Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4214, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760332

RESUMEN

The liver gene expression of the peroxisomal ß-oxidation enzyme acyl-coenzyme A oxidase 1 (ACOX1), which catabolizes very long chain fatty acids (VLCFA), increases in the context of obesity, but how this pathway impacts systemic energy metabolism remains unknown. Here, we show that hepatic ACOX1-mediated ß-oxidation regulates inter-organ communication involved in metabolic homeostasis. Liver-specific knockout of Acox1 (Acox1-LKO) protects mice from diet-induced obesity, adipose tissue inflammation, and systemic insulin resistance. Serum from Acox1-LKO mice promotes browning in cultured white adipocytes. Global serum lipidomics show increased circulating levels of several species of ω-3 VLCFAs (C24-C28) with previously uncharacterized physiological role that promote browning, mitochondrial biogenesis and Glut4 translocation through activation of the lipid sensor GPR120 in adipocytes. This work identifies hepatic peroxisomal ß-oxidation as an important regulator of metabolic homeostasis and suggests that manipulation of ACOX1 or its substrates may treat obesity-associated metabolic disorders.


Asunto(s)
Acil-CoA Oxidasa , Hígado , Ratones Noqueados , Obesidad , Animales , Hígado/metabolismo , Ratones , Acil-CoA Oxidasa/metabolismo , Acil-CoA Oxidasa/genética , Obesidad/metabolismo , Obesidad/genética , Masculino , Resistencia a la Insulina , Ratones Endogámicos C57BL , Oxidación-Reducción , Metabolismo de los Lípidos , Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Metabolismo Energético , Ácidos Grasos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
2.
Int J Biol Macromol ; 266(Pt 2): 131151, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547945

RESUMEN

BACKGROUND: Cold as a common environmental stress, causes increased heat production, accelerated metabolism and even affects its production performance. How to improve the adaptability of the animal organism to cold has been an urgent problem. As a key hub of lipid metabolism, the liver can regulate lipid metabolism to maintain energy balance, and O-GlcNAcylation is a kind of important PTMs, which participates in a variety of signaling and mechanism regulation, and at the same time, is very sensitive to changes in stress and nutritional levels, and is the body's "stress receptors" and "nutrient receptors". Therefore, the aim of this experiment was to investigate the effect of cold-induced O-GlcNAcylation on hepatic lipid metabolism, and to explore the potential connection between O-GlcNAcylation and hepatic lipid metabolism. METHODS: To investigate the loss of O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and the precise impacts of additional cold-induced circumstances on liver mass, shape, and metabolic profile, C57 mice were used as an animal model. Using the protein interactions approach, the mechanism of O-GlcNAcylation, as well as the degradation pathway of acyl-Coenzyme A oxidase 1 (ACOX1), were clarified. Additional in vitro analyses of oleic acid (OA) and OGT inhibitor tetraoxan (Alloxan) (Sigma, 2244-11-3) on lipid breakdown in AML-12 cells. RESULTS: In C57BL/6 mice, deletion of O-GlcNAcylation disrupted lipid metabolism, caused hepatic edema and fibrosis, and altered mitochondrial apoptosis. This group of modifications was made worse by cold induction. The accumulation of medium- and long-chain fatty acids is a hallmark of lipolysis, which is accelerated by the deletion of O-GlcNAcylation, whereas lipid synthesis is slowed down. The association between ACOX1 and OGT at the K48 gene precludes ubiquitinated degradation.


Asunto(s)
Ácidos Grasos , Metabolismo de los Lípidos , Ubiquitinación , Animales , Masculino , Ratones , Ácidos Grasos/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/metabolismo , Proteolisis , Acil-CoA Oxidasa/antagonistas & inhibidores , Acil-CoA Oxidasa/metabolismo , Acetilglucosamina/metabolismo
3.
Pharmacol Res ; 201: 107105, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367917

RESUMEN

Chronic interstitial fibrosis presents a significant challenge to the long-term survival of transplanted kidneys. Our research has shown that reduced expression of acyl-coenzyme A oxidase 1 (ACOX1), which is the rate-limiting enzyme in the peroxisomal fatty acid ß-oxidation pathway, contributes to the development of fibrosis in renal allografts. ACOX1 deficiency leads to lipid accumulation and excessive oxidation of polyunsaturated fatty acids (PUFAs), which mediate epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) reorganization respectively, thus causing fibrosis in renal allografts. Furthermore, activation of Toll-like receptor 4 (TLR4)-nuclear factor kappa-B (NF-κB) signaling induced ACOX1 downregulation in a DNA methyltransferase 1 (DNMT1)-dependent manner. Overconsumption of PUFA resulted in endoplasmic reticulum (ER) stress, which played a vital role in facilitating ECM reorganization. Supplementation with PUFAs contributed to delayed fibrosis in a rat model of renal transplantation. The study provides a novel therapeutic approach that can delay chronic interstitial fibrosis in renal allografts by targeting the disorder of lipid metabolism.


