluorescent microscopy. This approach gives an excellent opportunity to discover new factors involved in mitochondrial gene regulation when combined with loss-of-function screening strategy.


Asunto(s)
Regulación de la Expresión Génica , Inmunohistoquímica/métodos , Mitocondrias/genética , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Bromouracilo/análogos & derivados , Bromouracilo/química , Expresión Génica , Células HeLa , Humanos , Microscopía Fluorescente/métodos , Estabilidad del ARN , ARN Mitocondrial/química , ARN Interferente Pequeño/genética , Coloración y Etiquetado/métodos , Transcripción Genética , Transfección , Uridina/análogos & derivados , Uridina/química
13.
RNA ; 27(4): 420-432, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33380464

RESUMEN

Mitochondrial diseases linked to mutations in mitochondrial (mt) tRNA sequences are common. However, the contributions of these tRNA mutations to the development of diseases is mostly unknown. Mutations may affect interactions with (mt)tRNA maturation enzymes or protein synthesis machinery leading to mitochondrial dysfunction. In human mitochondria, in most cases the first step of tRNA processing is the removal of the 5' leader of precursor tRNAs (pre-tRNA) catalyzed by the three-component enzyme, mtRNase P. Additionally, one component of mtRNase P, mitochondrial RNase P protein 1 (MRPP1), catalyzes methylation of the R9 base in pre-tRNAs. Despite the central role of 5' end processing in mitochondrial tRNA maturation, the link between mtRNase P and diseases is mostly unexplored. Here, we investigate how 11 different human disease-linked mutations in (mt)pre-tRNAIle, (mt)pre-tRNALeu(UUR), and (mt)pre-tRNAMet affect the activities of mtRNase P. We find that several mutations weaken the pre-tRNA binding affinity (KD s are approximately two- to sixfold higher than that of wild-type), while the majority of mutations decrease 5' end processing and methylation activity catalyzed by mtRNase P (up to ∼55% and 90% reduction, respectively). Furthermore, all of the investigated mutations in (mt)pre-tRNALeu(UUR) alter the tRNA fold which contributes to the partial loss of function of mtRNase P. Overall, these results reveal an etiological link between early steps of (mt)tRNA-substrate processing and mitochondrial disease.


Asunto(s)
Metiltransferasas/química , Enfermedades Mitocondriales/genética , Precursores del ARN/química , Procesamiento Postranscripcional del ARN , ARN Mitocondrial/química , ARN de Transferencia/química , Emparejamiento Base , Secuencia de Bases , Humanos , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Mutación , Pliegue del ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
14.
Mol Cell ; 81(2): 268-280.e5, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33278362

RESUMEN

Mitochondrial RNA polymerase (mtRNAP) is crucial in cellular energy production, yet understanding of mitochondrial DNA transcription initiation lags that of bacterial and nuclear DNA transcription. We report structures of two transcription initiation intermediate states of yeast mtRNAP that explain promoter melting, template alignment, DNA scrunching, abortive synthesis, and transition into elongation. In the partially melted initiation complex (PmIC), transcription factor MTF1 makes base-specific interactions with flipped non-template (NT) nucleotides "AAGT" at -4 to -1 positions of the DNA promoter. In the initiation complex (IC), the template in the expanded 7-mer bubble positions the RNA and NTP analog UTPαS, while NT scrunches into an NT loop. The scrunched NT loop is stabilized by the centrally positioned MTF1 C-tail. The IC and PmIC states coexist in solution, revealing a dynamic equilibrium between two functional states. Frequent scrunching/unscruching transitions and the imminent steric clashes of the inflating NT loop and growing RNA:DNA with the C-tail explain abortive synthesis and transition into elongation.


Asunto(s)
ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , ARN Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Sitios de Unión , Microscopía por Crioelectrón , ADN Mitocondrial/química , ADN Mitocondrial/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinámica , Elongación de la Transcripción Genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Iniciación de la Transcripción Genética
15.
Nat Commun ; 11(1): 4269, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859890

