Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Elife ; 112022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35107420

RESUMEN

In FoF1-ATP synthase, proton translocation through Fo drives rotation of the c-subunit oligomeric ring relative to the a-subunit. Recent studies suggest that in each step of the rotation, key glutamic acid residues in different c-subunits contribute to proton release to and proton uptake from the a-subunit. However, no studies have demonstrated cooperativity among c-subunits toward FoF1-ATP synthase activity. Here, we addressed this using Bacillus PS3 ATP synthase harboring a c-ring with various combinations of wild-type and cE56D, enabled by genetically fused single-chain c-ring. ATP synthesis and proton pump activities were decreased by a single cE56D mutation and further decreased by double cE56D mutations. Moreover, activity further decreased as the two mutation sites were separated, indicating cooperation among c-subunits. Similar results were obtained for proton transfer-coupled molecular simulations. The simulations revealed that prolonged proton uptake in mutated c-subunits is shared between two c-subunits, explaining the cooperation observed in biochemical assays.


Cells need to be able to store and transfer energy to fuel their various activities. To do this, they produce a small molecule called ATP to carry the energy, which is then released when the ATP is broken down. An enzyme found in plants, animals and bacteria, called FoF1 ATP synthase, can both create and use ATP. When it does this, protons, or positive hydrogen ions, are transported across cellular boundaries called membranes. The region of the enzyme that is responsible for pumping the protons contains different parts known as the c-ring and the a-subunit. The movement of protons drives the c-ring to rotate relative to the a-subunit, which leads to producing ATP. Previous research using simulations and the protein structures found there are two or three neighbouring amino acids in the c-ring that face the a-subunit, suggesting that these amino acids act together to drive the rotation. To test this hypothesis, Mitome et al. mutated these amino acids to examine the effect on the enzyme's ability to produce ATP. A single mutation reduced the production of ATP, which decreased even further with mutations in two of the amino acids. The extent of this decrease depended on the distance between the two mutations in the c-ring. Simulations of these changes also found similar results. This indicates there is coordination between different parts of the c-ring to increase the rate of ATP production. This study offers new insights into the molecular processes controlling ATP synthesis and confirms previous theoretical research. This will interest specialists in bioenergetics because it addresses a fundamental biological question with broad impact.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Protones , Bacillus , ATPasas de Translocación de Protón Bacterianas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Simulación de Dinámica Molecular , Mutación , Conformación Proteica
2.
Sci Rep ; 11(1): 21234, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707181

RESUMEN

Membrane bound nicotinamide nucleotide transhydrogenase (TH) catalyses the hydride transfer from NADH to NADP+. Under physiological conditions, this reaction is endergonic and must be energized by the pmf, coupled to transmembrane proton transport. Recent structures of transhydrogenase holoenzymes suggest new mechanistic details, how the long-distance coupling between hydride transfer in the peripheral nucleotide binding sites and the membrane-localized proton transfer occurs that now must be tested experimentally. Here, we provide protocols for the efficient expression and purification of the Escherichia coli transhydrogenase and its reconstitution into liposomes, alone or together with the Escherichia coli F1F0 ATP synthase. We show that E. coli transhydrogenase is a reversible enzyme that can also work as a NADPH-driven proton pump. In liposomes containing both enzymes, NADPH driven H+-transport by TH is sufficient to instantly fuel ATP synthesis, which adds TH to the pool of pmf generating enzymes. If the same liposomes are energized with ATP, NADPH production by TH is stimulated > sixfold both by a pH gradient or a membrane potential. The presented protocols and results reinforce the tight coupling between hydride transfer in the peripheral nucleotide binding sites and transmembrane proton transport and provide powerful tools to investigate their coupling mechanism.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/metabolismo , Transferencia de Energía , Proteínas de Escherichia coli/metabolismo , NADP Transhidrogenasas/metabolismo , Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón Bacterianas/química , Proteínas de Escherichia coli/química , Transporte Iónico , Liposomas/metabolismo , NADP Transhidrogenasas/química
3.
Nat Commun ; 12(1): 4690, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344897