Asunto(s)
Acil-CoA Oxidasa , Trasplante de Riñón , Riñón , Enfermedades Metabólicas , Animales , Ratas , Acil-CoA Oxidasa/metabolismo , Aloinjertos , Fibrosis , Riñón/patología , Lípidos
4.
PeerJ ; 12: e16771, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38406279

RESUMEN

Background: Gastric cancer is a very common gastrointestinal tumor with a high mortality rate. Nintedanib has been shown to significantly reduce tumor cell proliferation and increase apoptosis in gastric cancer cells in vitro. However, its systemic action mechanism on gastric cancer cells remains unclear. A high-throughput proteomic approach should help identify the potential mechanisms and targets of nintedanib on gastric cancer cells. Methods: The effects of nintedanib on the biological behavior of gastric cancer cells were evaluated. A cytotoxic proliferation assay was performed to estimate the half maximal inhibitory concentration (IC50). AGS cells were divided into control, and nintedanib-treated groups (5 µM, 48 h), and differential protein expression was investigated using tandem mass tags (TMT) proteomics. The molecular mechanisms of these differentially expressed proteins and their network interactions were then analyzed using bioinformatics, and potential nintedanib targets were identified. Results: This study identified 845 differentially expressed proteins in the nintedanib-treated group (compared to the control group), comprising 526 up-regulated and 319 down-regulated proteins. Bioinformatics analysis revealed that the differentially expressed proteins were primarily enriched in biological pathways for branched-chain amino acid metabolism, steroid biosynthesis, propionate metabolism, fatty acid metabolism, lysosome, peroxisome, and ferroptosis. Key driver analysis revealed that proteins, such as enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), isocitrate dehydrogenase 1 (IDH1), acyl-CoA oxidase 1 (ACOX1), acyl-CoA oxidase 2 (ACOX2), acyl-CoA oxidase 3 (ACOX3), and acetyl-CoA acyltransferase 1 (ACAA1) could be linked with nintedanib action. Conclusion: Nintedanib inhibits the proliferation, invasion, and metastasis of gastric cancer cells. The crossover pathways and protein networks predicted by proteomics should provide more detailed molecular information enabling the use of nintedanib against gastric cancer.


Asunto(s)
Indoles , Neoplasias Gástricas , Humanos , Acil-CoA Oxidasa/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Proteómica , Hígado/metabolismo , Enzima Bifuncional Peroxisomal/metabolismo
5.
Free Radic Biol Med ; 208: 221-228, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567517

RESUMEN

In peroxisomes, acyl-CoA oxidase (ACOX) oxidizes fatty acids and produces H2O2, and the latter is decomposed by catalase. If ethanol is present, ethanol will be oxidized by catalase coupling with decomposition of H2O2. Peroxisome proliferator-activated receptor α (PPARα) agonist WY-14,643 escalated ethanol clearance, which was not observed in catalase knockout (Cat-/-) mice or partially blocked by an ACOX1 inhibitor. WY-14,643 induced peroxisome proliferation via peroxin 16 (PEX16). PEX16 liver-specific knockout (Pex16Alb-Cre) mice lack intact peroxisomes in liver, but catalase and ACOX1 were upregulated. Due to lacking intact peroxisomes, the upregulated catalase and ACOX1 in the Pex16Alb-Cre mice were mislocated in cytosol and microsomes, and the escalated ethanol clearance was not observed in the Pex16Alb-Cre mice, implicating that the intact functional peroxisomes are essential for ACOX1/catalase to metabolize ethanol. Alcohol-associated liver disease (ALD) is a spectrum of liver disorders ranging from alcoholic steatosis to steatohepatitis. WY-14,643 ameliorated alcoholic steatosis but tended to enhance alcoholic steatohepatitis. In mice lacking nuclear factor erythroid 2-related factor 2 (Nrf2-/-), WY-14,643 still induced PEX16, ACOX1 and catalase to escalate ethanol clearance and blunt alcoholic steatosis, which was not observed in the PPARα-absent Nrf2-/- mice (Pparα-/-/Nrf2-/-) mice, suggesting that WY-14,643 escalates ethanol clearance through PPARα but not through Nrf2.


Asunto(s)
Etanol , Hígado Graso , Peroxisomas , Animales , Ratones , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Catalasa/genética , Catalasa/metabolismo , Proliferación Celular , Etanol/metabolismo , Hígado Graso/metabolismo , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Peroxisomas/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
6.
Mol Genet Genomics ; 298(6): 1247-1260, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37555868

RESUMEN

ß-oxidation of fatty acids is an important metabolic pathway and is a shared function between mitochondria and peroxisomes in mammalian cells. On the other hand, peroxisomes are the sole site for the degradation of fatty acids in yeast. The first reaction of this pathway is catalyzed by the enzyme acyl CoA oxidase housed in the matrix of peroxisomes. Studies in various model organisms have reported the conserved function of the protein in fatty acid oxidation. The importance of this enzyme is highlighted by the lethal conditions caused in humans due to its altered function. In this review, we discuss various aspects ranging from gene expression, structure, folding, and import of the protein in both yeast and human cells. Further, we highlight recent findings on the role of the protein in human health and aging, and discuss the identified mutations in the protein associated with debilitating conditions in patients.


Asunto(s)
Peroxisomas , Saccharomyces cerevisiae , Animales , Humanos , Acil-CoA Oxidasa/metabolismo , Saccharomyces cerevisiae/metabolismo , Peroxisomas/genética , Peroxisomas/metabolismo , Oxidación-Reducción , Ácidos Grasos/metabolismo , Mamíferos
7.
Exp Cell Res ; 430(1): 113700, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37380010

RESUMEN

Growing evidence suggests a strong association between decreased lipid catabolism and the development of cancer. Solute carrier family 9 member A5 (SLC9A5) plays a regulatory role in colorectal function. However, the specific involvement of SLC9A5 in colorectal cancer (CRC) remains unclear, as well as its potential connection to lipid catabolism. We found that SLC9A5 exhibited significantly higher expression in CRC tumor tissues compared to adjacent paratumor tissues, as confirmed through analysis of the TCGA database and validation on a CRC tissue chip using IHC. Furthermore, in vitro experiments showed that knockdown of SLC9A5 resulted in suppressed cell proliferation, migration, and invasion. Then we performed bioinformatics analysis and found that SLC9A5 was significantly enriched in peroxisomal fatty acid oxidation (FAO) pathway and negatively correlated with its first rate-limiting enzyme acyl-CoA oxidases (ACOX). Interestingly, the expression of ACOX1, as well as FAO process indicated by changes in very long chain fatty acid levels, were enhanced upon SLC9A5 knockdown in CRC cells. Moreover, the attenuated tumor growth, migration, invasion, and increased FAO observed after SLC9A5 knockdown could be reversed by simultaneous knockdown of both SLC9A5 and ACOX1. In summary, these findings reveal the oncogenic role of SLC9A5 in CRC, particularly in relation to ACOX1-mediated peroxidation, and might serve as a promising therapeutic target for inhibiting the progression of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Ácidos Grasos , Humanos , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Lípidos , Neoplasias Colorrectales/patología , Movimiento Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética
8.
Poult Sci ; 102(1): 102289, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36436376

RESUMEN

The current study aimed to evaluate the changes in lipid accumulation and oxidative status in pigeon crops during different breeding stages. Forty-two pairs of adult pigeons were randomly assigned to 7 groups. Lipid droplet accumulation in pigeon crops was visualized by using oil red O staining from d 17 of incubation (I17) to d 7 of chick rearing (R7). Transmission electron microscopy analysis showed swollen mitochondria with disintegration of cristae and typical characteristics of endoplasmic reticulum stress in crop tissues at R1 compared with those at I4. During the peak of pigeon milk formation, the concentrations of reactive oxygen species, and oxidative damage markers (advanced oxidation protein products, 8-hydroxy-2 deoxyguanosine, and malondialdehyde) and the enzyme activities of total superoxide dismutase and glutathione peroxidase were all elevated significantly (P < 0.05). The protein concentration of B-cell lymphoma-2 associated X in crop tissues was significantly higher at R1, while the level of B-cell lymphoma-2 protein in males was the highest at I4 (P < 0.05). The ratio of B-cell lymphoma-2 associated X protein (Bax)/B-cell lymphoma-2 (Bcl-2) in both male and female crops peaked at R1 (P < 0.05). Gene expression of the key enzymes involved in mitochondrial and peroxisomal fatty acid ß-oxidation was investigated in crops. In males, the gene expression of carnitine palmitoyltransferase 1a peaked at R15, and that of carnitine palmitoyltransferase 2 increased significantly from R1 to R15 (P < 0.05). The mRNA abundance of long chain 3-hydroxyacyl-CoA dehydrogenase increased to the maximum value at R1 and I17 in males and females, respectively. From I17 to R7, the mRNA levels of acyl-CoA oxidase 1 and acyl-CoA oxidase 2 were decreased in pigeon crops (P < 0.05). Conclusively, lipid droplet accumulation was found in male and female pigeon crops from the end of incubation to the early stage of chick rearing. Although antioxidant defence and mitochondrial fatty acid ß-oxidation were both mobilized, oxidative stress in crop tissues still occurred during the peak of milk formation.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Columbidae , Masculino , Femenino , Animales , Columbidae/genética , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Acil-CoA Oxidasa/metabolismo , Pollos/genética , Pollos/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Ácidos Grasos/metabolismo , ARN Mensajero/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Lípidos , Hígado/metabolismo
9.
J Biomol Struct Dyn ; 41(2): 511-524, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34825634

