Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731598

RESUMEN

Obtaining high-added value compounds from agricultural waste receives increasing attention, as it can both improve resource utilization efficiency and reduce waste generation. In this study, polysaccharides are extracted from the discarded roots of Abelmoschus manihot (L.) by the high-efficiency ultrasound-assisted extraction (UAE). The optimized condition was determined as solid-liquid ratio SL ratio = 1:20, temperature T = 30 °C and time T = 40 min, achieving an extraction yield of 13.41%. Composition analysis revealed that glucose (Glc, 44.65%), rhamnose (Rha, 26.30%), galacturonic acid (GalA, 12.50%) and galactose (Gal, 9.86%) are the major monosaccharides of the extract. The extract showed a low degree of esterification (DE) value of 40.95%, and its Fourier-transform infrared (FT-IR) spectrum exhibited several characteristic peaks of polysaccharides. Inspired by the wide cosmetic applications of polysaccharides, the skincare effect of the extract was evaluated via the moisture retention, total phenolic content (TPC) quantification, 2,2-Diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity, anti-hyaluronidase and anti-elastase activity experiments. The extract solutions demonstrated a 48 h moisture retention rate of 10.75%, which is superior to that of commercially available moisturizer hyaluronic acid (HA). Moreover, both the TPC value of 16.16 mg GAE/g (dw) and DPPH-free radical scavenging activity of 89.20% at the concentration of 2 mg/mL indicated the strong anti-oxidant properties of the extract. Furthermore, the anti-hyaluronidase activity and moderate anti-elastase activity were determined as 72.16% and 42.02%, respectively. In general, in vitro skincare effect experiments suggest moisturizing, anti-oxidant, anti-radical and anti-aging activities of the A. manihot root extract, indicating its potential applications in the cosmetic industry.


Asunto(s)
Abelmoschus , Antioxidantes , Extractos Vegetales , Raíces de Plantas , Polisacáridos , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Abelmoschus/química , Antioxidantes/química , Antioxidantes/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Cuidados de la Piel/métodos , Ramnosa/química , Galactosa , Ácidos Hexurónicos/química , Fenoles/química , Fenoles/análisis , Fenoles/farmacología , Humanos
2.
Ultrason Sonochem ; 104: 106815, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484470

RESUMEN

Abelmoschus manihot (L) is a traditional chinese herb and the present study focused on its comprehensive development and utilization. Enzyme-assisted ultrasonic extraction (EUAE) was investigated for the extraction and qualitative and quantitative analysis of flavonoids from Abelmoschus manihot (L) using a combination of ultra-performance liquid chromatography-photodiode array (UPLC-PDA), polysaccharides was extracted from residues and compared with directly extracted from raw materials. The optimal yield of 3.46±0.012 % (w/w) was obtained when the weight ratio of cellulase to pectinase was 1:1, the enzyme concentration was 3 %, the pH was 6.0, the solvent was a mixture of 70 % ethanol (v/v) and 0.1 mol/L NaH2PO4 buffer solution, the ultrasonic power was 500 W, the extraction time was 40 min, and the temperature of the extraction was 50 °C. The individual concentrations of interested flavonoids (rutin, neochlorogenic acid, nochlorogenic acid, lsoquercitrin, quercitrin, gossypin, quercetin) were effectively increased with the using of EUAE, compared with ultrasonic extraction (UE) method. Polysaccharides were extracted from each residue, respectively, the Polysaccharides yield in residue from EUAE was higher than that from UE, and closed to the yield from direct extraction in raw materials. The above results shown that the experimental process had the potential to be environmentall, friendly, straightforward and efficient.


Asunto(s)
Abelmoschus , Ultrasonido , Abelmoschus/química , Extractos Vegetales/química , Flavonoides/análisis , Polisacáridos/química
3.
Int J Biol Macromol ; 266(Pt 1): 131170, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554906

RESUMEN

Skin wound healing is a complex and dynamic process involving hemostasis, inflammatory response, cell proliferation and migration, and angiogenesis. Currently used wound dressings remain unsatisfactory in the clinic due to the lack of adjustable mechanical property for injection operation and bioactivity for accelerating wound healing. In this work, an "all-sugar" hydrogel dressing is developed based on dynamic borate bonding network between the hydroxyl groups of okra polysaccharide (OP) and xyloglucan (XG). Benefiting from the reversible crosslinking network, the resulting composite XG/OP hydrogels exhibited good shear-thinning and fast self-healing properties, which is suitable to be injected at wound beds and filled into irregular injured site. Besides, the proposed XG/OP hydrogels showed efficient antioxidant capacity by scavenging DPPH activity of 73.9 %. In vivo experiments demonstrated that XG/OP hydrogels performed hemostasis and accelerated wound healing with reduced inflammation, enhanced collagen deposition and angiogenesis. This plant-derived dynamic hydrogel offers a facile and effective approach for wound management and has great potential for clinical translation in feature.