RESUMEN

Mitochondria generate most cellular energy via oxidative phosphorylation. Twenty-two species of mitochondrial (mt-)tRNAs encoded in mtDNA translate essential subunits of the respiratory chain complexes. mt-tRNAs contain post-transcriptional modifications introduced by nuclear-encoded tRNA-modifying enzymes. They are required for deciphering genetic code accurately, as well as stabilizing tRNA. Loss of tRNA modifications frequently results in severe pathological consequences. Here, we perform a comprehensive analysis of post-transcriptional modifications of all human mt-tRNAs, including 14 previously-uncharacterized species. In total, we find 18 kinds of RNA modifications at 137 positions (8.7% in 1575 nucleobases) in 22 species of human mt-tRNAs. An up-to-date list of 34 genes responsible for mt-tRNA modifications are provided. We identify two genes required for queuosine (Q) formation in mt-tRNAs. Our results provide insight into the molecular mechanisms underlying the decoding system and could help to elucidate the molecular pathogenesis of human mitochondrial diseases caused by aberrant tRNA modifications.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN Mitocondrial/química , ARN de Transferencia/química , Femenino , Código Genético , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Estructura Molecular , Nucleósido Q/biosíntesis , Nucleósido Q/química , Fosforilación Oxidativa , Placenta , Embarazo , ARN Mitocondrial/aislamiento & purificación , ARN Mitocondrial/metabolismo , ARN de Transferencia/aislamiento & purificación , ARN de Transferencia/metabolismo , RNA-Seq
16.
Clin Biochem ; 85: 20-26, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32745483

RESUMEN

OBJECTIVES: Chronic lymphocytic leukemia (CLL) is the most common leukemia among adults. The prognosis of CLL patients varies considerably. Transfer RNA-derived RNA fragments (tRFs) constitute a class of small non-coding RNA fragments excised from mature tRNAs and pre-tRNAs located in nuclei as well as in mitochondria. In this study, the clinical utility of i-tRF-PheGAA, a novel mitochondrial tRF, was investigated in CLL. DESIGN AND METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from 91 CLL patients and 43 non-leukemic controls. Total RNA was isolated from each sample, polyadenylated at the 3' end and reversely transcribed. An in-house developed real-time quantitative PCR assay was developed and applied, and the results were biostatistically analyzed. For the normalization of the i-tRF-PheGAA expression levels, the expression of a small nucleolar RNA (RNU48) was used as reference. RESULTS: Mann-Whitney U test showed that i-tRF-PheGAA can distinguish between CLL samples and normal controls (p < 0.001). As determined by Kaplan-Meier survival analysis, overexpression of i-tRF-PheGAA was related to poor overall survival of the CLL patients (p < 0.001). Univariate bootstrap Cox regression analysis exhibited a higher hazard ratio of 7.95 (95% CI = 2.37-26.72, p < 0.001) for patients with positive i-tRF-PheGAA expression status. Multivariate bootstrap Cox regression analysis showed that the prognostic value of this tRF is independent of clinical stage, mutational status of the immunoglobulin heavy chain variable (IGHV) genetic locus, and CD38 expression status (p = 0.010). CONCLUSIONS: Our results show that i-tRF-PheGAA can serve as a molecular biomarker of poor prognosis in CLL, alongside with the existing factors for CLL prognosis.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Femenino , Regulación Leucémica de la Expresión Génica , Humanos , Células K562 , Leucemia Linfocítica Crónica de Células B/mortalidad , Leucocitos Mononucleares/química , Masculino , Persona de Mediana Edad , Pronóstico , ARN Mitocondrial/sangre , ARN Mitocondrial/química , ARN de Transferencia de Fenilalanina/sangre , ARN de Transferencia de Fenilalanina/química , Análisis de Supervivencia
17.
Nat Commun ; 11(1): 3830, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737313

RESUMEN

The mammalian mitochondrial ribosome (mitoribosome) and its associated translational factors have evolved to accommodate greater participation of proteins in mitochondrial translation. Here we present the 2.68-3.96 Å cryo-EM structures of the human 55S mitoribosome in complex with the human mitochondrial elongation factor G1 (EF-G1mt) in three distinct conformational states, including an intermediate state and a post-translocational state. These structures reveal the role of several mitochondria-specific (mito-specific) mitoribosomal proteins (MRPs) and a mito-specific segment of EF-G1mt in mitochondrial tRNA (tRNAmt) translocation. In particular, the mito-specific C-terminal extension in EF-G1mt is directly involved in translocation of the acceptor arm of the A-site tRNAmt. In addition to the ratchet-like and independent head-swiveling motions exhibited by the small mitoribosomal subunit, we discover significant conformational changes in MRP mL45 at the nascent polypeptide-exit site within the large mitoribosomal subunit that could be critical for tethering of the elongating mitoribosome onto the inner-mitochondrial membrane.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Extensión de la Cadena Peptídica de Translación , Factor G de Elongación Peptídica/química , ARN Mitocondrial/química , ARN de Transferencia/química , Proteínas Ribosómicas/química , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Microscopía por Crioelectrón , Células HEK293 , Humanos , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido
18.
EMBO J ; 39(15): e104820, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32602580

RESUMEN

Mitochondria are eukaryotic organelles of bacterial origin where respiration takes place to produce cellular chemical energy. These reactions are catalyzed by the respiratory chain complexes located in the inner mitochondrial membrane. Notably, key components of the respiratory chain complexes are encoded on the mitochondrial chromosome and their expression relies on a dedicated mitochondrial translation machinery. Defects in the mitochondrial gene expression machinery lead to a variety of diseases in humans mostly affecting tissues with high energy demand such as the nervous system, the heart, or the muscles. The mitochondrial translation system has substantially diverged from its bacterial ancestor, including alterations in the mitoribosomal architecture, multiple changes to the set of translation factors and striking reductions in otherwise conserved tRNA elements. Although a number of structures of mitochondrial ribosomes from different species have been determined, our mechanistic understanding of the mitochondrial translation cycle remains largely unexplored. Here, we present two cryo-EM reconstructions of human mitochondrial elongation factor G1 bound to the mammalian mitochondrial ribosome at two different steps of the tRNA translocation reaction during translation elongation. Our structures explain the mechanism of tRNA and mRNA translocation on the mitoribosome, the regulation of mtEFG1 activity by the ribosomal GTPase-associated center, and the basis of decreased susceptibility of mtEFG1 to the commonly used antibiotic fusidic acid.


Asunto(s)
Proteínas Mitocondriales/química , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/ultraestructura , Factor G de Elongación Peptídica/química , Biosíntesis de Proteínas , ARN Mitocondrial/química , ARN de Transferencia/química , Animales , Microscopía por Crioelectrón , Humanos , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Porcinos
19.
Nucleic Acids Res ; 48(14): 8022-8034, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32573735

RESUMEN

Mammalian mitochondrial ribosomes contain a set of modified nucleotides, which is distinct from that of the cytosolic ribosomes. Nucleotide m4C840 of the murine mitochondrial 12S rRNA is equivalent to the dimethylated m4Cm1402 residue of Escherichia coli 16S rRNA. Here we demonstrate that mouse METTL15 protein is responsible for the formation of m4C residue of the 12S rRNA. Inactivation of Mettl15 gene in murine cell line perturbs the composition of mitochondrial protein biosynthesis machinery. Identification of METTL15 interaction partners revealed that the likely substrate for this RNA methyltransferase is an assembly intermediate of the mitochondrial small ribosomal subunit containing an assembly factor RBFA.


Asunto(s)
Metiltransferasas/metabolismo , Mitocondrias/enzimología , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/enzimología , Animales , Células Cultivadas , Metilación , Ratones , Mitocondrias/metabolismo , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , ARN Ribosómico/química , ARN Ribosómico 28S/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
20.
Mitochondrion ; 52: 163-172, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32169613

RESUMEN

Mutations in the mitochondrial tRNAs have been reported to be the important cause of hearing loss. However, only a few cases have been identified thus far and the prevalence of mitochondrial tRNA mutations in hearing-impaired patients remain unclear. Here we performed the mutational analysis of 22 mitochondrial tRNA genes in a large cohort of 887 Han Chinese subjects with hearing loss by Sanger sequencing. The systemic evaluation of putative pathogenic variants was further carried out by frequency in controls (<1%), phylogenetic analysis, structural analysisandfunctionalprediction. As a result, a total of 147 variants on 22 tRNA genes were identified. Among these, 39 tRNA mutations (10 pathogenic and 29 likely pathogenic) which absent or present <1% in 773 Chinese controls, localized at highly conserved nucleotides, or changed the modified nucleotides, could have potential structural alterations and functional significance, thereby considered to be deafness-associated mutations. Furthermore, 44 subjects carried one of these 39 pathogenic/likely pathogenic tRNA mutations with a total prevalence of 4.96%. However, the phenotypic variability and incomplete penetrance of hearing loss in pedigrees carrying these tRNA mutations indicate the involvement of modifier factors, such as nuclear encoded genes associated with mitochondrion biogenesis, mitochondrial haplotypes, epigenetic and environmental factors. Thus, our data provide the evidence that mitochondrial tRNA mutations are the important causes of hearing loss among Chinese population. These findings further increase our knowledge on the clinical relevance of tRNA mutations in the mitochondrial genome, and should be helpful to elucidate the pathogenesis of maternal hearing loss.


Asunto(s)
Pueblo Asiatico/genética , Pérdida Auditiva/genética , Mutación , ARN de Transferencia/genética , Análisis de Secuencia de ADN/métodos , Adolescente , Adulto , Anciano , Pueblo Asiatico/etnología , Niño , Preescolar , China/etnología , Epigénesis Genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tasa de Mutación , Conformación de Ácido Nucleico , Filogenia , ARN Mitocondrial/química , ARN Mitocondrial/genética , ARN de Transferencia/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA