Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochimie ; 164: 37-44, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31212038

RESUMEN

Circular RNAs (circRNAs) differ structurally from other types of RNAs and are resistant against exoribonucleases. Although they have been detected in all domains of life, it remains unclear how circularization affects or changes functions of these ubiquitous nucleic acid circles. The biogenesis of circRNAs has been mostly described as a backsplicing event, but in archaea, where RNA splicing is a rare phenomenon, a second pathway for circRNA formation was described in the cases of rRNAs processing, tRNA intron excision, and Box C/D RNAs formation. At least in some archaeal species, circRNAs are formed by a ligation step catalyzed by an atypic homodimeric RNA ligase belonging to Rnl3 family. In this review, we describe archaeal circRNA transcriptomes obtained using high throughput sequencing technologies on Sulfolobus solfataricus, Pyrococcus abyssi and Nanoarchaeum equitans cells. We will discuss the distribution of circular RNAs among the different RNA categories and present the Rnl3 ligase family implicated in the circularization activity. Special focus is given for the description of phylogenetic distributions, protein structures, and substrate specificities of archaeal RNA ligases.


Asunto(s)
Nanoarchaeota , Pyrococcus abyssi , ARN Ligasa (ATP) , ARN de Archaea , ARN Circular , Sulfolobus solfataricus , Nanoarchaeota/enzimología , Nanoarchaeota/genética , Pyrococcus abyssi/enzimología , Pyrococcus abyssi/genética , ARN Ligasa (ATP)/clasificación , ARN Ligasa (ATP)/fisiología , ARN de Archaea/clasificación , ARN de Archaea/metabolismo , ARN Circular/clasificación , ARN Circular/metabolismo , Análisis de Secuencia de ARN , Sulfolobus solfataricus/enzimología , Sulfolobus solfataricus/genética
2.
Nucleic Acids Res ; 46(15): 7970-7976, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29788499

RESUMEN

Group I catalytic introns have been found in bacterial, viral, organellar, and some eukaryotic genomes, but not in archaea. All known archaeal introns are bulge-helix-bulge (BHB) introns, with the exception of a few group II introns. It has been proposed that BHB introns arose from extinct group I intron ancestors, much like eukaryotic spliceosomal introns are thought to have descended from group II introns. However, group I introns have little sequence conservation, making them difficult to detect with standard sequence similarity searches. Taking advantage of recent improvements in a computational homology search method that accounts for both conserved sequence and RNA secondary structure, we have identified 39 group I introns in a wide range of archaeal phyla, including examples of group I introns and BHB introns in the same host gene.


Asunto(s)
Archaea/genética , Intrones/genética , ARN de Archaea/genética , ARN Catalítico/genética , Archaea/clasificación , Archaea/enzimología , Secuencia de Bases , Conformación de Ácido Nucleico , Filogenia , ARN de Archaea/química , ARN de Archaea/clasificación , ARN Catalítico/química , ARN Catalítico/clasificación , Especificidad de la Especie
3.
Nucleic Acids Res ; 46(11): 5678-5691, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29771354

RESUMEN

Archaeal homologs of eukaryotic C/D box small nucleolar RNAs (C/D box sRNAs) guide precise 2'-O-methyl modification of ribosomal and transfer RNAs. Although C/D box sRNA genes constitute one of the largest RNA gene families in archaeal thermophiles, most genomes have incomplete sRNA gene annotation because reliable, fully automated detection methods are not available. We expanded and curated a comprehensive gene set across six species of the crenarchaeal genus Pyrobaculum, particularly rich in C/D box sRNA genes. Using high-throughput small RNA sequencing, specialized computational searches and comparative genomics, we analyzed 526 Pyrobaculum C/D box sRNAs, organizing them into 110 families based on synteny and conservation of guide sequences which determine methylation targets. We examined gene duplications and rearrangements, including one family that has expanded in a pattern similar to retrotransposed repetitive elements in eukaryotes. New training data and inclusion of kink-turn secondary structural features enabled creation of an improved search model. Our analyses provide the most comprehensive, dynamic view of C/D box sRNA evolutionary history within a genus, in terms of modification function, feature plasticity, and gene mobility.