Asunto(s)
Antioxidantes , Hidrogeles , Neovascularización Fisiológica , Polisacáridos , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Animales , Polisacáridos/química , Polisacáridos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Abelmoschus/química , Glucanos/química , Glucanos/farmacología , Xilanos/química , Xilanos/farmacología , Ratones , Ratas , Masculino , Humanos , Angiogénesis
4.
Int J Biol Macromol ; 257(Pt 1): 128649, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065452

RESUMEN

Okra polysaccharides exhibits a range of biological activities. To date, its processing using microbial fermentation has not been explored. This study investigated the fermentation of okra juice with various lactic acid bacteria, followed by the extraction and characterization of crude polysaccharides (termed OPS-F), in contrast to their non-fermented counterpart (OPS). Changes in physicochemical properties, antioxidant activity and immunomodulatory ability were noted. The results demonstrated that OPS-F had a 7.42-12.53 % increase in total polysaccharides content compared to OPS. However, high-performance size-exclusion chromatography indicated a reduction in the molecular weight of OPS-F (7.9-9.5 × 105 Da) relative to OPS (1.66 × 106 Da). Compared to OPS, OPS-F had reduced levels of mannose, glucose, glucuronic acid and arabinose, but increased rhamnose, galacturonic acid and galactose, exhibiting enhanced solubility and lower apparent viscosity. Fourier transform infrared spectroscopy and nuclear magnetic resonance analysis showed minimal changes in polysaccharide structure post-fermentation. Moreover, despite a decrease in antioxidant activity post-fermentation, OPS-F exhibited superior immunomodulatory potential. In conclusion, fermenting okra juice with lactic acid bacteria alters the physicochemical properties of crude polysaccharides and enhances their immunomodulatory activity, offering a promising approach for developing new functional food resources.


Asunto(s)
Abelmoschus , Antioxidantes , Antioxidantes/farmacología , Antioxidantes/química , Abelmoschus/química , Fermentación , Polisacáridos/farmacología , Polisacáridos/química , Peso Molecular
5.
Protoplasma ; 261(1): 125-142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37550558

RESUMEN

Quercetin is a bioactive natural compound with an antioxidative property that can potentially modify plant physiology. The current investigation aimed to gauge the effect of different concentrations of foliar spray of quercetin (0, 0.5, 1, 1.5, 2.0 mM) on several morphological and physio-biochemical performances of Abelmoschus esculentus L. (Moench.) plants under normal environmental conditions. The foliar spray on the plant leaves was applied 25 days after sowing (DAS) and continued up to 30 DAS once each day. The plants were sampled at 30 and 45 DAS to monitor several parameters. The foliar treatments of quercetin significantly upgraded all the studied parameters. The results direct that most of the traits such as growth, nutrient uptake, photosynthetic, and enzyme activities were promoted in a dose-dependent way. Quercetin application lowered the reactive oxygen species (ROS) buildup by increasing the antioxidant enzyme activities. Microscopic investigations further revealed a significant enhancement in the stomatal aperture under quercetin application. Out of several doses tested, 1 mM of quercetin proved best and can be used for further investigations.


Asunto(s)
Abelmoschus , Quercetina , Quercetina/farmacología , Quercetina/metabolismo , Abelmoschus/química , Abelmoschus/metabolismo , Antioxidantes/metabolismo , Azúcares/metabolismo , Oxidación-Reducción
6.
Int J Biol Macromol ; 259(Pt 1): 129076, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161025

