RESUMEN
Even though the understanding of the cause of early pregnancy loss due to chromosomal abnormalities has improved, there is a dearth of knowledge of the causes of loss in euploid conceptuses. Maternal infections are a cause of abort in humans, but the mechanisms are not clear, so we have developed a murine model to study the mechanism of septic abortion by inducing embryonic resorption (ER) with lipopolysaccharide (LPS). We demonstrated that augmented production of nitric oxide (NO) and prostaglandins (PG) is involved in ER, and that inhibitors of their synthesis could prevent ER. Also, we observed an increase in the oxidative damage, evidenced by nitration of tyrosine proteins, due to the peroxynitrite anion. Since an association between chronic marijuana smoking and early miscarriage has been shown in women, we studied the participation of anandamide (AEA), the principal endocannabinoid, on the mechanism of action of LPS. We showed that LPS-induced NO synthesis and tissue damage were mediated by AEA, and that this endotoxin inhibited AEA degradation and increased its synthesis. These results suggest that several inflammatory molecules participate in the mechanism of early pregnancy loss and that their modulation could be useful tools to prevent it.
Asunto(s)
Aborto Séptico/fisiopatología , Aborto Espontáneo/fisiopatología , Inflamación/fisiopatología , Aborto Séptico/inmunología , Aborto Espontáneo/inmunología , Animales , Moduladores de Receptores de Cannabinoides/metabolismo , Modelos Animales de Enfermedad , Embrión de Mamíferos/inmunología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/fisiopatología , Femenino , Humanos , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Ratones , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Embarazo , Prostaglandinas/metabolismoRESUMEN
Endocannabinoids are an important family of lipid-signaling molecules that are widely distributed in mammalian tissues and anandamide (AEA) was the first member identified. The uterus contains the highest concentrations of AEA yet discovered in mammalian tissues and this suggests that it might play a role in reproduction. Previous results from our laboratory have shown that AEA modulated NO synthesis in rat placenta. The production of small amounts of nitric oxide regulates various physiological reproductive processes such as implantation, decidualization and myometrial relaxation. But in an inflammatory setting such as sepsis, NO is produced in big amounts and has toxic effects as it is a free radical. The results presented in this study indicate that LPS-induced NO synthesis and tissue damage were mediated by AEA. Decidual LPS-induced NO production was abrogated either by co-incubation with CB1 (AM251) or CB2 (SR144528) antagonists which suggests that both receptors could be mediating this effect. On the other hand, LPS-induced tissue damage and this deleterious effect was partially abrogated by incubating tissue explants with LPS plus CB1 receptor antagonist. Our findings suggest that AEA, probably by increasing NO synthesis, participates in the deleterious effect of LPS in implantation sites. These effects could be involved in pathological reproductive events such as septic abortion.