RESUMEN

F1Fo ATP synthase interchanges phosphate transfer energy and proton motive force via a rotary catalysis mechanism. Isolated F1-ATPase catalytic cores can hydrolyze ATP, passing through six intermediate conformational states to generate rotation of their central γ-subunit. Although previous structural studies have contributed greatly to understanding rotary catalysis in the F1-ATPase, the structure of an important conformational state (the binding-dwell) has remained elusive. Here, we exploit temperature and time-resolved cryo-electron microscopy to determine the structure of the binding- and catalytic-dwell states of Bacillus PS3 F1-ATPase. Each state shows three catalytic ß-subunits in different conformations, establishing the complete set of six states taken up during the catalytic cycle and providing molecular details for both the ATP binding and hydrolysis strokes. We also identify a potential phosphate-release tunnel that indicates how ADP and phosphate binding are coordinated during synthesis. Overall these findings provide a structural basis for the entire F1-ATPase catalytic cycle.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Bacillus/enzimología , ATPasas de Translocación de Protón Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/metabolismo , Sitios de Unión , Catálisis , Microscopía por Crioelectrón , Hidrólisis , Mutación , Fosfatos/química , Fosfatos/metabolismo , Unión Proteica , Conformación Proteica , Subunidades de Proteína , Rotación , Temperatura
4.
Biochimie ; 165: 156-160, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31377193

RESUMEN

Mycobacterium tuberculosis (Mtb) protein tyrosine phosphatase (PtpA) has so far been known to control intracellular survival of mycobacteria; whereas the ATP synthase which is essential for mycobacterial growth has recently been contemplated in developing a breakthrough anti-TB drug, diarylquinoline. Since both of these enzymes have been established as validated drug targets; we report a robust and functional relationship between these two enzymes through a series of experiments using Mtb H37Ra. In the present study we report that the mycobacterial ATP synthase alpha subunit is regulated by PtpA. We generated gene knock-out for the enzyme PtpA and subjected to determine the mycobacterial replication and the proteome profile of wild type, mutant (ΔptpA) and complemented (ΔptpA:ptpA) strains of Mtb H37Ra. A substantial amount of decrease in the protein level of ATP synthase alpha subunit (AtpA) in case of mutant H37Ra was observed, while the levels of the enzyme were either increased or remained unchanged, in wild type and in the complemented strains.


Asunto(s)
Proteínas Bacterianas/fisiología , ATPasas de Translocación de Protón Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/crecimiento & desarrollo , Proteínas Tirosina Fosfatasas/fisiología , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Diarilquinolinas/farmacología , Técnicas de Inactivación de Genes , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Proteínas Tirosina Fosfatasas/genética
5.
J Food Sci ; 84(1): 138-146, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30569590

RESUMEN

Many novel bacterial targets and natural inhibitors of enzymes are currently being considered to overcome antibiotic resistance of Escherichia coli. Hence, in this study, 20 essential oil constituents were screened for their potential inhibitory effect on E. coli ATP synthase. This enzyme is involved in the hydrolysis of ATP into ADP and inorganic phosphate (Pi). First, E. coli membrane ATP synthase was isolated via cell lysis. A spectrophotometric method was optimized to quantify the released phosphate from ATP hydrolysis in order to follow the enzymatic activity. The method was validated by determining the kinetic parameters of this reaction (Km = 144.66 µM and Vmax = 270.27 µM/min), and through the inhibition assays of ATP synthase using three reference inhibitors, thymoquinone (half maximal inhibitory concentration [IC50 ] = 50.93 µM), resveratrol (maximum inhibition of 40%), and quercetin (IC50 = 29.01 µM). Among the studied essential oil components, α-terpinene was the most potent inhibitor (IC50 = 19.74 µM) followed by ß-pinene, isoeugenol, eugenol, and estragole.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Aceites Volátiles/análisis , Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón Bacterianas/metabolismo , Escherichia coli/enzimología , Concentración de Iones de Hidrógeno , Hidrólisis , Concentración 50 Inhibidora , Fosfatos/análisis
6.
Cell ; 175(2): 571-582.e11, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146159

RESUMEN

Elucidating the benefits of individual microbiota-derived molecules in host animals is important for understanding the symbiosis between humans and their microbiota. The bacteria-secreted enterobactin (Ent) is an iron scavenging siderophore with presumed negative effects on hosts. However, the high prevalence of Ent-producing commensal bacteria in the human gut raises the intriguing question regarding a potential host mechanism to beneficially use Ent. We discovered an unexpected and striking role of Ent in supporting growth and the labile iron pool in C. elegans. We show that Ent promotes mitochondrial iron uptake and does so, surprisingly, by binding to the ATP synthase α subunit, which acts inside of mitochondria and independently of ATP synthase. We also demonstrated the conservation of this mechanism in mammalian cells. This study reveals a distinct paradigm for the "iron tug of war" between commensal bacteria and their hosts and an important mechanism for mitochondrial iron uptake and homeostasis.


Asunto(s)
Enterobactina/fisiología , Hierro/metabolismo , Sideróforos/fisiología , Adenosina Trifosfato/metabolismo , Animales , ATPasas de Translocación de Protón Bacterianas/metabolismo , ATPasas de Translocación de Protón Bacterianas/fisiología , Transporte Biológico , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Enterobactina/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Células HEK293 , Humanos , Hierro/fisiología , Mitocondrias/metabolismo
7.
Tuberculosis (Edinb) ; 108: 56-63, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29523328

RESUMEN

A limited number of anti-tuberculosis drug candidates with novel mode of action have entered clinical trials in recent years. ATP synthase is one such validated drug target which has yielded a drug recently. The aim of this study was to identify the novel chemical scaffolds targeting the Mycobacterium tuberculosis (M. tuberculosis) ATP synthase. In this study, inverted membrane vesicles of Mycobacterium smegmatis were prepared to establish luciferin based ATP estimation assay. This assay was used to screen 700 compounds which were earlier found to be active on the whole cell of M. tuberculosis. Antibacterial activity of hits against various susceptible and drug-resistant strains of M. tuberculosis was evaluated using the microplate alamar blue assay and their cytotoxicity was also determined to select the safe compounds for further study. Screening of 700 compounds resulted in the identification of two compounds (5228485 and 5220632) exhibiting an IC50 of 0.32 and 4.0 µg/ml respectively. Both compounds showed excellent anti-TB activity (MIC of 0.5-2.0 µg/ml against Mtb H37Rv) and low cytotoxicity in human cell line and sub-mitochondrial particles. The three-dimensional structure of M. tuberculosis ATPase was predicted using in-silico approach and docking studies were performed with the active compounds. The interaction between compounds and bacterial ATP synthase was confirmed by molecular docking analysis. In conclusion screening of compound library has resulted in the identification of two novel chemical scaffolds targeting mycobacterial ATP synthase.


Asunto(s)
Antituberculosos/farmacología , ATPasas de Translocación de Protón Bacterianas/antagonistas & inhibidores , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Adenosina Trifosfato/biosíntesis , Animales , Antituberculosos/química , Antituberculosos/metabolismo , ATPasas de Translocación de Protón Bacterianas/metabolismo , Sitios de Unión , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Células Hep G2 , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Unión Proteica , Conformación Proteica , Factores de Tiempo
8.
Proc Natl Acad Sci U S A ; 114(43): 11291-11296, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073046

RESUMEN

ATP synthase is a rotating membrane protein that synthesizes ATP through proton-pumping activity across the membrane. To unveil the mechanical impact of this molecular active pump on the bending properties of its lipid environment, we have functionally reconstituted the ATP synthase in giant unilamellar vesicles and tracked the membrane fluctuations by means of flickering spectroscopy. We find that ATP synthase rotates at a frequency of about 20 Hz, promoting large nonequilibrium deformations at discrete hot spots in lipid vesicles and thus inducing an overall membrane softening. The enhanced nonequilibrium fluctuations are compatible with an accumulation of active proteins at highly curved membrane sites through a curvature-protein coupling mechanism that supports the emergence of collective effects of rotating ATP synthases in lipid membranes.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfato/biosíntesis , ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/genética , Membrana Celular/efectos de los fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Microscopía por Video , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodamina 123/química , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo , Valinomicina/farmacología
9.
Artículo en Inglés | MEDLINE | ID: mdl-28807917