RESUMEN

The structural properties and biological activities of okra pectic polysaccharides (OPs) were impacted by various extraction methods. Based on commonly grinding (40, 100 meshes) and superfine grinding okra powders, two extraction solvents (hydrochloric acid, HA; citric acid, CA) were used firstly. Next, the extraction yield, physical and chemical properties, molecular structure and functional properties of OPs were analyzed by non-ultrasonic treatment and ultrasound-assisted superfine grinding method. The outcomes demonstrated that the extraction yield of OPs rose as the particle size of the powder decreased. HA-OPs had higher molecular weight (Mw), apparent viscosity and emulsification ability than CA-OPs. CA-OPs had higher esterification degree (DE), solubility and total sugar content, and higher amounts of rhamnogalacturonan-I (RG-I) segments. Compared with OPs without ultrasound-assisted extraction, ultrasound-assisted superfine grinding extraction exhibited higher sugar content, antioxidant capacity, emulsification ability, lower Mw, DE and apparent viscosity. Finally, the correlation between structure and function of OPs was further quantified. The antioxidant capacity was positively correlated with RG-I content, and negatively correlated with DE and Mw. The emulsification ability was mainly positively correlated with the GlcA of OPs. This study provides a theoretical basis for the development of OPs foods with clear structure-function relationship, which would be instructive for the application of OPs in food and cosmetics.


Asunto(s)
Abelmoschus , Abelmoschus/química , Ácido Clorhídrico , Antioxidantes/farmacología , Antioxidantes/química , Ácido Cítrico , Polisacáridos/química , Azúcares
7.
PeerJ ; 11: e16232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025717

RESUMEN

Background: Okra is a plant farmed for its pods, leaves, and stems all of which are edible. It is famous for its ability to tolerate long desiccation periods. It belongs to the Malvaceae family and is a sister species to hibiscus, cotton, and cacao plants. Methods: In the current study, okra plants were used as a model to sequence, assemble, and analyze the evolutionary and functional characteristics of the Dicer-like protein gene family (DCL) based on DNAseq and qPCR techniques. Results: Four Dicer-like (DCL) single-copy genes of the okra plant Abelmoschus esculentus (L.) Moench (AeDCL) were successfully assembled. The lengths of the AeDCL copies were 8,494, 5,214, 4,731, and 9,329 bp. The detected exons in these samples ranged from a single exon in AeDCL3 to 24 exons in AeDCL4. AeDCLs had five functional domains of two DEAD-like helicase superfamilies, N and C; one Dicer domain; one ribonuclease III domain (a and b); and one double-stranded RNA-binding domain. The PAZ domain was completely annotated only for AeDCL1 and AeDCL3. All AeDCLs were up-regulated under drought conditions, with leaves showing more extensive fold changes than roots. The study focused on a comprehensive genome-wide identification and analysis of the DCL gene family in naturally drought-tolerant okra plants, an orphan crop that can be used as a model for further genomic and transcriptomic studies on drought-tolerance mechanisms in plants.


Asunto(s)
Abelmoschus , Abelmoschus/química , Ribonucleasa III/genética , Deshidratación , Plantas , Genómica
8.
Biomed Pharmacother ; 169: 115899, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37984306

RESUMEN

As a traditional Chinese medicine, Huangkui capsule (HKC) has been used to treat patients with kidney diseases, including diabetic nephropathy (DN). We have recently demonstrated that HKC could re-regulate the activities of solute carriers (SLC)s in proximal and distal convoluted tubules of kidneys in regression of the development of DN. The main active chemical constituents of HKC are the flavones of Abelmoschus manihot (L.). The current study aims to further evaluate the efficacy of total flavones of A. manihot (TFA) in the regression of DN by analyzing SLC activities in proximal and distal convoluted tubules of kidneys. TFA (0.076 g/kg/d) or vehicle was administered in db/db mice, the animal model of type 2 diabetes and DN, daily via oral gavage for four weeks. Blood glucose levels and urinary albumin-to-creatinine ratio (UACR) were measured and used for the determination of T2D and DN. Ten SLCs, including slc2a2, slc4A1, slc5a2, slc5A3, slc5a8, slc6a20, slc27a2, slc12a3, slc34a1 and slc38a2 were highly expressed in proximal and distinct convoluted tubules of kidneys. Their expression at mRNA and protein levels before and after TFA treatment were analyzed with real-time RT-PCR and immunohistochemistry. Data showed that UACR in the db/db mice after TFA treatment was significantly decreased. Compared with the group of non-diabetic control, slc2a2, slc4A1, slc5a2, slc5A3, slc5a8, slc6a20, slc27a2, slc12a3, slc34a1 and slc38a2 in the group of DN were down-regulated but up-regulated after TFA treatment. Further analyses of whole kidney sections indicated that the numbers and structures of the nephron in db/db mice was increased and improved after TFA treatment. Thereby, the current study provides further evidence that the flavones in A. manihot have pharmacological effects on the treatment of DN by improving the biological function of SLCs in kidneys.


