Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75.840
Filtrar
1.
Methods Mol Biol ; 2808: 71-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743363

RESUMEN

Copy-back defective interfering RNAs are major contaminants of viral stock preparations of morbilliviruses and other negative strand RNA viruses. They are hybrid molecules of positive sense antigenome and negative sense genome. They possess perfectly complementary ends allowing the formation of extremely stable double-stranded RNA panhandle structures. The presence of the 3'-terminal promoter allows replication of these molecules by the viral polymerase. They thereby negatively interfere with replication of standard genomes. In addition, the double-stranded RNA stem structures are highly immunostimulatory and activate antiviral cell-intrinsic innate immune responses. Thus, copy-back defective interfering RNAs severely affect the virulence and pathogenesis of morbillivirus stocks. We describe two biochemical methods to analyze copy-back defective interfering RNAs in virus-infected samples, or purified viral RNA. First, we present our Northern blotting protocol that allows accurate size determination of defective interfering RNA molecules and estimation of the relative contamination level of virus preparations. Second, we describe a PCR approach to amplify defective interfering RNAs specifically, which allows detailed sequence analysis.


Asunto(s)
Morbillivirus , ARN Viral , ARN Viral/genética , Morbillivirus/genética , Animales , Northern Blotting , Replicación Viral/genética , Reacción en Cadena de la Polimerasa/métodos , ARN Interferente Pequeño/genética , Genoma Viral , ARN Bicatenario/genética , Humanos
2.
Methods Mol Biol ; 2808: 105-120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743365

RESUMEN

Measles is a highly infectious disease that continues to spread mainly in developing countries, often resulting in child mortality. Despite the existence of effective vaccines, no specific antivirals are available as targeted therapy to combat measles virus (MeV). The implementation of genome-wide siRNA screens can provide a powerful platform to discover host factors that mediate MeV infection and replication, which could be essential to develop novel therapeutic strategies against this disease. Here, we describe a human genome-wide siRNA screen for MeV.


Asunto(s)
Virus del Sarampión , ARN Interferente Pequeño , Humanos , ARN Interferente Pequeño/genética , Virus del Sarampión/genética , Virus del Sarampión/fisiología , Interacciones Huésped-Patógeno/genética , Replicación Viral/genética , Genoma Humano , Interferencia de ARN
3.
Med ; 5(5): 383-385, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38733971

RESUMEN

Hypertension is a modifiable risk factor for cardiovascular disease, the leading cause of death worldwide, yet most US adults with hypertension do not meet goal blood pressure. KARDIA-1 demonstrates the efficacy of zilebesiran, a subcutaneously administered small interfering RNA, for lowering blood pressure, presenting a novel treatment option for this deadly disease.1.


Asunto(s)
Hipertensión , ARN Interferente Pequeño , Hipertensión/genética , Humanos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/uso terapéutico , Presión Sanguínea/efectos de los fármacos
4.
Zhonghua Zhong Liu Za Zhi ; 46(5): 409-418, 2024 May 23.
Artículo en Chino | MEDLINE | ID: mdl-38742354

RESUMEN

Objective: This study aimed to develop a new delivery strategy that utilized metal organic framework (MOF) loaded with small-interfering RNA (siRNA) targeting ITGAV to overcome tumor matrix barrier, and thus enhance drug penetration and immune accessibility in breast cancer. Methods: MOF@siITGAV particles were constructed and characterized. The uptake of MOF@siITGAV in breast cancer cell line 4T1 was observed by the cellular uptake assay. The toxicity of MOF@siITGAV was detected by cell counting kit 8 (CCK-8). The blank control group, naked siITGAV group and MOF@siITGAV group were set. Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to detect the expressions of ITGAV. The level of transforming growth factor ß1 (TGF-ß1) in the cell culture medium was detected by enzyme-linked immunosorbent assay (ELISA). The penetration of MOF@siITGAV in 4T1 cells was tested by constructing 3D spheroids. Mouse models of triple negative breast cancer were established. The effect of MOF@siITGAV on the growth of transplanted tumors and main organs was verified. Imminohistochemical (IHC) was used to test the expression of collagen and CD8. Results: MOF@siITGAV particles were constructed with sizes of (198.0±3.3) nm and zeta potential of -(20.2±0.4) mV. MOF@siITGAV could be engulfed by 4T1 cells and triggered to release siRNA. Compared to the blank control group, the expression of ITGAV in the MOF@siITGAV group [(46.5±11.3)%] and the naked siITGAV group [(109.9±19.0)%] was lower. TGF-ß1 in the cell culture medium of the blank control group, naked siITGAV group, and MOF@siITGAV group was (474.5±34.4) pg/ml, (437.2±16.5) pg/ml, and (388.4±14.4) pg/ml, respectively. MOF@siITGAV could better penetrate into 4T1 spheroids and exhibit no obvious toxicity. The cell viability was (99.7±3.5)%, (98.2±5.2)%, (97.3±6.6)%, (92.1±8.1)%, and (92.4±4.1)%, respectively, after MOF@siITGAV treatment with the concentration of 0, 10, 20, 40, 80, and 160 µg/ml, respectively, for 24 h. The tumor growth in the MOF@siITGAV group was suppressed significantly. After 15-day treatment, the tumor volume of the MOF@siITGAV group was (135.3±41.9) mm3, smaller than that of the blank control group [(691.1±193.0) mm3] (P=0.025). The expression of collagen and the number of CD8 positive cells of the MOF@siITGAV group were lower than those of the other two groups. No significant abnormalities were observed in the main organs of mice. Conclusions: Targeting the integrinαv on the surface of cancer cells could destroy extracellular matrix, improve drug delivery, and increase immune infiltration.


Asunto(s)
Estructuras Metalorgánicas , ARN Interferente Pequeño , Factor de Crecimiento Transformador beta1 , Animales , ARN Interferente Pequeño/administración & dosificación , Ratones , Femenino , Línea Celular Tumoral , Estructuras Metalorgánicas/química , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Sistemas de Liberación de Medicamentos , Ratones Endogámicos BALB C , ARN Mensajero/metabolismo , ARN Mensajero/genética
5.
Hepatol Commun ; 8(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696369

RESUMEN

BACKGROUND: Human genetic studies have identified several mitochondrial amidoxime-reducing component 1 (MTARC1) variants as protective against metabolic dysfunction-associated steatotic liver disease. The MTARC1 variants are associated with decreased plasma lipids and liver enzymes and reduced liver-related mortality. However, the role of mARC1 in fatty liver disease is still unclear. METHODS: Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine-conjugated mouse Mtarc1 siRNA, applying it in multiple in vivo models to investigate the role of mARC1 using multiomic techniques. RESULTS: In ob/ob mice, knockdown of Mtarc1 in mouse hepatocytes resulted in decreased serum liver enzymes, LDL-cholesterol, and liver triglycerides. Reduction of mARC1 also reduced liver weight, improved lipid profiles, and attenuated liver pathological changes in 2 diet-induced metabolic dysfunction-associated steatohepatitis mouse models. A comprehensive analysis of mARC1-deficient liver from a metabolic dysfunction-associated steatohepatitis mouse model by metabolomics, proteomics, and lipidomics showed that Mtarc1 knockdown partially restored metabolites and lipids altered by diet. CONCLUSIONS: Taken together, reducing mARC1 expression in hepatocytes protects against metabolic dysfunction-associated steatohepatitis in multiple murine models, suggesting a potential therapeutic approach for this chronic liver disease.


Asunto(s)
Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Hepatocitos , Animales , Ratones , Hepatocitos/metabolismo , Hígado/metabolismo , Masculino , ARN Interferente Pequeño/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ratones Endogámicos C57BL
6.
Mol Biol Rep ; 51(1): 646, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727931

RESUMEN

BACKGROUND: Breast cancer (BC) is one of the most common cancers in the world. Despite the many advances that have been made in treating patients, many patients are still resistant to treatment. CD44 is one of the surface glycoproteins of BC cells that plays an important role in the proliferation of these cells and inhibition of their apoptosis. Therefore, targeting it can be a treatment way for BC patients. METHODS: In this study, the effect of anti-CD44 siRNA on the proliferation, apoptosis, and migration rate of MDA-MB-231 and 4T1 cells was investigated. The techniques used in this study were MTT assay, RT-PCR, and flow cytometry. RESULTS: The apoptosis and proliferation rates in CD44 siRNA-treated cells were higher and lower, respectively, compared to untreated cells. Also, cell migration was less in treated cells compared to untreated cells. CD44 siRNA also decreased the expression of CXCR4, c-myc, Vimentin, ROCK, and MMP-9. CONCLUSION: Finally, CD44 targeting can be a good treatment option to make BC cells more sensitive to apoptosis.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Receptores de Hialuranos , ARN Interferente Pequeño , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Humanos , Apoptosis/genética , Línea Celular Tumoral , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , ARN Interferente Pequeño/genética , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Vimentina/metabolismo , Vimentina/genética
7.
Colloids Surf B Biointerfaces ; 238: 113930, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692174

RESUMEN

Breast cancer is a wide-spread threat to the women's health. The drawbacks of conventional treatments necessitate the development of alternative strategies, where gene therapy has regained hope in achieving an efficient eradication of aggressive tumors. Monocarboxylate transporter 4 (MCT4) plays pivotal roles in the growth and survival of various tumors, which offers a promising target for treatment. In the present study, pH-responsive lipid nanoparticles (LNPs) based on the ionizable lipid,1,2-dioleoyl-3-dimethylammonium propane (DODAP), were designed for the delivery of siRNA targeting MCT4 gene to the breast cancer cells. Following multiple steps of characterization and optimization, the anticancer activities of the LNPs were assessed against an aggressive breast cancer cell line, 4T1, in comparison with a normal cell line, LX-2. The selection of the helper phospholipid to be incorporated into the LNPs had a dramatic impact on their gene delivery performance. The optimized LNPs enabled a powerful MCT4 silencing by ∼90 % at low siRNA concentrations, with a subsequent ∼80 % cytotoxicity to 4T1 cells. Meanwhile, the LNPs demonstrated a 5-fold higher affinity to the breast cancer cells versus the normal cells, in which they had a minimum effect. Moreover, the MCT4 knockdown by the treatment remodeled the cytokine profile in 4T1 cells, as evidenced by 90 % and ∼64 % reduction in the levels of TNF-α and IL-6; respectively. The findings of this study are promising for potential clinical applications. Furthermore, the simple and scalable delivery vector developed herein can serve as a breast cancer-targeting platform for the delivery of other RNA therapeutics.


Asunto(s)
Neoplasias de la Mama , Citocinas , Transportadores de Ácidos Monocarboxílicos , Proteínas Musculares , Nanopartículas , ARN Interferente Pequeño , Microambiente Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Nanopartículas/química , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Femenino , Citocinas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Animales , Ratones , Técnicas de Silenciamiento del Gen , Tamaño de la Partícula , Concentración de Iones de Hidrógeno
8.
BMC Musculoskelet Disord ; 25(1): 386, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762732

RESUMEN

OBJECTIVE: Duchenne muscular dystrophy (DMD) is a devastating X-linked neuromuscular disorder caused by various defects in the dystrophin gene and still no universal therapy. This study aims to identify the hub genes unrelated to excessive immune response but responsible for DMD progression and explore therapeutic siRNAs, thereby providing a novel treatment. METHODS: Top ten hub genes for DMD were identified from GSE38417 dataset by using GEO2R and PPI networks based on Cytoscape analysis. The hub genes unrelated to excessive immune response were identified by GeneCards, and their expression was further verified in mdx and C57 mice at 2 and 4 months (M) by (RT-q) PCR and western blotting. Therapeutic siRNAs were deemed as those that could normalize the expression of the validated hub genes in transfected C2C12 cells. RESULTS: 855 up-regulated and 324 down-regulated DEGs were screened from GSE38417 dataset. Five of the top 10 hub genes were considered as the candidate genes unrelated to excessive immune response, and three of these candidates were consistently and significantly up-regulated in mdx mice at 2 M and 4 M when compared with age-matched C57 mice, including Col1a2, Fbn1 and Fn1. Furthermore, the three validated up-regulated candidate genes can be significantly down-regulated by three rational designed siRNA (p < 0.0001), respectively. CONCLUSION: COL1A2, FBN1 and FN1 may be novel biomarkers for DMD, and the siRNAs designed in our study were help to develop adjunctive therapy for Duchenne muscular dystrophy.


Asunto(s)
Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne , ARN Interferente Pequeño , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Animales , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Ratones , Modelos Animales de Enfermedad , Masculino , Humanos , Mapas de Interacción de Proteínas
9.
Theranostics ; 14(7): 2777-2793, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773978

RESUMEN

Small extracellular vesicles (sEVs) are naturally occurring vesicles that have the potential to be manipulated to become promising drug delivery vehicles for on-demand in vitro and in vivo gene editing. Here, we developed the modular safeEXO platform, a prototype sEV delivery vehicle that is mostly devoid of endogenous RNA and can efficaciously deliver RNA and ribonucleoprotein (RNP) complexes to their intended intracellular targets manifested by downstream biologic activity. We also successfully engineered producer cells to produce safeEXO vehicles that contain endogenous Cas9 (safeEXO-CAS) to effectively deliver efficient ribonucleoprotein (RNP)-mediated CRISPR genome editing machinery to organs or diseased cells in vitro and in vivo. We confirmed that safeEXO-CAS sEVs could co-deliver ssDNA, sgRNA and siRNA, and efficaciously mediate gene insertion in a dose-dependent manner. We demonstrated the potential to target safeEXO-CAS sEVs by engineering sEVs to express a tissue-specific moiety, integrin alpha-6 (safeEXO-CAS-ITGA6), which increased their uptake to lung epithelial cells in vitro and in vivo. We tested the ability of safeEXO-CAS-ITGA6 loaded with EMX1 sgRNAs to induce lung-targeted editing in mice, which demonstrated significant gene editing in the lungs with no signs of morbidity or detectable changes in immune cell populations. Our results demonstrate that our modular safeEXO platform represents a targetable, safe, and efficacious vehicle to deliver nucleic acid-based therapeutics that successfully reach their intracellular targets. Furthermore, safeEXO producer cells can be genetically manipulated to produce safeEXO vehicles containing CRISPR machinery for more efficient RNP-mediated genome editing. This platform has the potential to improve current therapies and increase the landscape of treatment for various human diseases using RNAi and CRISPR approaches.


Asunto(s)
Sistemas CRISPR-Cas , Vesículas Extracelulares , Edición Génica , Técnicas de Transferencia de Gen , Edición Génica/métodos , Vesículas Extracelulares/metabolismo , Sistemas CRISPR-Cas/genética , Animales , Humanos , Ratones , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , ARN Guía de Sistemas CRISPR-Cas/genética
10.
Int J Nanomedicine ; 19: 4411-4427, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774028

RESUMEN

Background: Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease characterized by synovial inflammation and joint destruction. Despite progress in RA therapy, it remains difficult to achieve long-term remission in RA patients. Phosphodiesterase 3B (Pde3b) is a member of the phosphohydrolyase family that are involved in many signal transduction pathways. However, its role in RA is yet to be fully addressed. Methods: Studies were conducted in arthritic DBA/1 mice, a suitable mouse strain for collagen-induced rheumatoid arthritis (CIA), to dissect the role of Pde3b in RA pathogenesis. Next, RNAi-based therapy with Pde3b siRNA-loaded liposomes was assessed in a CIA model. To study the mechanism involved, we investigated the effect of Pde3b knockdown on macrophage polarization and related signaling pathway. Results: We demonstrated that mice with CIA exhibited upregulated Pde3b expression in macrophages. Notably, intravenous administration of liposomes loaded with Pde3b siRNA promoted the macrophage anti-inflammatory program and alleviated CIA in mice, as indicated by the reduced inflammatory response, synoviocyte infiltration, and bone and cartilage erosion. Mechanistic study revealed that depletion of Pde3b increased cAMP levels, by which it enhanced PKA-CREB-C/EBPß pathway to transcribe the expression of anti-inflammatory program-related genes. Conclusion: Our results support that Pde3b is involved in the pathogenesis of RA, and Pde3b siRNA-loaded liposomes might serve as a promising therapeutic approach against RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Terapia Genética , Liposomas , Macrófagos , Ratones Endogámicos DBA , ARN Interferente Pequeño , Animales , Liposomas/química , Liposomas/administración & dosificación , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/terapia , Artritis Reumatoide/inducido químicamente , Ratones , Artritis Experimental/genética , Artritis Experimental/prevención & control , Artritis Experimental/terapia , Macrófagos/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/administración & dosificación , Terapia Genética/métodos , Masculino , Transducción de Señal/efectos de los fármacos
11.
Mol Med Rep ; 30(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757346

RESUMEN

Ovarian cancer is a multifactorial and deadly disease. Despite significant advancements in ovarian cancer therapy, its incidence is on the rise and the molecular mechanisms underlying ovarian cancer invasiveness, metastasis and drug resistance remain largely elusive, resulting in poor prognosis. Oncolytic viruses armed with therapeutic transgenes of interest offer an attractive alternative to chemical drugs, which often face innate and acquired drug resistance. The present study constructed a novel oncolytic adenovirus carrying ERCC1 short interfering (si)RNA, regulated by hTERT and HIF promoters, termed Ad­siERCC1. The findings demonstrated that this oncolytic adenovirus effectively inhibits the proliferation, migration and invasion of ovarian cancer cells. Furthermore, the downregulation of ERCC1 expression by siRNA ameliorates drug resistance to cisplatin (DDP) chemotherapy. It was found that Ad­siERCC1 blocks the cell cycle in the G1 phase and enhances apoptosis through the PI3K/AKT­caspase­3 signaling pathways in SKOV3 cells. The results of the present study highlighted the critical effect of oncolytic virus Ad­siERCC1 in inhibiting the survival of ovarian cancer cells and increasing chemotherapy sensitivity to DDP. These findings underscore the potent antitumor effect of Ad­siERCC1 on ovarian cancers in vivo.


Asunto(s)
Adenoviridae , Apoptosis , Proliferación Celular , Cisplatino , Proteínas de Unión al ADN , Endonucleasas , Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Ováricas , ARN Interferente Pequeño , Humanos , Femenino , Neoplasias Ováricas/terapia , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Adenoviridae/genética , Línea Celular Tumoral , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Apoptosis/genética , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Movimiento Celular/genética , Resistencia a Antineoplásicos/genética , Vectores Genéticos/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
12.
Biomed Eng Online ; 23(1): 47, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38750477

RESUMEN

BACKGROUND: Electrotransfection is based on application of high-voltage pulses that transiently increase membrane permeability, which enables delivery of DNA and RNA in vitro and in vivo. Its advantage in applications such as gene therapy and vaccination is that it does not use viral vectors. Skeletal muscles are among the most commonly used target tissues. While siRNA delivery into undifferentiated myoblasts is very efficient, electrotransfection of siRNA into differentiated myotubes presents a challenge. Our aim was to develop efficient protocol for electroporation-based siRNA delivery in cultured primary human myotubes and to identify crucial mechanisms and parameters that would enable faster optimization of electrotransfection in various cell lines. RESULTS: We established optimal electroporation parameters for efficient siRNA delivery in cultured myotubes and achieved efficient knock-down of HIF-1α while preserving cells viability. The results show that electropermeabilization is a crucial step for siRNA electrotransfection in myotubes. Decrease in viability was observed for higher electric energy of the pulses, conversely lower pulse energy enabled higher electrotransfection silencing yield. Experimental data together with the theoretical analysis demonstrate that siRNA electrotransfer is a complex process where electropermeabilization, electrophoresis, siRNA translocation, and viability are all functions of pulsing parameters. However, despite this complexity, we demonstrated that pulse parameters for efficient delivery of small molecule such as PI, can be used as a starting point for optimization of electroporation parameters for siRNA delivery into cells in vitro if viability is preserved. CONCLUSIONS: The optimized experimental protocol provides the basis for application of electrotransfer for silencing of various target genes in cultured human myotubes and more broadly for electrotransfection of various primary cell and cell lines. Together with the theoretical analysis our data offer new insights into mechanisms that underlie electroporation-based delivery of short RNA molecules, which can aid to faster optimisation of the pulse parameters in vitro and in vivo.


Asunto(s)
Diferenciación Celular , Electroporación , Silenciador del Gen , Fibras Musculares Esqueléticas , ARN Interferente Pequeño , Humanos , Electroporación/métodos , ARN Interferente Pequeño/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citología , Supervivencia Celular , Electroforesis , Transfección/métodos
13.
COPD ; 21(1): 2342797, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38712759

RESUMEN

Objective: To investigate the effects of cigarette smoke (CS) on Serine/Threonine Kinase 11 (STK11) and to determine STK11's role in CS-induced airway epithelial cell cytotoxicity.Methods: STK11 expression levels in the lung tissues of smokers with or without COPD and mice exposed to CS or room air (RA) were determined by immunoblotting and RT-PCR. BEAS-2Bs-human bronchial airway epithelial cells were exposed to CS extract (CSE), and the changes in STK11 expression levels were determined by immunoblotting and RT-PCR. BEAS-2B cells were transfected with STK11-specific siRNA or STK11 expression plasmid, and the effects of CSE on airway epithelial cell cytotoxicity were measured. To determine the specific STK11 degradation-proteolytic pathway, BEAS-2Bs were treated with cycloheximide alone or combined with MG132 or leupeptin. Finally, to identify the F-box protein mediating the STK11 degradation, a screening assay was performed using transfection with a panel of FBXL E3 ligase subunits.Results: STK11 protein levels were significantly decreased in the lung tissues of smokers with COPD relative to smokers without COPD. STK11 protein levels were also significantly decreased in mouse lung tissues exposed to CS compared to RA. Exposure to CSE shortened the STK11 mRNA and protein half-life to 4 h in BEAS-2B cells. STK11 protein overexpression attenuated the CSE-induced cytotoxicity; in contrast, its knockdown augmented CSE-induced cytotoxicity. FBXL19 mediates CSE-induced STK11 protein degradation via the ubiquitin-proteasome pathway in cultured BEAS-2B cells. FBXL19 overexpression led to accelerated STK11 ubiquitination and degradation in a dose-dependent manner.Conclusions: Our results suggest that CSE enhances the degradation of STK11 protein in airway epithelial cells via the FBXL19-mediated ubiquitin-proteasomal pathway, leading to augmented cell death.HIGHLIGHTSLung tissues of COPD-smokers exhibited a decreased STK11 RNA and protein expression.STK11 overexpression attenuates CS-induced airway epithelial cell cytotoxicity.STK11 depletion augments CS-induced airway epithelial cell cytotoxicity.CS diminishes STK11 via FBXL19-mediated ubiquitin-proteasome degradation.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Células Epiteliales , Proteínas F-Box , Proteínas Serina-Treonina Quinasas , Enfermedad Pulmonar Obstructiva Crónica , Humo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Ratones , Humo/efectos adversos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Línea Celular , Proteolisis/efectos de los fármacos , Leupeptinas/farmacología , Masculino , Cicloheximida/farmacología , ARN Interferente Pequeño , Ratones Endogámicos C57BL , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Fumar Cigarrillos/efectos adversos
14.
RNA Biol ; 21(1): 1-13, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38693614

RESUMEN

Small non-coding RNAs (sncRNAs) are non-coding RNA molecules that play various roles in metazoans. Among the sncRNAs, microRNAs (miRNAs) guide post-translational gene regulation during cellular development, proliferation, apoptosis, and differentiation, while PIWI-interacting RNAs (piRNAs) suppress transposon activity to safeguard the genome from detrimental insertion mutagenesis. While an increasing number of piRNAs are being identified in the soma and germlines of various organisms, they are scarcely reported in molluscs. To unravel the small RNA (sRNA) expression patterns and genomic function in molluscs, we generated a comprehensive sRNA dataset by sRNA sequencing (sRNA-seq) of eight mollusc species. Abundant miRNAs were identified and characterized in all investigated molluscs, and ubiquitous piRNAs were discovered in both somatic and gonadal tissues in six of the investigated molluscs, which are more closely associated with transposon silencing. Tens of piRNA clusters were also identified based on the genomic mapping results, which varied among different tissues and species. Our dataset serves as important reference data for future genomic and genetic studies on sRNAs in these molluscs and related species, especially in elucidating the ancestral state of piRNAs in bilaterians.


Asunto(s)
Moluscos , ARN Interferente Pequeño , ARN Pequeño no Traducido , Animales , Moluscos/genética , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , MicroARNs/genética , Elementos Transponibles de ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Transcriptoma
15.
Neuromolecular Med ; 26(1): 19, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703217

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder associated with mitochondrial dysfunctions and oxidative stress. However, to date, therapeutics targeting these pathological events have not managed to translate from bench to bedside for clinical use. One of the major reasons for the lack of translational success has been the use of classical model systems that do not replicate the disease pathology and progression with the same degree of robustness. Therefore, we employed a more physiologically relevant model involving alpha-synuclein-preformed fibrils (PFF) exposure to SH-SY5Y cells and Sprague Dawley rats. We further explored the possible involvement of transient receptor potential canonical 5 (TRPC5) channels in PD-like pathology induced by these alpha-synuclein-preformed fibrils with emphasis on amelioration of oxidative stress and mitochondrial health. We observed that alpha-synuclein PFF exposure produced neurobehavioural deficits that were positively ameliorated after treatment with the TRPC5 inhibitor clemizole. Furthermore, Clemizole also reduced p-alpha-synuclein and diminished oxidative stress levels which resulted in overall improvements in mitochondrial biogenesis and functions. Finally, the results of the pharmacological modulation were further validated using siRNA-mediated knockdown of TRPC5 channels, which also decreased p-alpha-synuclein expression. Together, the results of this study could be superimposed in the future for exploring the beneficial effects of TRPC5 channel modulation for other neurodegenerative disorders and synucleopathies.


Asunto(s)
Mitocondrias , Estrés Oxidativo , Ratas Sprague-Dawley , Canales Catiónicos TRPC , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animales , Ratas , Estrés Oxidativo/efectos de los fármacos , Humanos , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular Tumoral , Masculino , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/tratamiento farmacológico
16.
Technol Cancer Res Treat ; 23: 15330338241249692, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706262

RESUMEN

PURPOSE: PIWI-interacting RNAs (piRNAs) are a type of noncoding small RNA that can interact with PIWI-like RNA-mediated gene silencing (PIWIL) proteins to affect biological processes such as transposon silencing through epigenetic effects. Recent studies have found that piRNAs are widely dysregulated in tumors and associated with tumor progression and a poor prognosis. Therefore, this study aimed to investigate the effect of piR-1919609 on the proliferation, apoptosis, and drug resistance of ovarian cancer cells. METHODS: In this study, we used small RNA sequencing to screen and identify differentially expressed piRNAs in primary ovarian cancer, recurrent ovarian cancer, and normal ovaries. A large-scale verification study was performed to verify the expression of piR-1919609 in different types of ovarian tissue, including ovarian cancer tissue and normal ovaries, by RT-PCR and to analyze its association with the clinical prognosis of ovarian cancer. The expression of PIWILs in ovarian cancer was verified by RT-PCR, Western blotting and immunofluorescence. The effects of piR-1919609 on ovarian cancer cell proliferation, apoptosis and drug resistance were studied through in vitro and in vivo models. RESULTS: (1) piR-1919609 was highly expressed in platinum-resistant ovarian cancer tissues (p < 0.05), and this upregulation was significantly associated with a poor prognosis and a shorter recurrence time in ovarian cancer patients (p < 0.05). (2) PIWIL2 was strongly expressed in ovarian cancer tissues (p < 0.05). It was expressed both in the cytoplasm and nucleus of ovarian cancer cells. (3) Overexpression of piR-1919609 promoted ovarian cancer cell proliferation, inhibited apoptosis, and promoted tumor growth in nude mice. (4) Inhibition of piR-1919609 effectively reversed ovarian cancer drug resistance. CONCLUSION: In summary, we showed that piR-1919609 is involved in the regulation of drug resistance in ovarian cancer cells and might be an ideal potential target for reversing platinum resistance in ovarian cancer.


Asunto(s)
Apoptosis , Proliferación Celular , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas , ARN Interferente Pequeño , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Humanos , Resistencia a Antineoplásicos/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Animales , Ratones , Línea Celular Tumoral , ARN Interferente Pequeño/genética , Pronóstico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , Platino (Metal)/uso terapéutico , Platino (Metal)/farmacología
17.
Arch Insect Biochem Physiol ; 116(1): e22118, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713637

RESUMEN

We detected enzymatic activity that generates 20-nucleotide (nt) RNA from double-stranded RNAs (dsRNAs) in crude extracts prepared from various silkworm (Bombyx mori) organs. The result using knocked-down cultured cells indicated that this dicing activity originated from B. mori Dicer-2 (BmDcr2). Biochemical analyses revealed that BmDcr2 preferentially cleaves 5'-phosphorylated dsRNAs at the 20-nt site-counted from the 5'-phosphorylated end-and required ATP and magnesium ions for the dicing reaction. This is the first report of the biochemical characterization of Dicer-2 in lepidopteran insects. This enzymatic property of BmDcr2 in vitro is consistent with the in vivo small interfering RNA profile in virus-infected silkworm cells.