RESUMEN

Pulmonary infections caused by Mycobacterium abscessus are emerging as a global threat, especially in cystic fibrosis patients. Further intensifying the concern of M. abscessus infection is the recent evidence of human-to-human transmission of the infection. M. abscessus is a naturally multidrug-resistant fast-growing pathogen for which pharmacological options are limited. Repurposing antitubercular drugs represents an attractive option for the development of chemotherapeutic alternatives against M. abscessus infections. Bedaquiline (BDQ), an ATP synthase inhibitor, has recently been approved for the treatment of multidrug-resistant tuberculosis. Herein, we show that BDQ has a very low MIC against a vast panel of clinical isolates. Despite being bacteriostatic in vitro, BDQ was highly efficacious in a zebrafish model of M. abscessus infection. Remarkably, a very short period of treatment was sufficient to protect the infected larvae from M. abscessus-induced killing. This was corroborated with reduced numbers of abscesses and cords, considered to be major pathophysiological signs in infected zebrafish. Mode-of-action studies revealed that BDQ triggered a rapid depletion of ATP in M. abscessusin vitro, consistent with the drug targeting the FoF1 ATP synthase. Importantly, despite a failure to select in vitro for spontaneous mutants that are highly resistant to BDQ, the transfer of single nucleotide polymorphisms leading to D29V or A64P substitutions in atpE conferred high resistance, thus resolving the target of BDQ in M. abscessus Overall, this study indicates that BDQ is active against M. abscessusin vitro and in vivo and should be considered for clinical use against the difficult-to-manage M. abscessus pulmonary infections.


Asunto(s)
Antituberculosos/farmacología , ATPasas de Translocación de Protón Bacterianas/antagonistas & inhibidores , Diarilquinolinas/farmacología , Mycobacterium abscessus/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , ATPasas de Translocación de Protón Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/metabolismo , Polimorfismo de Nucleótido Simple , Pez Cebra/microbiología
10.
Biochim Biophys Acta Biomembr ; 1859(6): 1124-1132, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28284722

RESUMEN

Mitochondria, chloroplasts and photosynthetic bacteria are characterized by the presence of complex and intricate membrane systems. In contrast, non-photosynthetic bacteria lack membrane structures within their cytoplasm. However, large scale over-production of some membrane proteins, such as the fumarate reductase, the mannitol permease MtlA, the glycerol acyl transferase PlsB, the chemotaxis receptor Tsr or the ATP synthase subunit b, can induce the proliferation of intra cellular membranes (ICMs) in the cytoplasm of Escherichia coli. These ICMs are particularly rich in cardiolipin (CL). Here, we have studied the effect of CL in the generation of these membranous structures. We have deleted the three genes (clsA, clsB and clsC) responsible of CL biosynthesis in E. coli and analysed the effect of these mutations by fluorescent and electron microscopy and by lipid mass spectrometry. We have found that CL is essential in the formation of non-lamellar structures in the cytoplasm of E. coli cells. These results could help to understand the structuration of membranes in E. coli and other membrane organelles, such as mitochondria and ER.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cardiolipinas/metabolismo , Retículo Endoplásmico/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/deficiencia , Mitocondrias/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/deficiencia , Proteínas Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/metabolismo , Retículo Endoplásmico/ultraestructura , Escherichia coli/ultraestructura , Colorantes Fluorescentes/química , Eliminación de Gen , Expresión Génica , Isoenzimas/deficiencia , Isoenzimas/genética , Proteínas de la Membrana/genética , Mitocondrias/ultraestructura , Imagen de Lapso de Tiempo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
11.
J Bioenerg Biomembr ; 49(2): 171-181, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28078625

RESUMEN

Subunit a is a membrane-bound stator subunit of the ATP synthase and is essential for proton translocation. The N-terminus of subunit a in E. coli is localized to the periplasm, and contains a sequence motif that is conserved among some bacteria. Previous work has identified mutations in this region that impair enzyme activity. Here, an internal deletion was constructed in subunit a in which residues 6-20 were replaced by a single lysine residue, and this mutant was unable to grow on succinate minimal medium. Membrane vesicles prepared from this mutant lacked ATP synthesis and ATP-driven proton translocation, even though immunoblots showed a significant level of subunit a. Similar results were obtained after purification and reconstitution of the mutant ATP synthase into liposomes. The location of subunit a with respect to its neighboring subunits b and c was probed by introducing cysteine substitutions that were known to promote cross-linking: a_L207C + c_I55C, a_L121C + b_N4C, and a_T107C + b_V18C. The last pair was unable to form cross-links in the background of the deletion mutant. The results indicate that loss of the N-terminal region of subunit a does not generally disrupt its structure, but does alter interactions with subunit b.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Eliminación de Secuencia , Adenosina Trifosfato/biosíntesis , Secuencia de Aminoácidos , ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Cisteína/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transporte Iónico , Mutagénesis Sitio-Dirigida , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
12.
Biochem Biophys Res Commun ; 482(4): 922-927, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27890618

RESUMEN

F1Fo-ATP synthase is a multisubunit enzyme responsible for the synthesis of ATP. Among its multiple subunits (8 in E. coli, 17 in yeast S. cerevisiae, 16 in vertebrates), two subunits a and c are known to play a central role controlling the H+ flow through the inner mitochondrial membrane which allows the subsequent synthesis of ATP, but the pathway followed by H+ within the two proteins is still a matter of debate. In fact, even though the structure of ATP synthase is now well defined, the molecular mechanisms determining the function of both F1 and FO domains are still largely unknown. In this study, we propose a pathway for proton migration along the ATP synthase by hydrogen-bonded chain mechanism, with a key role of serine and threonine residues, by X-ray diffraction data on the subunit a of E. coli Fo.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Protones , Serina/metabolismo , Treonina/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Escherichia coli/química , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Alineación de Secuencia , Serina/química , Treonina/química , Difracción de Rayos X
13.
Genet Mol Res ; 15(3)2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-27706660

RESUMEN

Enterococcus faecalis is the major pathogen of post-endodontic disease and refractory periapical periodontitis, and recent research on this species has focused on its pathogenicity. E. faecalis most often causes disease in the form of a biofilm, and total protein expression shows a strong association with its virulence. Therefore, the purpose of our study was to explore different methods of extracting the total proteins of the E. faecalis (ATCC 33186 standard strain) biofilm. The total proteins in the biofilm were extracted using an ultrasonication method with varied parameters, including duration, amplitude setting, period, and duty cycle. After the optimal conditions of ultrasonication were determined based on the protein profile from sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, the total protein content in the biofilm was detected using the bicinchoninic acid assay, Bradford Coomassie brilliant blue assay, and Lowry assay, and the results were compared and analyzed. The parameters for the optimal conditions of ultrasonication were as follows: a processing duration of 2 min, amplitude setting of 20%, and ultrasonication period of 4 s at a 50% duty cycle. The total protein content was 2299.1 mg/dish when measured by the bicinchoninic assay, 3793.8 mg/dish when measured by the Bradford Coomassie brilliant blue assay, and 1858.0 mg/dish when measured by the Lowry assay. These results demonstrate that the Bradford Coomassie brilliant blue assay is a simple and feasible method for use in detecting the total protein content in a bacterial biofilm.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/aislamiento & purificación , Biopelículas , Enterococcus faecalis/fisiología , ATPasas de Translocación de Protón Bacterianas/metabolismo , Electroforesis en Gel de Poliacrilamida , Sonicación
14.
J Biomol Struct Dyn ; 34(8): 1705-16, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26513379

RESUMEN

Succinic acid is an important platform chemical with a variety of applications. Model-guided metabolic engineering strategies in Escherichia coli for strain improvement to increase succinic acid production using glucose and glycerol remain largely unexplored. Herein, we report what are, to our knowledge, the first metabolic knockout of the atpE gene to have increased succinic acid production using both glucose and alternative glycerol carbon sources in E. coli. Guided by a genome-scale metabolic model, we engineered the E. coli host to enhance anaerobic production of succinic acid by deleting the atpE gene, thereby generating additional reducing equivalents by blocking H(+) conduction across the mutant cell membrane. This strategy produced 1.58 and .49 g l(-1) of succinic acid from glycerol and glucose substrate, respectively. This work further elucidates a model-guided and/or system-based metabolic engineering, involving only a single-gene deletion strategy for enhanced succinic acid production in E. coli.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Modelos Biológicos , Ácido Succínico/metabolismo , Fermentación , Glucosa/metabolismo , Glicerol/metabolismo , Redes y Vías Metabólicas , Mutación
15.
J Biol Chem ; 290(17): 10717-28, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25713065

RESUMEN

Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfato/biosíntesis , Secuencia de Aminoácidos , ATPasas de Translocación de Protón Bacterianas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Subunidades de Proteína , Rotación , Homología de Secuencia de Aminoácido , Electricidad Estática
16.
Sci Rep ; 4: 6951, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25377721

RESUMEN

Propionic acid (PA) is an important platform chemical in the food, agriculture, and pharmaceutical industries and is mainly biosynthesized by propionibacteria. Acid tolerance in PA-producing strains is crucial. In previous work, we investigated the acid tolerance mechanism of Propionibacterium acidipropionici at microenvironmental levels by analyzing physiological changes in the parental strain and three PA-tolerant mutants obtained by genome shuffling. However, the molecular mechanism of PA tolerance in P. acidipropionici remained unclear. Here, we performed a comparative proteomics study of P. acidipropionici CGMCC 1.2230 and the acid-tolerant mutant P. acidipropionici WSH1105; MALDI-TOF/MS identified 24 proteins that significantly differed between the parental and shuffled strains. The differentially expressed proteins were mainly categorized as key components of crucial biological processes and the acid stress response. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to confirm differential expression of nine key proteins. Overexpression of the secretory protein glyceraldehyde-3-phosphate dehydrogenase and ATP synthase subunit α in Escherichia coli BL21 improved PA and acetic acid tolerance; overexpression of NADH dehydrogenase and methylmalonyl-CoA epimerase improved PA tolerance. These results provide new insights into the acid tolerance of P. acidipropionici and will facilitate the development of PA production through fermentation by propionibacteria.


Asunto(s)
Proteínas Bacterianas/genética , Barajamiento de ADN/métodos , Regulación Bacteriana de la Expresión Génica , Propionatos/metabolismo , Propionibacterium/genética , Proteómica , Ácido Acético/metabolismo , Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , ATPasas de Translocación de Protón Bacterianas/genética , ATPasas de Translocación de Protón Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentación , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Propionibacterium/metabolismo , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Estrés Fisiológico , Transgenes
17.
Int J Biol Macromol ; 70: 241-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25010476

RESUMEN

Curcumin, a dietary phytopolyphenol isolated from a perennial herb (Curcuma longa), is a well-known compound effective for bacterial infections and tumors, and also as an antioxidant. In this study, we report the inhibitory effects of curcumin and its analogs on the Escherichia coli ATP synthase F1 sector. A structure-activity relationship study indicated the importance of 4'-hydroxy groups and a ß-diketone moiety for the inhibition. The 3'-demethoxy analog (DMC) inhibited F1 more strongly than curcumin did. Furthermore, these compounds inhibited E. coli growth through oxidative phosphorylation, consistent with their effects on ATPase activity. These results suggest that the two compounds affected bacterial growth through inhibition of ATP synthase. Derivatives including bis(arylmethylidene)acetones (C5 curcuminoids) exhibited only weak activity toward ATPase and bacterial growth.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/antagonistas & inhibidores , Curcumina/análogos & derivados , Curcumina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Curcumina/química , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fosforilación Oxidativa/efectos de los fármacos , Relación Estructura-Actividad
18.
J Mol Biol ; 426(14): 2547-53, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24838125

