Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Cells ; 12(22)2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37998331

RESUMEN

In bacteria, the Rho protein mediates Rho-dependent termination (RDT) by identifying a non-specific cytosine-rich Rho utilization site on the newly synthesized RNA. As a result of RDT, downstream RNA transcription is reduced. Due to the bias in reverse transcription and PCR amplification, we could not identify the RDT site by directly measuring the amount of mRNA upstream and downstream of RDT sites. To overcome this difficulty, we employed a 77 bp reporter gene argX, (coding tRNAarg) from Brevibacterium albidum, and we transcriptionally fused it to the sequences to be assayed. We constructed a series of plasmids by combining a segment of the galactose (gal) operon sequences, both with and without the RDT regions at the ends of cistrons (galE, galT, and galM) upstream of argX. The RNA polymerase will transcribe the gal operon sequence and argX unless it encounters the RDT encoded by the inserted sequence. Since the quantitative real-time PCR (qRT-PCR) method detects the steady state following mRNA synthesis and degradation, we observed that tRNAarg is degraded at the same rate in these transcriptional fusion plasmids. Therefore, the amount of tRNAarg can directly reflect the mRNA synthesis. Using this approach, we were able to effectively assay the RDTs and Rho-independent termination (RIT) in the gal operon by quantifying the relative amount of tRNAarg using qRT-PCR analyses. The resultant RDT% for galET, galTK, and at the end of galM were 36, 26, and 63, individually. The resultant RIT% at the end of the gal operon is 33%. Our findings demonstrate that combining tRNAarg with qRT-PCR can directly measure RIT, RDT, or any other signal that attenuates transcription efficiencies in vivo, making it a useful tool for gene expression research.


Asunto(s)
ARN de Transferencia de Arginina , ARN , Secuencia de Bases , Genes Reporteros , Reacción en Cadena en Tiempo Real de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Genes (Basel) ; 14(8)2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37628567

RESUMEN

Post-transcriptional modifications of tRNA are crucial for their core function. The inosine (I; 6-deaminated adenosine) at the first position in the anticodon of tRNAArg(ICG) modulates the decoding capability and is generally considered essential for reading CGU, CGC, and CGA codons in eubacteria. We report here that the Bacillus subtilis yaaJ gene encodes tRNA-specific adenosine deaminase and is non-essential for viability. A ß-galactosidase reporter assay revealed that the translational activity of CGN codons was not impaired in the yaaJ-deletion mutant. Furthermore, tRNAArg(CCG) responsible for decoding the CGG codon was dispensable, even in the presence or absence of yaaJ. These results strongly suggest that tRNAArg with either the anticodon ICG or ACG has an intrinsic ability to recognize all four CGN codons, providing a fundamental concept of non-canonical wobbling mediated by adenosine and inosine nucleotides in the anticodon. This is the first example of the four-way wobbling by inosine nucleotide in bacterial cells. On the other hand, the absence of inosine modification induced +1 frameshifting, especially at the CGA codon. Additionally, the yaaJ deletion affected growth and competency. Therefore, the inosine modification is beneficial for translational fidelity and proper growth-phase control, and that is why yaaJ has been actually conserved in B. subtilis.


Asunto(s)
Anticodón , Magnoliopsida , Adenosina Desaminasa/genética , Bacillus subtilis/genética , ARN de Transferencia de Arginina , ARN de Transferencia/genética , Adenosina/genética , Inosina/genética
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(7): 807-814, 2023 Jul 10.
Artículo en Chino | MEDLINE | ID: mdl-37368381

RESUMEN

OBJECTIVE: To explore the correlation of mitochondrial DNA (mtDNA) variants and coronary heart disease (CHD) in a Chinese pedigree and the possible molecular mechanisms. METHODS: A Chinese pedigree featuring matrilineal inheritance of CHD who visited Hangzhou First People's Hospital in May 2022 was selected as the study subject. Clinical data of the proband and her affected relatives was collected. By sequencing the mtDNA of the proband and her pedigree members, candidate variants were identified through comparison with wild type mitochondrial genes. Conservative analysis among various species was conducted, and bioinformatics software was used to predict the impact of variants on the secondary structure of tRNA. Real-time PCR was carried out to determine the copy number of mtDNA, and a transmitochondrial cell line was established for analyzing the mitochondrial functions, including membrane potential and ATP level. RESULTS: This pedigree had contained thirty-two members from four generations. Among ten maternal members, four had CHD, which yielded a penetrance rate of 40%. Sequence analysis of proband and her matrilineal relatives revealed the presence of a novel m.4420A>T variant and a m.10463T>C variant, both of which were highly conserved among various species. Structurally, the m.4420A>T variant had occurred at position 22 in the D-arm of tRNAMet, which disrupted the 13T-22A base-pairing, while the m.10463T>C variant was located at position 67 in the acceptor arm of tRNAArg, a position critical for steady-state level of the tRNA. Functional analysis revealed that patients with the m.4420A>T and m.10463T>C variants exhibited much fewer copy number of mtDNA and lower mitochondrial membrane potential (MMP) and ATP contents (P < 0.05), which were decreased by approximately 50.47%, 39.6% and 47.4%, respectively. CONCLUSION: Mitochondrial tRNAMet 4420A>T and tRNAArg 10463T>C variants may underlay the maternally transmitted CHD in this pedigree, which had shown variation in mtDNA homogeneity, age of onset, clinical phenotype and other differences, suggesting that nuclear genes, environmental factors and mitochondrial genetic background have certain influence on the pathogenesis of CHD.


Asunto(s)
Enfermedad Coronaria , ARN de Transferencia de Metionina , Humanos , Femenino , Mutación , Linaje , Pueblos del Este de Asia , ARN de Transferencia de Arginina , ADN Mitocondrial/genética , Enfermedad Coronaria/genética , Adenosina Trifosfato
4.
Methods Mol Biol ; 2620: 93-99, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37010753

RESUMEN

This chapter describes the preparation of tRNAArg by in vitro transcription. tRNA produced by this method can be efficiently utilized for in vitro arginylation assays, following aminoacylation with Arg-tRNA synthetase, either directly during the arginylation reaction or separately to produce the purified preparation of Arg-tRNAArg. tRNA charging is described in other chapters of this book.


Asunto(s)
Arginino-ARNt Ligasa , ARN de Transferencia de Arginina , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Arginino-ARNt Ligasa/genética , Arginino-ARNt Ligasa/metabolismo , Aminoacilación de ARN de Transferencia
5.
Methods Mol Biol ; 2620: 101-106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37010754

RESUMEN

The method described here provides a fast and efficient way to obtain an enriched preparation of tRNA of interest, which is also posttranscriptionally modified by the intracellular machinery of the host cells, E. coli. While this preparation also contains a mixture of total E. coli tRNA, the enriched tRNA of interest is obtained in high yields (milligram) and is highly efficient for biochemical assays in vitro. It is routinely used in our lab for arginylation.


Asunto(s)
Escherichia coli , ARN de Transferencia de Arginina , Escherichia coli/genética , Escherichia coli/metabolismo , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia/genética
6.
Methods Mol Biol ; 2620: 107-111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37010755

RESUMEN

This chapter describes the preparation of pre-charged Arg-tRNA that can be used in arginylation reaction. While in a typical arginylation reaction arginyl-tRNA synthetase (RARS) is normally included as a component of the reaction and continually charges tRNA during arginylation, it is sometimes necessary to separate the charging and the arginylation step, in order to perform each reaction under controlled conditions, e.g., for measuring the kinetics or determining the effect of different compounds and chemicals on the reaction. In such cases, tRNAArg can be pre-charged with Arg and purified away from the RARS enzyme prior to arginylation.


Asunto(s)
Aminoacil-ARNt Sintetasas , Arginino-ARNt Ligasa , Arginino-ARNt Ligasa/química , Arginino-ARNt Ligasa/genética , Arginino-ARNt Ligasa/metabolismo , ARN de Transferencia de Arginina/química , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Aminoacilación , ARN de Transferencia/genética , Aminoacilación de ARN de Transferencia , Cinética , Aminoacil-ARNt Sintetasas/metabolismo
7.
Methods Mol Biol ; 2620: 263-271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37010769

RESUMEN

Posttranslational protein arginylation catalyzed by arginyl transferases is a mechanism to regulate multiple physiological processes. This protein arginylation reaction uses a charged Arg-tRNAArg as the donor of arginine (Arg). The inherent instability of the ester linkage of the arginyl group to the tRNA, which is sensitive to hydrolysis at the physiological pH, makes it difficult to obtain structural information on how the arginyl transfer reaction is catalyzed. Here, we describe a methodology to synthesize stably charged Arg-tRNAArg that would facilitate structural analysis. In the stably charged Arg-tRNAArg, the ester linkage is replaced with an amide linkage, which is resistant to hydrolysis even at alkaline pH.


Asunto(s)
Arginino-ARNt Ligasa , Arginina , Arginina/metabolismo , Arginino-ARNt Ligasa/química , Arginino-ARNt Ligasa/genética , Arginino-ARNt Ligasa/metabolismo , ARN de Transferencia de Arginina/química , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Unión Proteica , ARN de Transferencia/metabolismo
8.
FEBS J ; 290(13): 3480-3489, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36806932

RESUMEN

The CGA codon is a rare codon in Saccharomyces cerevisiae and is known to be inefficiently decoded by wobble pairing with Arg-tRNA(ICG). The tRNAArg (ICG) is post-transcriptionally edited from tRNAArg (ACG) by the anticodon first adenosine deamination enzyme Tad2/Tad3 complex. Experimental consecutive CGA codons cause ribosome stalling to result in the reduction of the encoding protein product. In this study, the additional supply of tRNAArg (ACG) genes that produce decoding Arg-tRNA(ICG) promoted the product level from the CGA12-luc reporter, revealing that the product reduction is essentially due to inefficient decoding and deficiency in the tRNA supply. The mature tRNAArg (ICG) and the precursor tRNAArg (ACG) ratios examined for cellular tRNA fraction revealed that the tRNAArg (ICG) ratio is maintained at less than 30% and is responsive to the Tad2/Tad3 expression level.


Asunto(s)
ARN de Transferencia de Arginina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Codón/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón/genética , Anticodón/metabolismo
9.
Nucleic Acids Res ; 51(5): 2001-2010, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36626933

RESUMEN

Error-free translation of the genetic code into proteins is vitally important for all organisms. Therefore, it is crucial that the correct amino acids are loaded onto their corresponding tRNAs. This process is highly challenging when aminoacyl-tRNA-synthetases encounter structural analogues to the native substrate like the arginine antimetabolite canavanine. To circumvent deleterious incorporation due to tRNA mischarging, editing mechanisms have evolved. However, only for half of the tRNA synthetases, editing activity is known and only few specific standalone editing proteins have been described. Understanding the diverse mechanisms resulting in error-free protein synthesis is of great importance. Here, we report the discovery of a protein that is upregulated upon canavanine stimulation in bacteria that live associated with canavanine-producing plants. We demonstrate that it acts as standalone editing protein specifically deacylating canavanylated tRNAArg. We therefore propose canavanyl-tRNAArgdeacylase (CtdA) as systematic name. Knockout strains show severe growth defects in canavanine-containing media and incorporate high amounts of canavanine into the proteome. CtdA is frequently found under control of guanidine riboswitches, revealing a functional connection of canavanine and guanidine metabolisms. Our results are the first to show editing activity towards mischarged tRNAArg and add to the puzzle of how faithful translation is ensured in nature.


Error-free translation is one of the most vital processes in all living organisms, but can be substantially challenged by compounds that mimic amino acids. Canavanine, or 5-oxa-arginine, is used as an antimetabolite by higher plants that is toxic due to its incorporation into proteins. We report the discovery of a standalone editing protein specifically deacylating canavanylated tRNAArg that enables the legume rhizosphere inhabitant Pseudomonas canavaninivorans to prevent canavanine mis-incorporation into its proteome. Our results are the first to show editing activity towards mischarged tRNAArg and add to the puzzle of how faithful translation is ensured in nature.