Asunto(s)
Evolución Molecular , Pyrobaculum/genética , ARN de Archaea/genética , ARN Nucleolar Pequeño/genética , Proteínas Arqueales/genética , Disparidad de Par Base , Genes Duplicados , Genómica , Metilación , Familia de Multigenes , ARN de Archaea/química , ARN de Archaea/clasificación , ARN de Archaea/metabolismo , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/clasificación , ARN Nucleolar Pequeño/metabolismo , ARN de Transferencia/metabolismo , ARN no Traducido/genética , Alineación de Secuencia
4.
Science ; 351(6274): 703-7, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26912857

RESUMEN

The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane.


Asunto(s)
Ciclo del Carbono , Metano/metabolismo , Methanosarcinales/metabolismo , Sulfatos/metabolismo , Anaerobiosis , Transporte de Electrón , Sedimentos Geológicos/microbiología , Methanosarcinales/clasificación , Methanosarcinales/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , ARN de Archaea/clasificación , ARN de Archaea/genética , Agua de Mar/microbiología , Bacterias Reductoras del Azufre/metabolismo
5.
Water Sci Technol ; 71(12): 1790-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26067498

RESUMEN

The effect of phenylacetic acid (PAA) pulses on anaerobic digestion (AD) performance and archaeal community structure was evaluated in anaerobic digesters treating sewage sludge from a wastewater treatment plant (WWTP). Four pilot-scale continuous stirred tank reactors were set up at a full-scale municipal WWTP in Santiago de Chile, and fed with either primary or mixed sewage sludge. AD performance was evaluated by volatile fatty acid (VFA) and biogas production monitoring. Archaeal community structure was characterized by 16S rRNA denaturing gradient gel electrophoresis and band sequencing. In the primary sludge digester, a single PAA pulse at 200 mg L(-1) was sufficient to affect AD performance and archaeal community structure, resulting in long-term VFA accumulation, reduced biogas production and community shift from dominant acetoclastic (Methanosaeta concilii) to hydrogenotrophic (Methanospirillum hungatei) methanogens. By contrast, AD performance and archaeal community structure in the mixed sludge digester were stable and resistant to repeated PAA pulses at 200 and 600 mg L(-1). This work demonstrated that the effect of PAA pulses on methanogenic activity and archaeal community structure differed according to AD substrate, and suggests that better insights of the correlations between archaeal population dynamics and functional performance could help to better face toxic shocks in AD.


Asunto(s)
Archaea/clasificación , Reactores Biológicos , Fenilacetatos/farmacología , Aguas del Alcantarillado/química , Anaerobiosis , Archaea/genética , Chile , Ácidos Grasos Volátiles , Fenilacetatos/química , ARN de Archaea/clasificación , ARN de Archaea/genética , ARN Ribosómico 16S/genética , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
6.
PLoS Comput Biol ; 10(10): e1003907, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25357249

RESUMEN

Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.


Asunto(s)
Perfilación de la Expresión Génica/métodos , ARN no Traducido/clasificación , ARN no Traducido/genética , Transcriptoma/genética , Archaea/genética , Bacterias/genética , Análisis por Conglomerados , Biología Computacional , Bases de Datos Genéticas , Filogenia , ARN de Archaea/química , ARN de Archaea/clasificación , ARN de Archaea/genética , ARN Bacteriano/química , ARN Bacteriano/clasificación , ARN Bacteriano/genética , ARN no Traducido/química
7.
Nucleic Acids Res ; 41(17): 8034-44, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23863837

RESUMEN

Central to Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas systems are repeated RNA sequences that serve as Cas-protein-binding templates. Classification is based on the architectural composition of associated Cas proteins, considering repeat evolution is essential to complete the picture. We compiled the largest data set of CRISPRs to date, performed comprehensive, independent clustering analyses and identified a novel set of 40 conserved sequence families and 33 potential structure motifs for Cas-endoribonucleases with some distinct conservation patterns. Evolutionary relationships are presented as a hierarchical map of sequence and structure similarities for both a quick and detailed insight into the diversity of CRISPR-Cas systems. In a comparison with Cas-subtypes, I-C, I-E, I-F and type II were strongly coupled and the remaining type I and type III subtypes were loosely coupled to repeat and Cas1 evolution, respectively. Subtypes with a strong link to CRISPR evolution were almost exclusive to bacteria; nevertheless, we identified rare examples of potential horizontal transfer of I-C and I-E systems into archaeal organisms. Our easy-to-use web server provides an automated assignment of newly sequenced CRISPRs to our classification system and enables more informed choices on future hypotheses in CRISPR-Cas research: http://rna.informatik.uni-freiburg.de/CRISPRmap.


Asunto(s)
Secuencias Invertidas Repetidas , ARN de Archaea/química , ARN Bacteriano/química , Inmunidad Adaptativa/genética , Archaea/genética , Archaea/inmunología , Proteínas Arqueales/química , Proteínas Arqueales/clasificación , Bacterias/genética , Bacterias/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Análisis por Conglomerados , Secuencia Conservada , Crenarchaeota/genética , Euryarchaeota/genética , Evolución Molecular , Transferencia de Gen Horizontal , Internet , Motivos de Nucleótidos , División del ARN , ARN de Archaea/clasificación , ARN Bacteriano/clasificación , Programas Informáticos
8.
Nucleic Acids Res ; 41(12): 6250-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23620296

RESUMEN

The methanogenic archaeon Methanopyrus kandleri grows near the upper temperature limit for life. Genome analyses revealed strategies to adapt to these harsh conditions and elucidated a unique transfer RNA (tRNA) C-to-U editing mechanism at base 8 for 30 different tRNA species. Here, RNA-Seq deep sequencing methodology was combined with computational analyses to characterize the small RNome of this hyperthermophilic organism and to obtain insights into the RNA metabolism at extreme temperatures. A large number of 132 small RNAs were identified that guide RNA modifications, which are expected to stabilize structured RNA molecules. The C/D box guide RNAs were shown to exist as circular RNA molecules. In addition, clustered regularly interspaced short palindromic repeats RNA processing and potential regulatory RNAs were identified. Finally, the identification of tRNA precursors before and after the unique C8-to-U8 editing activity enabled the determination of the order of tRNA processing events with termini truncation preceding intron removal. This order of tRNA maturation follows the compartmentalized tRNA processing order found in Eukaryotes and suggests its conservation during evolution.


Asunto(s)
Euryarchaeota/genética , Procesamiento Postranscripcional del ARN , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/metabolismo , Euryarchaeota/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Calor , Secuencias Invertidas Repetidas , Edición de ARN , ARN de Archaea/química , ARN de Archaea/clasificación , ARN de Archaea/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/clasificación , ARN de Transferencia/química , Análisis de Secuencia de ARN
9.
Nucleic Acids Res ; 40(Database issue): D205-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21984475

RESUMEN

Nucleic acid phylogenetic profiling (NAPP) classifies coding and non-coding sequences in a genome according to their pattern of conservation across other genomes. This procedure efficiently distinguishes clusters of functional non-coding elements in bacteria, particularly small RNAs and cis-regulatory RNAs, from other conserved sequences. In contrast to other non-coding RNA detection pipelines, NAPP does not require the presence of conserved RNA secondary structure and therefore is likely to identify previously undetected RNA genes or elements. Furthermore, as NAPP clusters contain both coding and non-coding sequences with similar occurrence profiles, they can be analyzed under a functional perspective. We recently improved the NAPP pipeline and applied it to a collection of 949 bacterial and 68 archaeal species. The database and web interface available at http://napp.u-psud.fr/ enable detailed analysis of NAPP clusters enriched in non-coding RNAs, graphical display of phylogenetic profiles, visualization of predicted RNAs in their genome context and extraction of predicted RNAs for use with genome browsers or other software.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN de Archaea/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Secuencias Reguladoras de Ácido Ribonucleico , Bacillus subtilis/genética , Secuencia de Bases , Secuencia Conservada , Genoma Arqueal , Genoma Bacteriano , Filogenia , ARN de Archaea/clasificación , ARN Bacteriano/clasificación
10.
Nucleic Acids Res ; 40(7): 3131-42, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22140119

RESUMEN

Circular RNA forms had been described in all domains of life. Such RNAs were shown to have diverse biological functions, including roles in the life cycle of viral and viroid genomes, and in maturation of permuted tRNA genes. Despite their potentially important biological roles, discovery of circular RNAs has so far been mostly serendipitous. We have developed circRNA-seq, a combined experimental/computational approach that enriches for circular RNAs and allows profiling their prevalence in a whole-genome, unbiased manner. Application of this approach to the archaeon Sulfolobus solfataricus P2 revealed multiple circular transcripts, a subset of which was further validated independently. The identified circular RNAs included expected forms, such as excised tRNA introns and rRNA processing intermediates, but were also enriched with non-coding RNAs, including C/D box RNAs and RNase P, as well as circular RNAs of unknown function. Many of the identified circles were conserved in Sulfolobus acidocaldarius, further supporting their functional significance. Our results suggest that circular RNAs, and particularly circular non-coding RNAs, are more prevalent in archaea than previously recognized, and might have yet unidentified biological roles. Our study establishes a specific and sensitive approach for identification of circular RNAs using RNA-seq, and can readily be applied to other organisms.


Asunto(s)
ARN de Archaea/química , ARN/química , Sulfolobus solfataricus/genética , Perfilación de la Expresión Génica , Intrones , ARN/clasificación , ARN/metabolismo , ARN de Archaea/clasificación , ARN de Archaea/metabolismo , ARN Circular , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN no Traducido/química , ARN no Traducido/metabolismo , Análisis de Secuencia de ARN , Sulfolobus acidocaldarius/genética , Transcriptoma
11.
Genome Biol ; 12(4): R38, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21489296

RESUMEN

BACKGROUND: As in eukaryotes, precursor transfer RNAs in Archaea often contain introns that are removed in tRNA maturation. Two unrelated archaeal species display unique pre-tRNA processing complexity in the form of split tRNA genes, in which two to three segments of tRNAs are transcribed from different loci, then trans-spliced to form a mature tRNA. Another rare type of pre-tRNA, found only in eukaryotic algae, is permuted, where the 3' half is encoded upstream of the 5' half, and must be processed to be functional. RESULTS: Using an improved version of the gene-finding program tRNAscan-SE, comparative analyses and experimental verifications, we have now identified four novel trans-spliced tRNA genes, each in a different species of the Desulfurococcales branch of the Archaea: tRNA(Asp(GUC)) in Aeropyrum pernix and Thermosphaera aggregans, and tRNA(Lys(CUU)) in Staphylothermus hellenicus and Staphylothermus marinus. Each of these includes features surprisingly similar to previously studied split tRNAs, yet comparative genomic context analysis and phylogenetic distribution suggest several independent, relatively recent splitting events. Additionally, we identified the first examples of permuted tRNA genes in Archaea: tRNA(iMet(CAU)) and tRNA(Tyr(GUA)) in Thermofilum pendens, which appear to be permuted in the same arrangement seen previously in red alga. CONCLUSIONS: Our findings illustrate that split tRNAs are sporadically spread across a major branch of the Archaea, and that permuted tRNAs are a new shared characteristic between archaeal and eukaryotic species. The split tRNA discoveries also provide new clues to their evolutionary history, supporting hypotheses for recent acquisition via viral or other mobile elements.