RESUMEN

NMR structures of ζ-subunits, which are recently discovered α-proteobacterial F1F0-ATPase-regulatory proteins representing a Pfam protein family of 246 sequences from 219 species (PF07345), exhibit a four-helix bundle, which is different from all other known F1F0-ATPase inhibitors. Chemical shift mapping reveals a conserved ADP/ATP binding site in ζ-subunit, which mediates long-range conformational changes related to function, as revealed by the structure of the Paracoccus denitrificans ζ-subunit in complex with ADP. These structural data suggest a new mechanism of F1F0-ATPase regulation in α-proteobacteria.


Asunto(s)
Alphaproteobacteria/química , ATPasas de Translocación de Protón Bacterianas/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón Bacterianas/metabolismo , Sitios de Unión , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Paracoccus denitrificans/química , Conformación Proteica , Subunidades de Proteína
19.
Mol Microbiol ; 92(5): 973-84, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24707994

RESUMEN

In the c-ring rotor of ATP synthases ions are shuttled across the membrane during ATP synthesis by a unique rotary mechanism. We investigated characteristics of the c-ring from the alkaliphile Bacillus pseudofirmus OF4 with respect to evolutionary adaptations to operate with protons at high environmental pH. The X-ray structures of the wild-type c13 ring at pH 9.0 and a 'neutralophile-like' mutant (P51A) at pH 4.4, at 2.4 and 2.8 Šresolution, respectively, reveal a dependency of the conformation and protonation state of the proton-binding glutamate (E(54) ) on environmental hydrophobicity. Faster labelling kinetics with the inhibitor dicyclohexylcarbodiimide (DCCD) demonstrate a greater flexibility of E(54) in the mutant due to reduced water occupancy within the H(+) binding site. A second 'neutralophile-like' mutant (V21N) shows reduced growth at high pH, which is explained by restricted conformational freedom of the mutant's E(54) carboxylate. The study directly connects subtle structural adaptations of the c-ring ion binding site to in vivo effects of alkaliphile cell physiology.


Asunto(s)
Bacillus/enzimología , ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , ATPasas de Translocación de Protón Bacterianas/antagonistas & inhibidores , Sitios de Unión , Cristalografía por Rayos X , Diciclohexilcarbodiimida/farmacología , Concentración de Iones de Hidrógeno
20.
Biochim Biophys Acta ; 1837(7): 1063-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24650630

RESUMEN

H(+)-transporting F1Fo ATP synthase catalyzes the synthesis of ATP via coupled rotary motors within Fo and F1. H(+) transport at the subunit a-c interface in trans-membranous Fo drives rotation of the c-ring within the membrane, with subunit c being bound in a complex with the γ and ε subunits extending from the membrane. Finally, the rotation of subunit γ within the α3ß3 sector of F1 mechanically drives ATP synthesis within the catalytic sites. In this review, we propose and provide evidence supporting the route of proton transfer via half channels from one side of the membrane to the other, and the mechanism of gating H(+) binding to and release from Asp61 of subunit c, via conformational movements of Arg210 in subunit a. We propose that protons are gated from the inside of a four-helix bundle at the periplasmic side of subunit a to drive protonation of cAsp61, and that this gating movement is facilitated by the swiveling of trans-membrane helices (TMHs) 4 and 5 at the site of interaction with cAsp61 on the periphery of the c-ring. Proton release to the cytoplasmic half channel is facilitated by the movement of aArg210 as a consequence of this proposed helical swiveling. Finally, release from the cytoplasmic half channel is mediated by residues in a complex of interacting extra-membraneous loops formed between TMHs of both subunits a and c. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/química , Escherichia coli/enzimología , Simulación de Dinámica Molecular , Protones , Secuencia de Aminoácidos , ATPasas de Translocación de Protón Bacterianas/metabolismo , Transporte Iónico , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...