Asunto(s)
Bombyx , ARN Bicatenario , Ribonucleasa III , Animales , Bombyx/genética , Bombyx/metabolismo , ARN Bicatenario/metabolismo , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , ARN Interferente Pequeño/metabolismo , Magnesio/metabolismo , Larva/metabolismo , Larva/genética , Larva/crecimiento & desarrollo
18.
Proc Natl Acad Sci U S A ; 121(21): e2402285121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739785

RESUMEN

Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediating PHAS precursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.


Asunto(s)
Meiosis , ARN de Planta , Zea mays , Zea mays/genética , Zea mays/metabolismo , Meiosis/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transcriptoma , Oryza/genética , Oryza/metabolismo
19.
Med Oncol ; 41(6): 149, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739199

RESUMEN

Because of the high biocompatibility, self-assembly capability, and CD71-mediated endocytosis, using human heavy chain ferritin (HFn) as a nanocarrier would greatly increase therapeutic effectiveness and reduce possible adverse events. Anti-PD-L1 siRNA can downregulate the level of PD-L1 on tumor cells, resulting in the activation of effector T cells against leukemia. Therefore, this study aimed to produce the tumor-targeting siPD-L1/HFn nanocarrier. Briefly, the HFn coding sequence was cloned into a pET-28a, and the constructed expression plasmid was subsequently transformed into E. coli BL21. After induction of Isopropyl ß-D-1-thiogalactopyranoside (IPTG), HFn was purified with Ni-affinity chromatography and dialyzed against PBS. The protein characteristics were analyzed using SDS-PAGE, Western Blot, and Dynamic light scattering (DLS). The final concentration was assessed using the Bicinchoninic acid (BCA) assay. The encapsulation was performed using the standard pH system. The treatment effects of siPD-L1/HFn were carried out on HL-60 and K-562 cancer cell lines. The RT-PCR was used to determine the mRNA expression of PD-L1. The biocompatibility and excretion of siPD-L1/HFn have also been evaluated. The expression and purity of HFn were well verified through SDS-PAGE, WB, and DLS. RT-PCR analyses also showed significant siRNA-mediated PD-L1 silencing in both HL-60 and K-562 cells. Our study suggested a promising approach for siRNA delivery. This efficient delivery system can pave the way for the co-delivery of siRNAs and multiple chemotherapies to address the emerging needs of cancer combination therapy.


Asunto(s)
Apoferritinas , Antígeno B7-H1 , Leucemia Mieloide Aguda , ARN Interferente Pequeño , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/administración & dosificación , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/antagonistas & inhibidores , Apoferritinas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/terapia , Células HL-60 , Células K562 , Línea Celular Tumoral , Nanopartículas/química
20.
Cells ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727303

RESUMEN

Small interfering RNA (siRNA) holds significant therapeutic potential by silencing target genes through RNA interference. Current clinical applications of siRNA have been primarily limited to liver diseases, while achievements in delivery methods are expanding their applications to various organs, including the lungs. Cholesterol-conjugated siRNA emerges as a promising delivery approach due to its low toxicity and high efficiency. This study focuses on developing a cholesterol-conjugated anti-Il6 siRNA and the evaluation of its potency for the potential treatment of inflammatory diseases using the example of acute lung injury (ALI). The biological activities of different Il6-targeted siRNAs containing chemical modifications were evaluated in J774 cells in vitro. The lead cholesterol-conjugated anti-Il6 siRNA after intranasal instillation demonstrated dose-dependent therapeutic effects in a mouse model of ALI induced by lipopolysaccharide (LPS). The treatment significantly reduced Il6 mRNA levels, inflammatory cell infiltration, and the severity of lung inflammation. IL6 silencing by cholesterol-conjugated siRNA proves to be a promising strategy for treating inflammatory diseases, with potential applications beyond the lungs.


Asunto(s)
Lesión Pulmonar Aguda , Colesterol , Interleucina-6 , ARN Interferente Pequeño , Animales , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Colesterol/metabolismo , Ratones , Lipopolisacáridos , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Línea Celular , Pulmón/patología , Pulmón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...