Asunto(s)
Aminoacil-ARNt Sintetasas , Canavanina , ARN de Transferencia de Arginina , Aminoacil-ARNt Sintetasas/metabolismo , Canavanina/metabolismo , Proteínas
10.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-981827

RESUMEN

OBJECTIVE@#To explore the correlation of mitochondrial DNA (mtDNA) variants and coronary heart disease (CHD) in a Chinese pedigree and the possible molecular mechanisms.@*METHODS@#A Chinese pedigree featuring matrilineal inheritance of CHD who visited Hangzhou First People's Hospital in May 2022 was selected as the study subject. Clinical data of the proband and her affected relatives was collected. By sequencing the mtDNA of the proband and her pedigree members, candidate variants were identified through comparison with wild type mitochondrial genes. Conservative analysis among various species was conducted, and bioinformatics software was used to predict the impact of variants on the secondary structure of tRNA. Real-time PCR was carried out to determine the copy number of mtDNA, and a transmitochondrial cell line was established for analyzing the mitochondrial functions, including membrane potential and ATP level.@*RESULTS@#This pedigree had contained thirty-two members from four generations. Among ten maternal members, four had CHD, which yielded a penetrance rate of 40%. Sequence analysis of proband and her matrilineal relatives revealed the presence of a novel m.4420A>T variant and a m.10463T>C variant, both of which were highly conserved among various species. Structurally, the m.4420A>T variant had occurred at position 22 in the D-arm of tRNAMet, which disrupted the 13T-22A base-pairing, while the m.10463T>C variant was located at position 67 in the acceptor arm of tRNAArg, a position critical for steady-state level of the tRNA. Functional analysis revealed that patients with the m.4420A>T and m.10463T>C variants exhibited much fewer copy number of mtDNA and lower mitochondrial membrane potential (MMP) and ATP contents (P < 0.05), which were decreased by approximately 50.47%, 39.6% and 47.4%, respectively.@*CONCLUSION@#Mitochondrial tRNAMet 4420A>T and tRNAArg 10463T>C variants may underlay the maternally transmitted CHD in this pedigree, which had shown variation in mtDNA homogeneity, age of onset, clinical phenotype and other differences, suggesting that nuclear genes, environmental factors and mitochondrial genetic background have certain influence on the pathogenesis of CHD.


Asunto(s)
Humanos , Femenino , Mutación , Linaje , ARN de Transferencia de Metionina , Pueblos del Este de Asia , ARN de Transferencia de Arginina , ADN Mitocondrial/genética , Enfermedad Coronaria/genética , Adenosina Trifosfato
11.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077558

RESUMEN

Protein arginylation, mediated by arginyltransferase ATE1, is a post-translational modification of emerging biological importance that consists of transfer of the amino acid Arg to protein and peptide substrates. ATE1 utilizes charged tRNAArg as the donor of the arginyl group, which depends on the activity of Arg-tRNA synthetases (RARS) and is also utilized in translation. The mechanisms that regulate the functional balance among ATE1, RARS and translation are unknown. Here, we addressed the question of how these two enzymes can partition Arg-tRNAArg to functionally distinct pathways using an intracellular arginylation sensor in cell lines with overexpression or deletion of ATE1 and RARS isoforms. We found that arginylation levels depend on the physiological state of the cells but are not directly affected by translation activity or the availability of RARS isoforms. However, displacement of RARS from the multi-synthetase complex leads to an increase in intracellular arginylation independently of RARS enzymatic activity. This effect is accompanied by ATE1's redistribution into the cytosol. Our results provide the first comprehensive analysis of the interdependence among translation, arginyl-tRNA synthesis and arginylation.


Asunto(s)
Aminoaciltransferasas , Arginino-ARNt Ligasa , Aminoaciltransferasas/metabolismo , Arginina/metabolismo , Arginino-ARNt Ligasa/química , Arginino-ARNt Ligasa/genética , Arginino-ARNt Ligasa/metabolismo , Procesamiento Proteico-Postraduccional , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo
12.
Microbiol Spectr ; 10(5): e0207722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36129301

RESUMEN

CG23-I lineage constitutes the majority of hypervirulent Klebsiella pneumoniae. A diabetic patient suffered six episodes of infections caused by CG23-I K. pneumoniae. A total of nine isolates were collected in 2020. We performed whole-genome sequencing to elucidate the within-patient evolution of CG23-I K. pneumoniae. The maximum pairwise difference among the nine longitudinally collected isolates was five single nucleotide polymorphisms. One of the mutations was at the Asp87 position of GyrA. Four indels were identified, including an initiator tRNAfMet duplication, a tRNAArg deletion, a 7-bp insertion, and a 22-bp deletion. All 9 isolates had the genomic features of CG23-I K. pneumoniae, a chromosome-borne ICEKp10, and a large virulence plasmid. The carriage of a complete set of genes for the biosynthesis of colibactin by ICEKp10 gave the nine isolates an ability to cause DNA damage to RAW264.7 cells. Compared with the initial isolate, the last isolate with an additional copy of initiator tRNAfMet grew faster in a nutrient-limiting condition and exhibited enhanced virulence in BALB/c mice. Collectively, we characterized the within-patient microevolution of CG23-I K. pneumoniae through an in-depth comparison of genome sequences. Using the in vitro experiments and mouse models, we also demonstrated that these genomic alterations endowed the isolates with advantages to pass through in vivo selection. IMPORTANCE CG23-I is a significant lineage of hypervirulent Klebsiella pneumoniae. This study characterizes the within-patient microevolution of CG23-I K. pneumoniae. Selective pressures from continuous use of antibiotics favored point mutations contributing to bacterial resistance to antibiotics. The duplication of an initiator tRNAfMet gene helped CG23-I K. pneumoniae proliferate to reach a maximal population size during infections. For longer persistence inside a human host, the large virulence plasmid evolved with more flexible control of replication through duplication of the iteron-1 region. With the genomic alterations, the last isolate had a growth advantage over the initial isolate and exhibited enhanced virulence in BALB/c mice. This study gives us a deeper understanding of the genome evolution during the within-patient pathoadaptation of CG23-I K. pneumoniae.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Ratones , Animales , Humanos , Klebsiella pneumoniae/genética , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/genética , Infecciones por Klebsiella/microbiología , ARN de Transferencia de Metionina , Reinfección , ARN de Transferencia de Arginina , Genoma Bacteriano/genética , Plásmidos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
13.
Proc Natl Acad Sci U S A ; 119(31): e2209597119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878037

RESUMEN

N-degron pathways are proteolytic systems that target proteins bearing N-terminal (Nt) degradation signals (degrons) called N-degrons. Nt-Arg of a protein is among Nt-residues that can be recognized as destabilizing ones by the Arg/N-degron pathway. A proteolytic cleavage of a protein can generate Arg at the N terminus of a resulting C-terminal (Ct) fragment either directly or after Nt-arginylation of that Ct-fragment by the Ate1 arginyl-tRNA-protein transferase (R-transferase), which uses Arg-tRNAArg as a cosubstrate. Ate1 can Nt-arginylate Nt-Asp, Nt-Glu, and oxidized Nt-Cys* (Cys-sulfinate or Cys-sulfonate) of proteins or short peptides. Ate1 genes of fungi, animals, and plants have been cloned decades ago, but a three-dimensional structure of Ate1 remained unknown. A detailed mechanism of arginylation is unknown as well. We describe here the crystal structure of the Ate1 R-transferase from the budding yeast Kluyveromyces lactis. The 58-kDa R-transferase comprises two domains that recognize, together, an acidic Nt-residue of an acceptor substrate, the Arg residue of Arg-tRNAArg, and a 3'-proximal segment of the tRNAArg moiety. The enzyme's active site is located, at least in part, between the two domains. In vitro and in vivo arginylation assays with site-directed Ate1 mutants that were suggested by structural results yielded inferences about specific binding sites of Ate1. We also analyzed the inhibition of Nt-arginylation activity of Ate1 by hemin (Fe3+-heme), and found that hemin induced the previously undescribed disulfide-mediated oligomerization of Ate1. Together, these results advance the understanding of R-transferase and the Arg/N-degron pathway.


Asunto(s)
Aminoaciltransferasas , Arginina , Modelos Moleculares , Aminoaciltransferasas/química , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Animales , Arginina/metabolismo , Hemina/metabolismo , Mutación , Péptidos/metabolismo , Estructura Terciaria de Proteína , Proteínas/metabolismo , Proteolisis , ARN de Transferencia de Arginina/metabolismo
14.
Nucleic Acids Res ; 49(18): 10677-10688, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34551428

RESUMEN

Aside from providing adaptive immunity, type I CRISPR-Cas was recently unearthed to employ a noncanonical RNA guide (CreA) to transcriptionally repress an RNA toxin (CreT). Here, we report that, for most archaeal and bacterial CreTA modules, the creA gene actually carries two flanking 'CRISPR repeats', which are, however, highly divergent and degenerated. By deep sequencing, we show that the two repeats give rise to an 8-nt 5' handle and a 22-nt 3' handle, respectively, i.e., the conserved elements of a canonical CRISPR RNA, indicating they both retained critical nucleotides for Cas6 processing during divergent degeneration. We also uncovered a minimal CreT toxin that sequesters the rare transfer RNA for isoleucine, tRNAIleCAU, with a six-codon open reading frame containing two consecutive AUA codons. To fully relieve its toxicity, both tRNAIleCAU overexpression and supply of extra agmatine (modifies the wobble base of tRNAIleCAU to decipher AUA codons) are required. By replacing AUA to AGA/AGG codons, we reprogrammed this toxin to sequester rare arginine tRNAs. These data provide essential information on CreTA origin and for future CreTA prediction, and enrich the knowledge of tRNA-sequestering small RNAs that are employed by CRISPR-Cas to get addictive to the host.


Asunto(s)
Toxinas Bacterianas/metabolismo , Sistemas CRISPR-Cas , Haloarcula/genética , Halobacterium/genética , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia de Isoleucina/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Ingeniería Celular , Genes Arqueales , Genes Bacterianos , Biosíntesis de Proteínas , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , ARN de Transferencia de Arginina/metabolismo
15.
Science ; 372(6541)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33926924

RESUMEN

CRISPR-Cas systems provide RNA-guided adaptive immunity in prokaryotes. We report that the multisubunit CRISPR effector Cascade transcriptionally regulates a toxin-antitoxin RNA pair, CreTA. CreT (Cascade-repressed toxin) is a bacteriostatic RNA that sequesters the rare arginine tRNAUCU (transfer RNA with anticodon UCU). CreA is a CRISPR RNA-resembling antitoxin RNA, which requires Cas6 for maturation. The partial complementarity between CreA and the creT promoter directs Cascade to repress toxin transcription. Thus, CreA becomes antitoxic only in the presence of Cascade. In CreTA-deleted cells, cascade genes become susceptible to disruption by transposable elements. We uncover several CreTA analogs associated with diverse archaeal and bacterial CRISPR-cas loci. Thus, toxin-antitoxin RNA pairs can safeguard CRISPR immunity by making cells addicted to CRISPR-Cas, which highlights the multifunctionality of Cas proteins and the intricate mechanisms of CRISPR-Cas regulation.


Asunto(s)
Proteínas Asociadas a CRISPR/fisiología , Sistemas CRISPR-Cas/fisiología , Haloarcula/fisiología , ARN de Archaea/fisiología , Sistemas Toxina-Antitoxina/fisiología , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Análisis Mutacional de ADN , Regulación de la Expresión Génica Arqueal , Haloarcula/genética , Operón , ARN de Transferencia de Arginina/metabolismo , Sistemas Toxina-Antitoxina/genética
16.
Nucleic Acids Res ; 49(7): 3603-3616, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33341895

RESUMEN

During mRNA translation, tRNAs are charged by aminoacyl-tRNA synthetases and subsequently used by ribosomes. A multi-enzyme aminoacyl-tRNA synthetase complex (MSC) has been proposed to increase protein synthesis efficiency by passing charged tRNAs to ribosomes. An alternative function is that the MSC repurposes specific synthetases that are released from the MSC upon cues for functions independent of translation. To explore this, we generated mammalian cells in which arginyl-tRNA synthetase and/or glutaminyl-tRNA synthetase were absent from the MSC. Protein synthesis, under a variety of stress conditions, was unchanged. Most strikingly, levels of charged tRNAArg and tRNAGln remained unchanged and no ribosome pausing was observed at codons for arginine and glutamine. Thus, increasing or regulating protein synthesis efficiency is not dependent on arginyl-tRNA synthetase and glutaminyl-tRNA synthetase in the MSC. Alternatively, and consistent with previously reported ex-translational roles requiring changes in synthetase cellular localizations, our manipulations of the MSC visibly changed localization.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia de Glutamina/metabolismo , Ribosomas/metabolismo , Animales , Fibroblastos , Células HEK293 , Humanos , Ratones
17.
RNA Biol ; 18(8): 1193-1205, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33211605

RESUMEN

Colicin D is a plasmid-encoded bacteriocin that specifically cleaves tRNAArg of sensitive Escherichia coli cells. E. coli has four isoaccepting tRNAArgs; the cleavage occurs at the 3' end of anticodon-loop, leading to translation impairment in the sensitive cells. tRNAs form a common L-shaped structure and have many conserved nucleotides that limit tRNA identity elements. How colicin D selects tRNAArgs from the tRNA pool of sensitive E. coli cells is therefore intriguing. Here, we reveal the recognition mechanism of colicin D via biochemical analyses as well as structural modelling. Colicin D recognizes tRNAArgICG, the most abundant species of E. coli tRNAArgs, at its anticodon-loop and D-arm, and selects it as the most preferred substrate by distinguishing its anticodon-loop sequence from that of others. It has been assumed that translation impairment is caused by a decrease in intact tRNA molecules due to cleavage. However, we found that intracellular levels of intact tRNAArgICG do not determine the viability of sensitive cells after such cleavage; rather, an accumulation of cleaved ones does. Cleaved tRNAArgICG dominant-negatively impairs translation in vitro. Moreover, we revealed that EF-Tu, which is required for the delivery of tRNAs, does not compete with colicin D for binding tRNAArgICG, which is consistent with our structural model. Finally, elevation of cleaved tRNAArgICG level decreases the viability of sensitive cells. These results suggest that cleaved tRNAArgICG transiently occupies ribosomal A-site in an EF-Tu-dependent manner, leading to translation impairment. The strategy should also be applicable to other tRNA-targeting RNases, as they, too, recognize anticodon-loops.Abbreviations: mnm5U: 5-methylaminomethyluridine; mcm5s2U: 5-methoxycarbonylmethyl-2-thiouridine.


Asunto(s)
Bacteriocinas/química , Colicinas/química , Escherichia coli/metabolismo , Biosíntesis de Proteínas , ARN Bacteriano/química , ARN de Transferencia de Arginina/química , Ribosomas/metabolismo , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Emparejamiento Base , Sitios de Unión , Colicinas/genética , Colicinas/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Ribosomas/genética , Especificidad por Sustrato , Tiouridina/análogos & derivados , Tiouridina/metabolismo , Uridina/análogos & derivados , Uridina/metabolismo
18.
Neuron ; 108(1): 193-208.e9, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32853550

RESUMEN

The mammalian genome has hundreds of nuclear-encoded tRNAs, but the contribution of individual tRNA genes to cellular and organismal function remains unknown. Here, we demonstrate that mutations in a neuronally enriched arginine tRNA, n-Tr20, increased seizure threshold and altered synaptic transmission. n-Tr20 expression also modulated seizures caused by an epilepsy-linked mutation in Gabrg2, a gene encoding a GABAA receptor subunit. Loss of n-Tr20 altered translation initiation by activating the integrated stress response and suppressing mTOR signaling, the latter of which may contribute to altered neurotransmission in mutant mice. Deletion of a highly expressed isoleucine tRNA similarly altered these signaling pathways in the brain, suggesting that regulation of translation initiation is a conserved response to tRNA loss. Our data indicate that loss of a single member of a tRNA family results in multiple cellular phenotypes, highlighting the disease-causing potential of tRNA mutations.


Asunto(s)
Neuronas/metabolismo , ARN de Transferencia de Arginina/genética , Convulsiones/genética , Transmisión Sináptica/genética , Animales , Electrochoque/efectos adversos , Antagonistas de Receptores de GABA-A/efectos adversos , Ratones , Pentilenotetrazol/efectos adversos , Iniciación de la Cadena Peptídica Traduccional/genética , ARN de Transferencia de Isoleucina/genética , RNA-Seq , Receptores de GABA-A/genética , Convulsiones/inducido químicamente , Convulsiones/etiología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
19.
PLoS Genet ; 16(6): e1008836, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32479508

RESUMEN

Codon usage bias is a universal feature of all genomes and plays an important role in regulating protein expression levels. Modification of adenosine to inosine at the tRNA anticodon wobble position (I34) by adenosine deaminases (ADATs) is observed in all eukaryotes and has been proposed to explain the correlation between codon usage and tRNA pool. However, how the tRNA pool is affected by I34 modification to influence codon usage-dependent gene expression is unclear. Using Neurospora crassa as a model system, by combining molecular, biochemical and bioinformatics analyses, we show that silencing of adat2 expression severely impaired the I34 modification levels for the ADAT-related tRNAs, resulting in major ADAT-related tRNA profile changes and reprogramming of translation elongation kinetics on ADAT-related codons. adat2 silencing also caused genome-wide codon usage-biased ribosome pausing on mRNAs and proteome landscape changes, leading to selective translational repression or induction of different mRNAs. The induced expression of CPC-1, the Neurospora ortholog of yeast GCN4p, mediates the transcriptional response after adat2 silencing and amino acid starvation. Together, our results demonstrate that the tRNA I34 modification by ADAT plays a major role in driving codon usage-biased translation to shape proteome landscape.


Asunto(s)
Anticodón/genética , Uso de Codones , Extensión de la Cadena Peptídica de Translación/genética , Proteoma/genética , ARN de Transferencia de Arginina/genética , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Anticodón/metabolismo , Biología Computacional , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Inosina/metabolismo , Neurospora crassa/genética , ARN de Transferencia de Arginina/metabolismo , Ribosomas/metabolismo
20.
Cell Chem Biol ; 27(7): 839-849.e4, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32553119

RESUMEN

Arginyltransferase ATE1 mediates posttranslational arginylation and plays key roles in multiple physiological processes. ATE1 utilizes arginyl (Arg)-tRNAArg as the donor of Arg, putting this reaction into a direct competition with the protein synthesis machinery. Here, we address the question of ATE1- Arg-tRNAArg specificity as a potential mechanism enabling this competition in vivo. Using in vitro arginylation assays and Ate1 knockout models, we find that, in addition to full-length tRNA, ATE1 is also able to utilize short tRNAArg fragments that bear structural resemblance to tRNA-derived fragments (tRF), a recently discovered class of small regulatory non-coding RNAs with global emerging biological role. Ate1 knockout cells show a decrease in tRFArg generation and a significant increase in the ratio of tRNAArg:tRFArg compared with wild type, suggesting a functional link between tRFArg and arginylation. We propose that generation of physiologically important tRFs can serve as a switch between translation and protein arginylation.


Asunto(s)
Aminoaciltransferasas/metabolismo , Arginina/metabolismo , ARN de Transferencia de Arginina/metabolismo , Aminoaciltransferasas/genética , Angiotensina II/metabolismo , Animales , Línea Celular , Humanos , Ratones , Unión Proteica , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...