Asunto(s)
Archaea/genética , Genoma Arqueal/genética , ARN de Archaea/genética , ARN de Transferencia/genética , Trans-Empalme/genética , Secuencia de Bases , Biología Computacional , Eucariontes/genética , Evolución Molecular , Intrones/genética , Datos de Secuencia Molecular , Filogenia , ARN de Archaea/clasificación , ARN de Transferencia/clasificación
12.
Nucleic Acids Res ; 37(Database issue): D141-5, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19004872

RESUMEN

The Ribosomal Database Project (RDP) provides researchers with quality-controlled bacterial and archaeal small subunit rRNA alignments and analysis tools. An improved alignment strategy uses the Infernal secondary structure aware aligner to provide a more consistent higher quality alignment and faster processing of user sequences. Substantial new analysis features include a new Pyrosequencing Pipeline that provides tools to support analysis of ultra high-throughput rRNA sequencing data. This pipeline offers a collection of tools that automate the data processing and simplify the computationally intensive analysis of large sequencing libraries. In addition, a new Taxomatic visualization tool allows rapid visualization of taxonomic inconsistencies and suggests corrections, and a new class Assignment Generator provides instructors with a lesson plan and individualized teaching materials. Details about RDP data and analytical functions can be found at http://rdp.cme.msu.edu/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN de Archaea/química , ARN Bacteriano/química , ARN Ribosómico/química , Análisis de Secuencia de ARN , Gráficos por Computador , Internet , ARN de Archaea/clasificación , ARN Bacteriano/clasificación , ARN Ribosómico/clasificación , Alineación de Secuencia , Programas Informáticos
13.
BMC Bioinformatics ; 9: 215, 2008 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-18442374

RESUMEN

BACKGROUND: In metagenomic studies, a process called binning is necessary to assign contigs that belong to multiple species to their respective phylogenetic groups. Most of the current methods of binning, such as BLAST, k-mer and PhyloPythia, involve assigning sequence fragments by comparing sequence similarity or sequence composition with already-sequenced genomes that are still far from comprehensive. We propose a semi-supervised seeding method for binning that does not depend on knowledge of completed genomes. Instead, it extracts the flanking sequences of highly conserved 16S rRNA from the metagenome and uses them as seeds (labels) to assign other reads based on their compositional similarity. RESULTS: The proposed seeding method is implemented on an unsupervised Growing Self-Organising Map (GSOM), and called Seeded GSOM (S-GSOM). We compared it with four well-known semi-supervised learning methods in a preliminary test, separating random-length prokaryotic sequence fragments sampled from the NCBI genome database. We identified the flanking sequences of the highly conserved 16S rRNA as suitable seeds that could be used to group the sequence fragments according to their species. S-GSOM showed superior performance compared to the semi-supervised methods tested. Additionally, S-GSOM may also be used to visually identify some species that do not have seeds. The proposed method was then applied to simulated metagenomic datasets using two different confidence threshold settings and compared with PhyloPythia, k-mer and BLAST. At the reference taxonomic level Order, S-GSOM outperformed all k-mer and BLAST results and showed comparable results with PhyloPythia for each of the corresponding confidence settings, where S-GSOM performed better than PhyloPythia in the >/= 10 reads datasets and comparable in the > or = 8 kb benchmark tests. CONCLUSION: In the task of binning using semi-supervised learning methods, results indicate S-GSOM to be the best of the methods tested. Most importantly, the proposed method does not require knowledge from known genomes and uses only very few labels (one per species is sufficient in most cases), which are extracted from the metagenome itself. These advantages make it a very attractive binning method. S-GSOM outperformed the binning methods that depend on already-sequenced genomes, and compares well to the current most advanced binning method, PhyloPythia.


Asunto(s)
Sistemas de Administración de Bases de Datos , Reconocimiento de Normas Patrones Automatizadas/métodos , Filogenia , ARN de Archaea/clasificación , ARN Bacteriano/clasificación , Algoritmos , Inteligencia Artificial , Secuencia de Bases , Intervalos de Confianza , Bases de Datos Genéticas , Genes de ARNr , Genómica/métodos , Almacenamiento y Recuperación de la Información/métodos , Almacenamiento y Recuperación de la Información/estadística & datos numéricos , Reconocimiento de Normas Patrones Automatizadas/estadística & datos numéricos , ARN de Archaea/análisis , ARN Bacteriano/análisis , Tamaño de la Muestra , Análisis de Secuencia de ARN , Especificidad de la Especie , Incertidumbre
14.
Nucleic Acids Res ; 35(7): 2283-94, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17389640

RESUMEN

Metagenomics has been employed to systematically sequence, classify, analyze and manipulate the entire genetic material isolated from environmental samples. Finding genes within metagenomic sequences remains a formidable challenge, and noncoding RNA genes other than those encoding rRNA and tRNA are not well annotated in metagenomic projects. In this work, we identify, validate and analyze the genes coding for RNase P RNA (P RNA) from all published metagenomic projects. P RNA is the RNA subunit of a ubiquitous endoribonuclease RNase P that consists of one RNA subunit and one or more protein subunits. The bacterial P RNAs are classified into two types, Type A and Type B, based on the constituents of the structure involved in precursor tRNA binding. Archaeal P RNAs are classified into Type A and Type M, whereas the Type A is ancestral and close to Type A bacterial P RNA. Bacterial and some archaeal P RNAs are catalytically active without protein subunits, capable of cleaving precursor tRNA transcripts to produce their mature 5'-termini. We have found 328 distinctive P RNAs (320 bacterial and 8 archaeal) from all published metagenomics sequences, which led us to expand by 60% the total number of this catalytic RNA from prokaryotes. Surprisingly, all newly identified P RNAs from metagenomics sequences are Type A, i.e. neither Type B bacterial nor Type M archaeal P RNAs are found. We experimentally validate the authenticity of an archaeal P RNA from Sargasso Sea. One of the distinctive features of some new P RNAs is that the P2 stem has kinked nucleotides in its 5' strand. We find that the single nucleotide J2/3 joint region linking the P2 and P3 stem that was used to distinguish a bacterial P RNA from an archaeal one is no longer applicable, i.e. some archaeal P RNAs have only one nucleotide in the J2/3 joint. We also discuss the phylogenetic analysis based on covariance model of P RNA that offers a few advantages over the one based on 16S rRNA.


Asunto(s)
Genómica/métodos , Filogenia , ARN de Archaea/química , ARN Bacteriano/química , Ribonucleasa P/química , Genoma Arqueal , Genoma Bacteriano , Modelos Moleculares , Conformación de Ácido Nucleico , ARN de Archaea/clasificación , ARN de Archaea/genética , ARN Bacteriano/clasificación , ARN Bacteriano/genética , Ribonucleasa P/clasificación , Ribonucleasa P/genética
15.
Can J Microbiol ; 52(2): 73-116, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16541146

RESUMEN

The domain Archaea represents a third line of evolutionary descent, separate from Bacteria and Eucarya. Initial studies seemed to limit archaea to various extreme environments. These included habitats at the extreme limits that allow life on earth, in terms of temperature, pH, salinity, and anaerobiosis, which were the homes to hyper thermo philes, extreme (thermo)acidophiles, extreme halophiles, and methanogens. Typical environments from which pure cultures of archaeal species have been isolated include hot springs, hydrothermal vents, solfataras, salt lakes, soda lakes, sewage digesters, and the rumen. Within the past two decades, the use of molecular techniques, including PCR-based amplification of 16S rRNA genes, has allowed a culture-independent assessment of microbial diversity. Remarkably, such techniques have indicated a wide distribution of mostly uncultured archaea in normal habitats, such as ocean waters, lake waters, and soil. This review discusses organisms from the domain Archaea in the context of the environments where they have been isolated or detected. For organizational purposes, the domain has been separated into the traditional groups of methanogens, extreme halophiles, thermoacidophiles, and hyperthermophiles, as well as the uncultured archaea detected by molecular means. Where possible, we have correlated known energy-yielding reactions and carbon sources of the archaeal types with available data on potential carbon sources and electron donors and acceptors present in the environments. From the broad distribution, metabolic diversity, and sheer numbers of archaea in environments from the extreme to the ordinary, the roles that the Archaea play in the ecosystems have been grossly underestimated and are worthy of much greater scrutiny.


Asunto(s)
Archaea/clasificación , Ambiente , ARN Ribosómico 16S/clasificación , Animales , Archaea/aislamiento & purificación , Archaea/fisiología , Ecosistema , Humanos , ARN de Archaea/análisis , ARN de Archaea/clasificación , ARN Ribosómico 16S/genética
16.
Nucleic Acids Res ; 31(1): 442-3, 2003 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-12520046

RESUMEN

The Ribosomal Database Project-II (RDP-II) pro-vides data, tools and services related to ribosomal RNA sequences to the research community. Through its website (http://rdp.cme.msu.edu), RDP-II offers aligned and annotated rRNA sequence data, analysis services, and phylogenetic inferences (trees) derived from these data. RDP-II release 8.1 contains 16 277 prokaryotic, 5201 eukaryotic, and 1503 mitochondrial small subunit rRNA sequences in aligned and annotated format. The current public beta release of 9.0 debuts a new regularly updated alignment of over 50 000 annotated (eu)bacterial sequences. New analysis services include a sequence search and selection tool (Hierarchy Browser) and a phylogenetic tree building and visualization tool (Phylip Interface). A new interactive tutorial guides users through the basics of rRNA sequence analysis. Other services include probe checking, phylogenetic placement of user sequences, screening of users' sequences for chimeric rRNA sequences, automated alignment, production of similarity matrices, and services to plan and analyze terminal restriction fragment polymorphism (T-RFLP) experiments. The RDP-II email address for questions or comments is rdpstaff@msu.edu.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Bases de Datos de Ácidos Nucleicos , ARN Ribosómico/química , Animales , Archaea/genética , Bacterias/genética , Células Eucariotas/clasificación , Filogenia , Células Procariotas/clasificación , ARN de Archaea/química , ARN de Archaea/clasificación , ARN Bacteriano/química , ARN Bacteriano/clasificación , ARN Ribosómico/clasificación , Alineación de Secuencia , Análisis de Secuencia de ARN , Programas Informáticos
17.
RNA ; 7(2): 220-32, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11233979

RESUMEN

A detailed comparative analysis of archaeal RNase P RNA structure and a comparison of the resulting structural information with that of the bacterial RNA reveals that the archaeal RNase P RNAs are strikingly similar to those of Bacteria. The differences between the secondary structure models of archaeal and bacterial RNase P RNA have largely disappeared, and even variation in the sequence and structure of the RNAs are similar in extent and type. The structure of the cruciform (P7-11) has been reevaluated on the basis of a total of 321 bacterial and archaeal sequences, leading to a model for the structure of this region of the RNA that includes an extension to P11 that consistently organizes the cruciform and adjacent highly-conserved sequences.


Asunto(s)
Endorribonucleasas/química , Proteínas de Escherichia coli , ARN de Archaea/genética , ARN Bacteriano/química , ARN Catalítico/química , Secuencia de Bases , Células Cultivadas , Cartilla de ADN/química , Escherichia coli/enzimología , Escherichia coli/genética , Genes Bacterianos/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , Plásmidos , Reacción en Cadena de la Polimerasa , ARN de Archaea/clasificación , ARN Bacteriano/aislamiento & purificación , ARN Catalítico/aislamiento & purificación , Ribonucleasa P , Alineación de Secuencia , Análisis de Secuencia de ADN
18.
RNA ; 6(12): 1689-94, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11142368

Asunto(s)
Endorribonucleasas/clasificación , ARN Catalítico/clasificación , Ribonucleoproteínas/clasificación , Archaea/enzimología , Archaea/genética , Proteínas Arqueales/química , Proteínas Arqueales/clasificación , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Cloroplastos/enzimología , Endorribonucleasas/química , Endorribonucleasas/genética , Endorribonucleasas/aislamiento & purificación , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Células HeLa/enzimología , Humanos , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/clasificación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/aislamiento & purificación , Conformación de Ácido Nucleico , Orgánulos/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/aislamiento & purificación , Subunidades de Proteína , ARN de Archaea/química , ARN de Archaea/clasificación , ARN de Archaea/genética , ARN de Archaea/aislamiento & purificación , ARN Bacteriano/química , ARN Bacteriano/clasificación , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , ARN Catalítico/química , ARN Catalítico/genética , ARN Catalítico/aislamiento & purificación , ARN de Hongos/química , ARN de Hongos/clasificación , ARN de Hongos/genética , ARN de Hongos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA