Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791189

RESUMEN

The membrane Fo factor of ATP synthase is highly sensitive to mutations in the proton half-channel leading to the functional blocking of the entire protein. To identify functionally important amino acids for the proton transport, we performed molecular dynamic simulations on the selected mutants of the membrane part of the bacterial FoF1-ATP synthase embedded in a native lipid bilayer: there were nine different mutations of a-subunit residues (aE219, aH245, aN214, aQ252) in the inlet half-channel. The structure proved to be stable to these mutations, although some of them (aH245Y and aQ252L) resulted in minor conformational changes. aH245 and aN214 were crucial for proton transport as they directly facilitated H+ transfer. The substitutions with nonpolar amino acids disrupted the transfer chain and water molecules or neighboring polar side chains could not replace them effectively. aE219 and aQ252 appeared not to be determinative for proton translocation, since an alternative pathway involving a chain of water molecules could compensate the ability of H+ transmembrane movement when they were substituted. Thus, mutations of conserved polar residues significantly affected hydration levels, leading to drastic changes in the occupancy and capacity of the structural water molecule clusters (W1-W3), up to their complete disappearance and consequently to the proton transfer chain disruption.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas , Simulación de Dinámica Molecular , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Mutación , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/genética
2.
Elife ; 112022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35107420

RESUMEN

In FoF1-ATP synthase, proton translocation through Fo drives rotation of the c-subunit oligomeric ring relative to the a-subunit. Recent studies suggest that in each step of the rotation, key glutamic acid residues in different c-subunits contribute to proton release to and proton uptake from the a-subunit. However, no studies have demonstrated cooperativity among c-subunits toward FoF1-ATP synthase activity. Here, we addressed this using Bacillus PS3 ATP synthase harboring a c-ring with various combinations of wild-type and cE56D, enabled by genetically fused single-chain c-ring. ATP synthesis and proton pump activities were decreased by a single cE56D mutation and further decreased by double cE56D mutations. Moreover, activity further decreased as the two mutation sites were separated, indicating cooperation among c-subunits. Similar results were obtained for proton transfer-coupled molecular simulations. The simulations revealed that prolonged proton uptake in mutated c-subunits is shared between two c-subunits, explaining the cooperation observed in biochemical assays.


Cells need to be able to store and transfer energy to fuel their various activities. To do this, they produce a small molecule called ATP to carry the energy, which is then released when the ATP is broken down. An enzyme found in plants, animals and bacteria, called FoF1 ATP synthase, can both create and use ATP. When it does this, protons, or positive hydrogen ions, are transported across cellular boundaries called membranes. The region of the enzyme that is responsible for pumping the protons contains different parts known as the c-ring and the a-subunit. The movement of protons drives the c-ring to rotate relative to the a-subunit, which leads to producing ATP. Previous research using simulations and the protein structures found there are two or three neighbouring amino acids in the c-ring that face the a-subunit, suggesting that these amino acids act together to drive the rotation. To test this hypothesis, Mitome et al. mutated these amino acids to examine the effect on the enzyme's ability to produce ATP. A single mutation reduced the production of ATP, which decreased even further with mutations in two of the amino acids. The extent of this decrease depended on the distance between the two mutations in the c-ring. Simulations of these changes also found similar results. This indicates there is coordination between different parts of the c-ring to increase the rate of ATP production. This study offers new insights into the molecular processes controlling ATP synthesis and confirms previous theoretical research. This will interest specialists in bioenergetics because it addresses a fundamental biological question with broad impact.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Protones , Bacillus , ATPasas de Translocación de Protón Bacterianas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Simulación de Dinámica Molecular , Mutación , Conformación Proteica
3.
Nat Commun ; 12(1): 4690, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344897

RESUMEN

F1Fo ATP synthase interchanges phosphate transfer energy and proton motive force via a rotary catalysis mechanism. Isolated F1-ATPase catalytic cores can hydrolyze ATP, passing through six intermediate conformational states to generate rotation of their central γ-subunit. Although previous structural studies have contributed greatly to understanding rotary catalysis in the F1-ATPase, the structure of an important conformational state (the binding-dwell) has remained elusive. Here, we exploit temperature and time-resolved cryo-electron microscopy to determine the structure of the binding- and catalytic-dwell states of Bacillus PS3 F1-ATPase. Each state shows three catalytic ß-subunits in different conformations, establishing the complete set of six states taken up during the catalytic cycle and providing molecular details for both the ATP binding and hydrolysis strokes. We also identify a potential phosphate-release tunnel that indicates how ADP and phosphate binding are coordinated during synthesis. Overall these findings provide a structural basis for the entire F1-ATPase catalytic cycle.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Bacillus/enzimología , ATPasas de Translocación de Protón Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/metabolismo , Sitios de Unión , Catálisis , Microscopía por Crioelectrón , Hidrólisis , Mutación , Fosfatos/química , Fosfatos/metabolismo , Unión Proteica , Conformación Proteica , Subunidades de Proteína , Rotación , Temperatura
4.
Artículo en Inglés | MEDLINE | ID: mdl-31138569

RESUMEN

Bedaquiline resistance within Mycobacterium tuberculosis may arise through efflux-based (rv0678) or target-based (atpE) pathway mutations. M. tuberculosis mutant populations from each of five sequential steps in a passaging approach, using a pyrazinamide-resistant ATCC strain, were subjected to MIC determinations and whole-genome sequencing. Exposure to increasing bedaquiline concentrations resulted in increasing phenotypic resistance (up to >2 µg/ml) through MIC determination on solid medium (Middlebrook 7H10). rv0678 mutations were dynamic, while atpE mutations were fixed, once occurring. We present the following hypothesis for in vitro emergence of bedaquiline resistance: rv0678 mutations may be the first transient step in low-level resistance acquisition, followed by high-level resistance due to fixed atpE mutations.


Asunto(s)
Proteínas Bacterianas/genética , Diarilquinolinas/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , ATPasas de Translocación de Protón Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana
5.
Artículo en Inglés | MEDLINE | ID: mdl-29712658

RESUMEN

Chemotherapeutic options against Mycobacterium abscessus infections are very limited. Bedaquiline, a new antituberculosis (anti-TB) drug, is effective for the treatment of multidrug-resistant TB. However, few data are available on bedaquiline for treatment of M. abscessus infections. In this study, we determined the profile for in vitro susceptibility of M. abscessus clinical isolates to bedaquiline and investigated the potential molecular mechanisms of decreased susceptibility. A total of 197 M. abscessus clinical isolates were collected from sputum and bronchoalveolar fluid of patients with lung infections. Standard broth microdilution test revealed that bedaquiline exhibited high in vitro killing activity against M. abscessus isolates, with a MIC50 of 0.062 and a MIC90 of 0.125 mg/liter. Whole-genome sequencing data showed that no nonsynonymous mutation occurred in atpE, the gene encoding the bedaquiline-targeted protein. However, of 6 strains with decreased susceptibility of bedaquiline (MIC = 0.5 to 1 mg/liter), 3 strains had nonsynonymous mutations in mab_4384, the gene encoding the repressor of efflux pump MmpS5/MmpL5. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that the expression of MmpS5/MmpL5 in the group with decreased susceptibility to bedaquiline was significantly higher than in those with medium MICs (MIC = 0.125 to 0.5 mg/liter) or in the low-MIC group (MIC ≤ 0.062 mg/liter). Two isolates with increased MICs did not show overexpression of MmpS5/MmpL5, which could not be explained by known molecular mechanisms. This is the first report showing the association of MmpS5/MmpL5 with decreased bedaquiline susceptibility in M. abscessus clinical isolates and suggesting the presence of other, yet-to-be identified mechanisms for decreased bedaquiline susceptibility in M. abscessus.


Asunto(s)
Antituberculosos/farmacología , Diarilquinolinas/farmacología , Farmacorresistencia Bacteriana/genética , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium abscessus/aislamiento & purificación , ATPasas de Translocación de Protón Bacterianas/genética , Genoma Bacteriano/genética , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/genética , Secuenciación Completa del Genoma
6.
Microb Ecol ; 75(4): 834-846, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29063147

RESUMEN

Biogeographical studies considering the entire bacterial community may underestimate mechanisms of bacterial assemblages at lower taxonomic levels. In this context, the study aimed to identify factors affecting the spatial and temporal dynamic of the Mycobacterium, a genus widespread in aquatic ecosystems. Nontuberculous mycobacteria (NTM) density variations were quantified in the water column of freshwater lakes at the regional scale (annual monitoring of 49 lakes in the Paris area) and at the local scale (2-year monthly monitoring in Créteil Lake) by real-time quantitative PCR targeting the atpE gene. At the regional scale, mycobacteria densities in water samples ranged from 6.7 × 103 to 1.9 × 108 genome units per liter. Density variations were primarily explained by water pH, labile iron, and dispersal processes through the connection of the lakes to a river. In Créteil Lake, no spatial variation of mycobacterial densities was noticed over the 2-year monthly survey, except after large rainfall events. Indeed, storm sewer effluents locally and temporarily increased NTM densities in the water column. The temporal dynamic of the NTM densities in Créteil Lake was associated with suspended solid concentrations. No clear seasonal variation was noticed despite a shift in NTM densities observed over the 2012-2013 winter. Temporal NTM densities fluctuations were well predicted by the neutral community model, suggesting a random balance between loss and gain of mycobacterial taxa within Créteil Lake. This study highlights the importance of considering multiple spatial scales for understanding the spatio-temporal dynamic of bacterial populations in natural environments.


Asunto(s)
Biodiversidad , Ecosistema , Lagos/microbiología , Mycobacterium , Microbiología del Agua , Carga Bacteriana , ATPasas de Translocación de Protón Bacterianas/genética , ADN Bacteriano/genética , Monitoreo del Ambiente , Sedimentos Geológicos/microbiología , Lagos/química , Mycobacterium/clasificación , Mycobacterium/genética , Micobacterias no Tuberculosas/clasificación , Micobacterias no Tuberculosas/genética , Paris , Reacción en Cadena en Tiempo Real de la Polimerasa , Ríos/microbiología , Estaciones del Año
7.
Proc Natl Acad Sci U S A ; 114(43): 11291-11296, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073046

RESUMEN

ATP synthase is a rotating membrane protein that synthesizes ATP through proton-pumping activity across the membrane. To unveil the mechanical impact of this molecular active pump on the bending properties of its lipid environment, we have functionally reconstituted the ATP synthase in giant unilamellar vesicles and tracked the membrane fluctuations by means of flickering spectroscopy. We find that ATP synthase rotates at a frequency of about 20 Hz, promoting large nonequilibrium deformations at discrete hot spots in lipid vesicles and thus inducing an overall membrane softening. The enhanced nonequilibrium fluctuations are compatible with an accumulation of active proteins at highly curved membrane sites through a curvature-protein coupling mechanism that supports the emergence of collective effects of rotating ATP synthases in lipid membranes.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfato/biosíntesis , ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/genética , Membrana Celular/efectos de los fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Microscopía por Video , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodamina 123/química , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo , Valinomicina/farmacología
8.
Artículo en Inglés | MEDLINE | ID: mdl-28807917

RESUMEN

Pulmonary infections caused by Mycobacterium abscessus are emerging as a global threat, especially in cystic fibrosis patients. Further intensifying the concern of M. abscessus infection is the recent evidence of human-to-human transmission of the infection. M. abscessus is a naturally multidrug-resistant fast-growing pathogen for which pharmacological options are limited. Repurposing antitubercular drugs represents an attractive option for the development of chemotherapeutic alternatives against M. abscessus infections. Bedaquiline (BDQ), an ATP synthase inhibitor, has recently been approved for the treatment of multidrug-resistant tuberculosis. Herein, we show that BDQ has a very low MIC against a vast panel of clinical isolates. Despite being bacteriostatic in vitro, BDQ was highly efficacious in a zebrafish model of M. abscessus infection. Remarkably, a very short period of treatment was sufficient to protect the infected larvae from M. abscessus-induced killing. This was corroborated with reduced numbers of abscesses and cords, considered to be major pathophysiological signs in infected zebrafish. Mode-of-action studies revealed that BDQ triggered a rapid depletion of ATP in M. abscessusin vitro, consistent with the drug targeting the FoF1 ATP synthase. Importantly, despite a failure to select in vitro for spontaneous mutants that are highly resistant to BDQ, the transfer of single nucleotide polymorphisms leading to D29V or A64P substitutions in atpE conferred high resistance, thus resolving the target of BDQ in M. abscessus Overall, this study indicates that BDQ is active against M. abscessusin vitro and in vivo and should be considered for clinical use against the difficult-to-manage M. abscessus pulmonary infections.


Asunto(s)
Antituberculosos/farmacología , ATPasas de Translocación de Protón Bacterianas/antagonistas & inhibidores , Diarilquinolinas/farmacología , Mycobacterium abscessus/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , ATPasas de Translocación de Protón Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/metabolismo , Polimorfismo de Nucleótido Simple , Pez Cebra/microbiología
9.
Antonie Van Leeuwenhoek ; 110(11): 1475-1483, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28647822

RESUMEN

An aerobic, Gram-stain negative, short rod-shaped and motile strain, 36-5-1T, was isolated from the roots of Nitraria sibirica in Zhangye city, Gansu province, north-west of China. Phylogenetic analysis based on the 16S rRNA gene sequence and two housekeeping genes (glnA and atpD) indicated that the strain represents a novel species closely related to the Devosia, Rhizobium and Devosia genera with 98.3, 96.2 and 91.1% similarities, respectively. The strain 36-5-1T contained Q-10 as the predominant ubiquinone and 16:0 (36.8%) as the major fatty acid; a large amount of unidentified glycolipid, diphosphatidylglycerol, phosphatidylglycerol and a small amount of unidentified polar lipids were present as polar lipids. In addition, the G+C content of the genomic DNA was 61.7 mol% and the DNA-DNA hybridization with type strains Devosia geojensis BD-c194T and Devosia pacifica NH131T 44.1 ± 1.1 and 40.2 ± 1.7, respectively. Based on chemotaxonomic data and molecular properties, strain 36-5-1T represents a novel species within the genus Devosia, for which the name Devosia nitraria sp. nov. is proposed. The type strain is 36-5-1T (=CGMCC1.15704T=NBRC112416T).


Asunto(s)
Hyphomicrobiaceae/clasificación , Filogenia , ATPasas de Translocación de Protón Bacterianas/genética , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/análisis , Glutamato-Amoníaco Ligasa/genética , Glucolípidos/análisis , Hyphomicrobiaceae/química , Hyphomicrobiaceae/genética , Fosfolípidos/análisis , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Microbiología del Suelo
10.
Artículo en Inglés | MEDLINE | ID: mdl-28242674

RESUMEN

The main goal of our study was to evaluate the in vitro bedaquiline susceptibility of six prevalent species of pathogenic nontuberculous mycobacteria (NTM) in China. In addition, we investigated the potential molecular mechanisms contributing to bedaquiline resistance in the different NTM species. Among slowly growing mycobacteria (SGM), bedaquiline exhibited the highest activity against Mycobacterium avium; the MIC50 and MIC90 values were 0.03 and 16 mg/liter, respectively. Among rapidly growing mycobacteria (RGM), Mycobacterium abscessus subsp. abscessus (M. abscessus) and Mycobacterium abscessus subsp. massiliense (M. massiliense) seemed more susceptible to bedaquiline than Mycobacterium fortuitum, with MIC50 and MIC90 values of 0.13 and >16 mg/liter, respectively, for both species. On the basis of bimodal distributions of bedaquiline MICs, we proposed the following epidemiological cutoff (ECOFF) values: 1.0 mg/liter for SGM and 2.0 mg/liter for RGM. Among M. avium, Mycobacterium intracellulare, Mycobacterium kansasii, M. abscessus, M. massiliense, and M. fortuitum isolates, 14 (29.8%), 41 (27.2%), 33 (39.3%), 44 (20.2%), 42 (25.8%), and 7 (31.8%), respectively, were resistant to bedaquiline. No significant differences in the proportions of bedaquiline resistance among these species were observed (P > 0.05). Genetic mutations were observed in 74 isolates (10.8%), with all nucleotide substitutions being synonymous. In conclusion, our data demonstrate that bedaquiline shows moderate in vitro activity against NTM species. Using the proposed ECOFF values, we could distinguish between bedaquiline-resistant and -susceptible strains with the broth dilution method. In addition, no nonsynonymous mutations in the atpE gene that conferred bedaquiline resistance in all six NTM species were identified.


Asunto(s)
Antituberculosos/farmacología , Diarilquinolinas/farmacología , Farmacorresistencia Bacteriana/genética , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Micobacterias no Tuberculosas/efectos de los fármacos , Micobacterias no Tuberculosas/genética , ATPasas de Translocación de Protón Bacterianas/genética , Humanos , Pruebas de Sensibilidad Microbiana , Mutación/genética , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/aislamiento & purificación , ARN Ribosómico 16S/genética
11.
Biochim Biophys Acta Biomembr ; 1859(6): 1124-1132, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28284722

RESUMEN

Mitochondria, chloroplasts and photosynthetic bacteria are characterized by the presence of complex and intricate membrane systems. In contrast, non-photosynthetic bacteria lack membrane structures within their cytoplasm. However, large scale over-production of some membrane proteins, such as the fumarate reductase, the mannitol permease MtlA, the glycerol acyl transferase PlsB, the chemotaxis receptor Tsr or the ATP synthase subunit b, can induce the proliferation of intra cellular membranes (ICMs) in the cytoplasm of Escherichia coli. These ICMs are particularly rich in cardiolipin (CL). Here, we have studied the effect of CL in the generation of these membranous structures. We have deleted the three genes (clsA, clsB and clsC) responsible of CL biosynthesis in E. coli and analysed the effect of these mutations by fluorescent and electron microscopy and by lipid mass spectrometry. We have found that CL is essential in the formation of non-lamellar structures in the cytoplasm of E. coli cells. These results could help to understand the structuration of membranes in E. coli and other membrane organelles, such as mitochondria and ER.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cardiolipinas/metabolismo , Retículo Endoplásmico/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/deficiencia , Mitocondrias/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/deficiencia , Proteínas Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/metabolismo , Retículo Endoplásmico/ultraestructura , Escherichia coli/ultraestructura , Colorantes Fluorescentes/química , Eliminación de Gen , Expresión Génica , Isoenzimas/deficiencia , Isoenzimas/genética , Proteínas de la Membrana/genética , Mitocondrias/ultraestructura , Imagen de Lapso de Tiempo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
12.
J Bioenerg Biomembr ; 49(2): 171-181, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28078625

RESUMEN

Subunit a is a membrane-bound stator subunit of the ATP synthase and is essential for proton translocation. The N-terminus of subunit a in E. coli is localized to the periplasm, and contains a sequence motif that is conserved among some bacteria. Previous work has identified mutations in this region that impair enzyme activity. Here, an internal deletion was constructed in subunit a in which residues 6-20 were replaced by a single lysine residue, and this mutant was unable to grow on succinate minimal medium. Membrane vesicles prepared from this mutant lacked ATP synthesis and ATP-driven proton translocation, even though immunoblots showed a significant level of subunit a. Similar results were obtained after purification and reconstitution of the mutant ATP synthase into liposomes. The location of subunit a with respect to its neighboring subunits b and c was probed by introducing cysteine substitutions that were known to promote cross-linking: a_L207C + c_I55C, a_L121C + b_N4C, and a_T107C + b_V18C. The last pair was unable to form cross-links in the background of the deletion mutant. The results indicate that loss of the N-terminal region of subunit a does not generally disrupt its structure, but does alter interactions with subunit b.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Eliminación de Secuencia , Adenosina Trifosfato/biosíntesis , Secuencia de Aminoácidos , ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Cisteína/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transporte Iónico , Mutagénesis Sitio-Dirigida , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
13.
J Biomol Struct Dyn ; 34(8): 1705-16, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26513379

RESUMEN

Succinic acid is an important platform chemical with a variety of applications. Model-guided metabolic engineering strategies in Escherichia coli for strain improvement to increase succinic acid production using glucose and glycerol remain largely unexplored. Herein, we report what are, to our knowledge, the first metabolic knockout of the atpE gene to have increased succinic acid production using both glucose and alternative glycerol carbon sources in E. coli. Guided by a genome-scale metabolic model, we engineered the E. coli host to enhance anaerobic production of succinic acid by deleting the atpE gene, thereby generating additional reducing equivalents by blocking H(+) conduction across the mutant cell membrane. This strategy produced 1.58 and .49 g l(-1) of succinic acid from glycerol and glucose substrate, respectively. This work further elucidates a model-guided and/or system-based metabolic engineering, involving only a single-gene deletion strategy for enhanced succinic acid production in E. coli.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Modelos Biológicos , Ácido Succínico/metabolismo , Fermentación , Glucosa/metabolismo , Glicerol/metabolismo , Redes y Vías Metabólicas , Mutación
14.
J Biol Chem ; 290(17): 10717-28, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25713065

RESUMEN

Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfato/biosíntesis , Secuencia de Aminoácidos , ATPasas de Translocación de Protón Bacterianas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Subunidades de Proteína , Rotación , Homología de Secuencia de Aminoácido , Electricidad Estática
15.
Sci Rep ; 4: 6951, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25377721

RESUMEN

Propionic acid (PA) is an important platform chemical in the food, agriculture, and pharmaceutical industries and is mainly biosynthesized by propionibacteria. Acid tolerance in PA-producing strains is crucial. In previous work, we investigated the acid tolerance mechanism of Propionibacterium acidipropionici at microenvironmental levels by analyzing physiological changes in the parental strain and three PA-tolerant mutants obtained by genome shuffling. However, the molecular mechanism of PA tolerance in P. acidipropionici remained unclear. Here, we performed a comparative proteomics study of P. acidipropionici CGMCC 1.2230 and the acid-tolerant mutant P. acidipropionici WSH1105; MALDI-TOF/MS identified 24 proteins that significantly differed between the parental and shuffled strains. The differentially expressed proteins were mainly categorized as key components of crucial biological processes and the acid stress response. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to confirm differential expression of nine key proteins. Overexpression of the secretory protein glyceraldehyde-3-phosphate dehydrogenase and ATP synthase subunit α in Escherichia coli BL21 improved PA and acetic acid tolerance; overexpression of NADH dehydrogenase and methylmalonyl-CoA epimerase improved PA tolerance. These results provide new insights into the acid tolerance of P. acidipropionici and will facilitate the development of PA production through fermentation by propionibacteria.


Asunto(s)
Proteínas Bacterianas/genética , Barajamiento de ADN/métodos , Regulación Bacteriana de la Expresión Génica , Propionatos/metabolismo , Propionibacterium/genética , Proteómica , Ácido Acético/metabolismo , Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , ATPasas de Translocación de Protón Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentación , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Propionibacterium/metabolismo , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Estrés Fisiológico , Transgenes
16.
Biochem Biophys Res Commun ; 446(1): 358-63, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24607907

RESUMEN

Motor enzymes such as F1-ATPase and kinesin utilize energy from ATP for their motion. Molecular motions of these enzymes are critical to their catalytic mechanisms and were analyzed thoroughly using a single molecule observation technique. As a tool to analyze and control the ATP-driven motor enzyme motion, we recently synthesized a photoresponsive ATP analog with a p-tert-butylazobenzene tethered to the 2' position of the ribose ring. Using cis/trans isomerization of the azobenzene moiety, we achieved a successful reversible photochromic control over a kinesin-microtubule system in an in vitro motility assay. Here we succeeded to control the hydrolytic activity and rotation of the rotary motor enzyme, F1-ATPase, using this photosensitive ATP analog. Subsequent single molecule observations indicated a unique pause occurring at the ATP binding angle position in the presence of cis form of the analog.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Compuestos Azo/metabolismo , ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón Bacterianas/genética , Cianobacterias/enzimología , Cianobacterias/genética , Cinesinas/metabolismo , Cinética , Luz , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Movimiento (Física) , Procesos Fotoquímicos , Rotación , Especificidad por Sustrato
17.
Biophys J ; 105(11): 2541-8, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24314084

RESUMEN

Rotation of the γ subunit of the F1-ATPase plays an essential role in energy transduction by F1-ATPase. Hydrolysis of an ATP molecule induces a 120° step rotation that consists of an 80° substep and 40° substep. ATP binding together with ADP release causes the first 80° step rotation. Thus, nucleotide binding is very important for rotation and energy transduction by F1-ATPase. In this study, we introduced a ßY341W mutation as an optical probe for nucleotide binding to catalytic sites, and a ßE190Q mutation that suppresses the hydrolysis of nucleoside triphosphate (NTP). Using a mutant monomeric ßY341W subunit and a mutant α3ß3γ subcomplex containing the ßY341W mutation with or without an additional ßE190Q mutation, we examined the binding of various NTPs (i.e., ATP, GTP, and ITP) and nucleoside diphosphates (NDPs, i.e., ADP, GDP, and IDP). The affinity (1/Kd) of the nucleotides for the isolated ß subunit and third catalytic site in the subcomplex was in the order ATP/ADP > GTP/GDP > ITP/IDP. We performed van't Hoff analyses to obtain the thermodynamic parameters of nucleotide binding. For the isolated ß subunit, NDPs and NTPs with the same base moiety exhibited similar ΔH(0) and ΔG(0) values at 25°C. The binding of nucleotides with different bases to the isolated ß subunit resulted in different entropy changes. Interestingly, NDP binding to the α3ß(Y341W)3γ subcomplex had similar Kd and ΔG(0) values as binding to the isolated ß(Y341W) subunit, but the contributions of the enthalpy term and the entropy term were very different. We discuss these results in terms of the change in the tightness of the subunit packing, which reduces the excluded volume between subunits and increases water entropy.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , Modelos Biológicos , Nucleótidos/metabolismo , Termodinámica , Bacillus/enzimología , ATPasas de Translocación de Protón Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/metabolismo , Cinética , Mutación Missense , Nucleótidos/química , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
18.
BMC Microbiol ; 13: 277, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24299240

RESUMEN

BACKGROUND: The environment is the likely source of many pathogenic mycobacterial species but detection of mycobacteria by bacteriological tools is generally difficult and time-consuming. Consequently, several molecular targets based on the sequences of housekeeping genes, non-functional RNA and structural ribosomal RNAs have been proposed for the detection and identification of mycobacteria in clinical or environmental samples. While certain of these targets were proposed as specific for this genus, most are prone to false positive results in complex environmental samples that include related, but distinct, bacterial genera. Nowadays the increased number of sequenced genomes and the availability of software for genomic comparison provide tools to develop novel, mycobacteria-specific targets, and the associated molecular probes and primers. Consequently, we conducted an in silico search for proteins exclusive to Mycobacterium spp. genomes in order to design sensitive and specific molecular targets. RESULTS: Among the 3989 predicted proteins from M. tuberculosis H37Rv, only 11 proteins showed 80% to 100% of similarity with Mycobacterium spp. genomes, and less than 50% of similarity with genomes of closely related Corynebacterium, Nocardia and Rhodococcus genera. Based on DNA sequence alignments, we designed primer pairs and a probe that specifically detect the atpE gene of mycobacteria, as verified by quantitative real-time PCR on a collection of mycobacteria and non-mycobacterial species. The real-time PCR method we developed was successfully used to detect mycobacteria in tap water and lake samples. CONCLUSIONS: The results indicate that this real-time PCR method targeting the atpE gene can serve for highly specific detection and precise quantification of Mycobacterium spp. in environmental samples.


Asunto(s)
Carga Bacteriana/métodos , ATPasas de Translocación de Protón Bacterianas/genética , Microbiología Ambiental , Mycobacterium/aislamiento & purificación , Cartilla de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Mycobacterium/genética , Sondas de Oligonucleótidos/genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN
19.
J Biol Chem ; 288(35): 25535-25541, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23864659

RESUMEN

Subunit a plays a key role in promoting H(+) transport-coupled rotary motion of the subunit c ring in F1Fo ATP synthase. H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of Fo subunit c. H(+) are thought to reach cAsp61 via aqueous half-channels formed by TMHs 2-5 of subunit a. Movements of TMH4 and TMH5 have been proposed to facilitate protonation of cAsp61 from a half channel centered in a four helix bundle at the periplasmic side of subunit a. The possible necessity of these proposed TMH movements was investigated by assaying ATP driven H(+) pumping function before and after cross-linking paired Cys substitutions at the center of TMHs within subunit a. The cross-linking of the Cys pairs aG218C/I248C in TMH4 and TMH5, and aL120C/H245C in TMH2 and TMH5, inhibited H(+) pumping by 85-90%. H(+) pumping function was largely unaffected by modification of the same Cys residues in the absence of cross-link formation. The inhibition is consistent with the proposed requirement for TMH movements during the gating of periplasmic H(+) access to cAsp61. The cytoplasmic loops of subunit a have been implicated in gating H(+) release to the cytoplasm, and previous cross-linking experiments suggest that the chemically reactive regions of the loops may pack as a single domain. Here we show that Cys substitutions in these domains can be cross-linked with retention of function and conclude that these domains need not undergo large conformational changes during enzyme function.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Sustitución de Aminoácidos , ATPasas de Translocación de Protón Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación Missense , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
20.
J Biochem ; 154(2): 177-84, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23750030

RESUMEN

Bacterial flagellar motors exploit the electrochemical potential gradient of a coupling ion as energy source and are composed of stator and rotor proteins. Vibrio alginolyticus has a Na(+)-driven motor and its stator is composed of PomA and PomB. Recently, we isolated increased motility strains (sp1-sp4) from the PomA-N194D/PomB-D24N mutant whose motility was quite weak. To detect the responsible mutation, we have used a next-generation sequencer and determined the entire genome sequences of the sp1 and sp2 strains. Candidate mutations were identified in the gene encoding the a-subunit of F1Fo-ATPase (uncB). To confirm this, we constructed a deletion strain, which gave the increased motility phenotype. The amount of membrane-bound ATPase was reduced in the sp2 and ΔuncB mutants. From these results, we conclude that a mutation in the uncB gene causes the increased motility phenotype in V. alginolyticus. They confer faster motility in low concentrations of sodium than in the parental strain and this phenotype is suppressed in the presence of KCN. Those results may suggest that the proton gradient generated by the respiratory chain is increased by the uncB mutation, consequently the sodium motive force is increased and causes the increased motility phenotype.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/metabolismo , Flagelos/metabolismo , Mutación Missense , Vibrio alginolyticus/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ATPasas de Translocación de Protón Bacterianas/genética , Flagelos/genética , Canales de Sodio/genética , Canales de Sodio/metabolismo , Vibrio alginolyticus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...