Asunto(s)
Abelmoschus , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Flavonas , Humanos , Ratas , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Abelmoschus/química , Flavonas/farmacología , Flavonas/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratas Sprague-Dawley , Células Epiteliales
9.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2646-2656, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282926

RESUMEN

This study aimed to explore the effects and mechanisms of total flavones of Abelmoschus manihot(TFA), the extracts from traditional Chinese medicine indicated for kidney diseases, on insulin resistance(IR) and podocyte epithelial-mesenchymal transition(EMT) in diabetic kidney disease(DKD), and further to reveal the scientific connotation. Thirty-two rats were randomly divided into a normal group, a model group, a TFA group, and a rosiglitazone(ROS) group. The modified DKD model was induced in rats by methods including high-fat diet feeding, unilateral nephrectomy, and streptozotocin(STZ) intraperitoneal injection. After modeling, the rats in the four groups were given double-distilled water, TFA suspension, and ROS suspension correspondingly by gavage every day. At the end of the 8th week of drug administration, all rats were sacrificed, and the samples of urine, blood, and kidney tissues were collected. The parameters and indicators related to IR and podocyte EMT in the DKD model rats were examined and observed, including the general condition, body weight(BW) and kidney weight(KW), the biochemical parameters and IR indicators, the protein expression levels of the key signaling molecules and structural molecules of slit diaphragm in the renal insulin receptor substrate(IRS) 1/phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway, foot process form and glomerular basement membrane(GBM) thickness, the expression of the marked molecules and structural molecules of slit diaphragm in podocyte EMT, and glomerular histomorphological characteristics. The results showed that for the DKD model rats, both TFA and ROS could improve the general condition, some biochemical parameters, renal appearance, and KW. The ameliorative effects of TFA and ROS were equivalent on BW, urinary albumin(UAlb)/urinary creatinine(UCr), serum creatinine(Scr), triglyceride(TG), and KW. Secondly, they could both improve IR indicators, and ROS was superior to TFA in improving fast insulin(FIN) and homeostasis model assessment of insulin resistance(HOMA-IR). Thirdly, they could both improve the protein expression levels of the key signaling molecules in the IRS1/PI3K/Akt pathway and glomerulosclerosis in varying degrees, and their ameliorative effects were similar. Finally, both could improve podocyte injury and EMT, and TFA was superior to ROS. In conclusion, this study suggested that podocyte EMT and glomerulosclerosis could be induced by IR and the decreased activation of the IRS1/PI3K/Akt pathway in the kidney in DKD. Similar to ROS, the effects of TFA in inhibiting podocyte EMT in DKD were related to inducing the activation of the IRS1/PI3K/Akt pathway and improving IR, which could be one of the scientific connotations of TFA against DKD. This study provides preliminary pharmacological evidence for the development and application of TFA in the field of diabetic complications.


Asunto(s)
Abelmoschus , Diabetes Mellitus , Nefropatías Diabéticas , Flavonas , Resistencia a la Insulina , Podocitos , Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Abelmoschus/química , Ratas Sprague-Dawley , Transición Epitelial-Mesenquimal , Flavonas/farmacología , Especies Reactivas de Oxígeno
10.
Fish Shellfish Immunol ; 138: 108799, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37187214

RESUMEN

Okra, Abelmoschus esculentus L., is a popular vegetable crop with many bioactive compounds. The in vitro immunostimulant, cytotoxic, bactericidal and antioxidant activities of ethanolic extracts obtained from different parts of okra (leaves, fruits, and seeds) were studied. Phytochemical screening of hydroalcoholic extracts of okra leaves, fruits and seeds revealed a significant content of total phenols and flavonoids. Notable effects on the activities of leukocytes in the head kidney of European sea bass (Dicentrarchus labrax) (viability, phagocytic ability and capacity, and respiratory burst), as well as on peroxidase leukocyte contents were detected after incubation for 24 h with different concentrations (0.01-1 mg mL-1) of the extracts. The mean concentrations (0.1 and 0.5 mg mL-1) of the different extracts increased the phagocytic ability and respiratory activity of head kidney leukocytes. However, the mean concentrations (0.1 mg mL-1) of leaf and fruit extracts significantly decreased the peroxidase activity of leukocytes. In addition, all ethanolic okra extracts at higher concentrations (1 mg mL-1) produced a marked reduction in the viability of the DLB-1 cell line compared to the viability recorded in the control samples. In addition, ethanolic extracts used at 0.5 and 1 mg mL-1 had a significant cytotoxic effect on the viability of PLHC-1 cells. Finally, all doses of seed and leaf extracts at higher concentrations (0.5 and 1 mg mL-1) showed significant bactericidal activity on two fish pathogenic bacteria, Vibrio anguillarum and V. harveyi strains. Finally, a remarkable antioxidant activity was detected on the ethanolic extracts. All these results point to their possible use as an alternative to chemical compounds in farmed fish.


Asunto(s)
Abelmoschus , Antineoplásicos , Lubina , Animales , Frutas , Antioxidantes/metabolismo , Abelmoschus/química , Abelmoschus/metabolismo , Lubina/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Leucocitos , Semillas/química , Antineoplásicos/farmacología , Peroxidasas
11.
Environ Sci Pollut Res Int ; 30(21): 59401-59423, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004611

RESUMEN

The majority of polyploids can withstand many stresses better than their monoploid counterparts; however, there is no proven mechanism that can fully explain the level of tolerance at the biochemical and molecular levels. Here, we make an effort to provide an explanation for this intriguing but perplexing issue using the antioxidant responses, genomic stability, DNA methylation pattern and yield in relation to ploidy level under the elevated level of ozone in Abelmoschus cytotypes. The outcome of this study inferred that the elevated ozone causes an increase in reactive oxygen species leading to enhanced lipid peroxidation, DNA damage and DNA de-methylation in all the Abelmoschus cytotypes. The monoploid cytotype of Abelmoschus, that is Abelmoschus moschatus L., experienced the highest oxidative stress under elevated O3, resulting in maximum DNA damage and DNA de-methylation leading to the maximum reduction in yield. While the diploid (Abelmoschus esculentus L.) and triploid (Abelmoschus caillei A. Chev.) cytotypes of Abelmoschus with lower oxidative stress result in lesser DNA damage and DNA de-methylation which ultimately leads to lower yield reduction. The result of this experiment explicitly revealed that polyploidy confers better adaptability in the case of Abelmoschus cytotypes under ozone stress. This study can further be used as a base to understand the mechanism behind the ploidy-induced stress tolerance in other plants mediated by gene dosage effect.


Asunto(s)
Abelmoschus , Ozono , Antioxidantes/metabolismo , Abelmoschus/química , Abelmoschus/metabolismo , Metilación de ADN , Ploidias , Inestabilidad Genómica , ADN
12.
Food Chem ; 418: 135953, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36940545

RESUMEN

Okra pods have been utilized as a functional food due to their rich active ingredient composition, especially the high content of flavonoid compounds. This study conducted near-infrared spectroscopy (NIRS) modeling optimization and external validation based on the flavonoid components of 219 pod samples. Spectral correlation analyses identified two types of spectral response patterns classified as quercetin-3-O-xylose (1-2) glucoside (QOXG) and total flavonoid content (TFC), consisting of six different spectral regions. Different modeling effects were observed for QOXG and TFC with various spectral region combination analyses, where the lower wave-number region contributed more to both flavonoids calibration models. The combination of standard normal variate / "1, 9, 3" / partial least squares was found to be the most effective for developing calibration models for both flavonoids. The resulting models had small root mean square errors of prediction for external validation and high determination coefficients, indicating their usefulness for rapid prediction of flavonoid composition in okra pods.


Asunto(s)
Abelmoschus , Flavonoides , Flavonoides/análisis , Abelmoschus/química , Quercetina/química , Antioxidantes/química , Extractos Vegetales/química , Análisis de los Mínimos Cuadrados
13.
Int J Biol Macromol ; 238: 124111, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36948330

RESUMEN

Okra (Abelmoschus esculentus (L.) Moench) is rich in various bioactive ingredients and used as a medicinal plant in traditional medicine. In the present study, to find the polysaccharide with anti-lipotoxicity effects from okra and clarify its structure, a pectin OP-1 was purified from okra, which had a backbone containing →4)-α-GalpA-(1 â†’ residues, and 1,5-Ara linked the main chain through the O-3 of the residue →3,4)-α-GalpA-(1→, and the C-6 of residue 1, 4-α-GalpA replaced by methyl ester. In vitro experiments showed that OP-1 pretreatment alleviated oleic acid (OA)-induced lipid accumulation, ROS generation, apoptosis, transaminase leakage, and inflammatory cytokine secretion in HepG2 cells, resulting in reduced lipotoxicity. Further molecular results revealed that OP-1 increased Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and affected the expression of AMPK downstream targets, including inhibit SREBP1c and FAS, as well as activate CPT-1A. Impressively, AMPK inhibitor dorsomorphin (Compound C) blocked the effects of OP-1 against lipotoxicity. The effects of OP-1 on lipid metabolism were also diminished by dorsomorphin. Our results demonstrated that OP-1 possesses a potent function in preventing lipotoxicity via regulating AMPK-mediated lipid metabolism and provide a novel insight into the future utilization of okra polysaccharide.


Asunto(s)
Abelmoschus , Pectinas , Pectinas/farmacología , Abelmoschus/química , Proteínas Quinasas Activadas por AMP , Polisacáridos/farmacología , Polisacáridos/química , Antioxidantes/química
14.
Int J Biol Macromol ; 234: 123618, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36780964

RESUMEN

A novel green hydrogel (PGCO) of Okra (Abelmoschus esculentus) mucilage-reinforced poly-vinyl alcohol-guar gum (PG) cross-linked by citric acid containing nanocurcumin (NC) as a model drug is reported. The citric acid (CA) cross-linked hydrogel (PGC) without okra is also prepared. The hydrogels are characterized using FTIR, XRD, FE-SEM, and TGA techniques. Okra reinforced green hydrogel (PGCO) provided comparable swelling behaviour with better mechanical and thermal properties compared to the neat PGC hydrogel. Network parameters of PGC and PGCO hydrogels are estimated using Flory-Rehner equation and strong correlation between the cross-link density and swelling behaviour is established. 45.68 % NC loading in the PGCO hydrogel is achieved. Release study in phosphate buffer (PB) of pH 7.4 provided sustained release of NC over a period of 100 h. The release study of NC followed primarily the Korsmeyer-Peppas model with less-Fickian diffusional character (n < 0.5). The average diffusion coefficients of NC and curcumin are found to be 3.52 × 10-5 cm2 s-1, and 3.43 × 10-5 cm2 s-1 respectively demonstrating the quick release of NC in early time, which is a pre-requisite in drug delivery. The study provides initial evidence of the usefulness of okra mucilage in green hydrogel development and drug delivery applications.


Asunto(s)
Abelmoschus , Preparaciones de Acción Retardada/química , Abelmoschus/química , Alcohol Polivinílico/química , Hidrogeles/química , Gomas de Plantas/química
15.
Food Chem Toxicol ; 171: 113551, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36481254

RESUMEN

Okra [Abelmoschus esculentus (Linn.) Moench], as a well-known medicinal and food plant, has important physiological activities and health benefits, and polysaccharide is its main bioactive component. In this study, a pectic polysaccharide (OPS-50) prepared from fresh okra pods by three-phase partitioning and gradient (NH4)2SO4 precipitation at a saturation of 50% was employed in carbon tetrachloride (CCl4)-caused acute liver damage in mice to evaluate the hepatoprotective potential. Results indicated that OPS-50 was mainly composed of a limited linear homogalacturonan backbone and abundant rhamnogalacturonan-I domains as side chains. OPS-50 exerted positively protective effects on acute liver damage induced by CCl4 in mice through relieving weight reduction and organ damage, ameliorating liver function and dyslipidemia, alleviating oxidative stress, suppressing pro-inflammatory cytokines, modulating gut microbiota, and promoting short-chain fatty acid secretion. Moreover, liver histopathology demonstrated the protective benefit of OPS-50 on CCl4-caused acute liver damage in mice. Therefore, our data suggested that the pectic OPS-50, as a dietary supplement, have great potential in preventing and treating chemical liver damages.


Asunto(s)
Abelmoschus , Microbioma Gastrointestinal , Animales , Ratones , Abelmoschus/química , Antioxidantes/farmacología , Inflamación , Hígado , Polisacáridos/farmacología
16.
Microb Biotechnol ; 16(4): 813-826, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36583468

RESUMEN

Huangkui capsule (HKC), a traditional Chinese medicine, has been used for medication of kidney diseases, including diabetic nephropathy (DN). The current study aimed to evaluate the effects of HKC in the modulation of gut microbiota and the amelioration of metabolite levels by using non-obese diabetes (NOD) mice with DN. The microbiota from three parts of intestines (duodenum, ileum and colon) in NOD mice with and without HKC treatment were analysed using 16S rDNA sequencing techniques. Untargeted metabolomics in plasma of NOD mice were analysed with liquid mass spectrometry. Results showed that HKC administration ameliorated DN in NOD mice and the flora in duodenum were more sensitive to HKC intervention, while the flora in colon had more effects on metabolism. The bacterial genera such as Faecalitalea and Muribaculum significantly increased and negatively correlated with most of the altered metabolites after HKC treatment, while Phyllobacterium, Weissella and Akkermansia showed an opposite trend. The plasma metabolites, mainly including amino acids and fatty acids such as methionine sulfoxide, BCAAs and cis-7-Hexadecenoic acid, exhibited a distinct return to normal after HKC treatment. The current study thereby provides experimental evidence suggesting that HKC may modulate gut microbiota and subsequently ameliorate the metabolite levels in DN.


Asunto(s)
Abelmoschus , Diabetes Mellitus , Nefropatías Diabéticas , Microbioma Gastrointestinal , Ratas , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Riñón , Ratones Endogámicos NOD , Abelmoschus/química , Ratas Sprague-Dawley , Diabetes Mellitus/metabolismo
17.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-981369

RESUMEN

This study aimed to explore the effects and mechanisms of total flavones of Abelmoschus manihot(TFA), the extracts from traditional Chinese medicine indicated for kidney diseases, on insulin resistance(IR) and podocyte epithelial-mesenchymal transition(EMT) in diabetic kidney disease(DKD), and further to reveal the scientific connotation. Thirty-two rats were randomly divided into a normal group, a model group, a TFA group, and a rosiglitazone(ROS) group. The modified DKD model was induced in rats by methods including high-fat diet feeding, unilateral nephrectomy, and streptozotocin(STZ) intraperitoneal injection. After modeling, the rats in the four groups were given double-distilled water, TFA suspension, and ROS suspension correspondingly by gavage every day. At the end of the 8th week of drug administration, all rats were sacrificed, and the samples of urine, blood, and kidney tissues were collected. The parameters and indicators related to IR and podocyte EMT in the DKD model rats were examined and observed, including the general condition, body weight(BW) and kidney weight(KW), the biochemical parameters and IR indicators, the protein expression levels of the key signaling molecules and structural molecules of slit diaphragm in the renal insulin receptor substrate(IRS) 1/phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway, foot process form and glomerular basement membrane(GBM) thickness, the expression of the marked molecules and structural molecules of slit diaphragm in podocyte EMT, and glomerular histomorphological characteristics. The results showed that for the DKD model rats, both TFA and ROS could improve the general condition, some biochemical parameters, renal appearance, and KW. The ameliorative effects of TFA and ROS were equivalent on BW, urinary albumin(UAlb)/urinary creatinine(UCr), serum creatinine(Scr), triglyceride(TG), and KW. Secondly, they could both improve IR indicators, and ROS was superior to TFA in improving fast insulin(FIN) and homeostasis model assessment of insulin resistance(HOMA-IR). Thirdly, they could both improve the protein expression levels of the key signaling molecules in the IRS1/PI3K/Akt pathway and glomerulosclerosis in varying degrees, and their ameliorative effects were similar. Finally, both could improve podocyte injury and EMT, and TFA was superior to ROS. In conclusion, this study suggested that podocyte EMT and glomerulosclerosis could be induced by IR and the decreased activation of the IRS1/PI3K/Akt pathway in the kidney in DKD. Similar to ROS, the effects of TFA in inhibiting podocyte EMT in DKD were related to inducing the activation of the IRS1/PI3K/Akt pathway and improving IR, which could be one of the scientific connotations of TFA against DKD. This study provides preliminary pharmacological evidence for the development and application of TFA in the field of diabetic complications.


Asunto(s)
Ratas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Abelmoschus/química , Podocitos , Ratas Sprague-Dawley , Transición Epitelial-Mesenquimal , Flavonas/farmacología , Resistencia a la Insulina , Especies Reactivas de Oxígeno , Diabetes Mellitus
18.
Open Vet J ; 13(12): 1562-1569, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38292724

RESUMEN

Background: Abelmoschus esculentus L., okra, has been known as a healthy plant and classically employed in food and folk medicine for several human and animal diseases. Aim: The in vitro antioxidant and antibacterial capacities, in addition to the phytochemical compounds of the okra fruit extracts gathered at three maturity stages, were the objectives of this study. Methods: This study examined the modifications in total phenolic content (TPC), total flavonoid content (TFC), and antioxidant and antibacterial capacities of three okra fruit hydroalcoholic extracts during three comestible maturity stages. The different maturity stages of okra pods were demonstrated as early-stage, mid-stage, and late-stage maturation. Results: The mid-stage of okra fruit maturity had the highest TPC (43.27 ± 2.029 mg GAE g-1), TFC (29.96 ± 0.19 mg RE g-1), and antioxidant capacity (75.64% ± 0.79%). Moreover, at mid-stage maturity, okra fruit extracts exhibited a major antibacterial effect against Vibrio anguillarum. The phenolic content was significantly increased at the mid-stage maturity, while the flavonoid level and the antioxidant activity were greatly decreased at the end of fruit maturity. Conclusion: The results confirmed that A. esculentus L. fruits at mid-stage maturity are an excellent source of biomolecules with high antiradical and bactericidal activities, which could be used as functional foods and as an option for chemical compounds for fish farming to prevent and treat numerous marine animal diseases.


Asunto(s)
Abelmoschus , Enfermedades de los Animales , Humanos , Animales , Frutas/química , Abelmoschus/química , Antioxidantes/farmacología , Antioxidantes/análisis , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flavonoides/farmacología , Flavonoides/análisis , Fenoles/farmacología , Fenoles/análisis , Fitoquímicos/farmacología , Fitoquímicos/análisis , Bacterias , Antibacterianos/farmacología
19.
Food Funct ; 13(23): 11973-11985, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36331384

RESUMEN

A novel acidic polysaccharide named AeP-P-1 was prepared from Abelmoschus esculentus L. Moench (okra). AeP-P-1 is a heteropolysaccharide with a molecular weight of 3.02 × 103 kDa and is composed of L-rhamnose, D-galactose, and D-galacturonic acid in the ratio 1.87 : 3.58 : 1.00. Structural characterization based on methylation and 1D/2D NMR analyses indicated that AeP-P-1 is composed of T-linked-Rhap, T-linked-Galp, 1,2,4-linked-Rhap, 1,4-linked-Galp, 1,6-linked-Galp, and 1,3,4-linked-Galp in a molar ratio of 2.42 : 3.36 : 6.46 : 13.31 : 3.12 : 1, respectively. The hypoglycemic effect and mechanism of AeP-P-1 on type 2 diabetes mellitus were also explored. Firstly, AeP-P-1 can reduce blood lipids and liver and kidney damage caused by T2DM. Finally, AeP-P-1 induces the phosphorylation of GSK3ß, maintains the activity of glycogen synthase (GCS), and promotes glycogen synthesis by regulating the expression of insulin/PI3K/Akt pathway proteins. These results indicated that AeP-P-1 could be developed as a potential ingredient in immunostimulatory agents.


Asunto(s)
Abelmoschus , Diabetes Mellitus Tipo 2 , Abelmoschus/química , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Polisacáridos/farmacología , Polisacáridos/química , Carbohidratos de la Dieta
20.
J Food Biochem ; 46(12): e14506, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36369969

RESUMEN

Phosphoenolpyruvate carboxykinase (PEPCK) is a key enzyme in the glyconeogenesis pathway. The AMP-activated protein kinase alpha (AMPK-α) pathway regulates PEPCK, which itself is activated by the AMP/ATP ratio and liver kinase B1 (KB1). The Abelmoschus esculentus (L.) Moench (okra) plant contains a large amount of quercetin that can function as an agonist or an antagonist. The aim of this study was to examine the effects of quercetin flavonoid and A. esculentus extract on the level of AMPK-α expression and associated metabolic pathways. The findings demonstrate that metformin, quercetin, and okra extract may significantly raise AMPK-α levels while significantly lowering PEPCK and hormone-sensitive lipase (HSL) levels, in addition to improving glucose and lipid profiles. By stimulating KB1, these substances increased AMPK-α activation. Additionally, AMPK-α activation improved insulin resistance and Glucose transporter type 4 (GLUT4) gene expression levels. Since AMPK-α maintains energy balance and its activity has not been reported to be inhibited so far, it could be a potent therapeutic target. PRACTICAL APPLICATIONS: The development of effective AMPK-α agonists and antagonists holds promise for the treatment of metabolic disorders like diabetes. Dietary polyphenols are a valuable source for developing new drugs. However, due to the lack of understanding of the underlying mechanisms of their effect on cells, their use in the treatment of diabetes is controversial. In addition to chemicals that have medicinal benefits, chemists are searching for less harmful substances. Using plants containing bioactive chemicals for this purpose can be a good alternative to chemical drugs.


Asunto(s)
Abelmoschus , Diabetes Mellitus Experimental , Ratas , Animales , Glucemia/metabolismo , Abelmoschus/química , Abelmoschus/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Quercetina/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...