RESUMEN

Yarrowia lipolytica is used as a model in this study to screen the potential candidates for inflating the innate lipid content of the cell. This study focuses on reducing the lipid degradation that occurs by the ß-oxidation process and discursively increasing the innate lipid content. Acyl-CoA oxidase-1, the primary and initial enzyme involved in the lipid degradation pathway, was selected as a target and blocked using various lipid analogous compounds. The blocking study was carried out using molecular docking and dynamic studies using computation tools. The largest active site pocket located around the Phe-394 amino acid of the target protein is taken as a site for docking. The molecular docking was performed for the selected compounds (citric acid, Finsolv, lactic acid, oxalic acid, Tween-80 and Triton X-100) and the docking results were compared with the outcome of the standard molecule (octadecatrienoic acid). Citric acid, Finsolv, Tween-80 and Triton X-100 were found to be the potential candidates for blocking the target molecule in the static condition using docking studies, revealing a minimum binding energy requirement than the standard molecule. They were further taken for a dynamics study using GROMACS software. The RMSD, RMSF, number of hydrogen bond interactions and radius of gyration of the complex molecules were studied in a dynamic approach for 100 ns. Citric acid has been found to be the potential hit compound to block acyl-CoA oxidase-1 enzyme with its maximum hydrogen interaction and minimum fluctuations. It also revealed out the minimum total energy requirement for the complex formation.


Asunto(s)
Yarrowia , Acil-CoA Oxidasa/química , Acil-CoA Oxidasa/metabolismo , Yarrowia/metabolismo , Simulación del Acoplamiento Molecular , Octoxinol/metabolismo , Polisorbatos , Lípidos , Ácido Cítrico/metabolismo
10.
Plant Foods Hum Nutr ; 77(4): 529-537, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35986845

RESUMEN

The aim of the present study was to investigate the browning effects mechanism of Smilax china L. polyphenols (SCLP) and its monomer. In this study, polyphenols (SCLP, engeletin, quercetin and caffeic acid) markedly suppressed lipid accumulation. Polyphenols significantly up-graded the expression of protein kinase A (PKA), adipose triglyceride lipase (ATGL), peroxisome proliferators-activated receptors alpha (PPARα), carnitine palmitoyl transferase (CPT) and acyl-CoA oxidase (ACO) to promote lipolysis and ß-oxidation. Moreover, polyphenols greatly enhanced mitochondrial biogenesis in adipocytes, as demonstrated by the expression of Nrf1 and Tfam were up-regulated. Furthermore, polyphenols treatment greatly up-regulated the browning program in adipocytes by increased brown-specific genes and proteins uncoupling protein 1 (UCP-1), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and PR domain containing 16 (PRDM16), as well as beige-specific genes (Tmem26, Tbx1, CD137, Cited1), especially engeletin. Further research found that the brown-specific markers were decreased by antagonist treatment of AMPK or ß3-AR, but polyphenols treatment reversed the effect of antagonists and improved the expression of UCP-1, PRDM16 and PGC-1α. In conclusion, these results indicated that polyphenols stimulate browning in adipocytes via activation of the ß3-AR/AMPK signaling pathway, and SCLP and its monomer may be worth investigating to prevent obesity.


Asunto(s)
Polifenoles , Smilax , Animales , Ratones , Células 3T3-L1 , Acil-CoA Oxidasa/metabolismo , Adipocitos Marrones/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Carnitina/metabolismo , China , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Lipasa/metabolismo , Lípidos , Polifenoles/farmacología , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Quercetina/farmacología , Transducción de Señal , Smilax/metabolismo , Factores de Transcripción/metabolismo , Proteína Desacopladora 1/metabolismo
11.
Dev Comp Immunol ; 136: 104501, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35961593

RESUMEN

Acyl-coenzyme A oxidase 1 (ACOX1) is the rate-limiting enzyme in peroxisomal ß-oxidation, and it plays an essential role in mediating the inflammatory response and reactive oxygen species (ROS) metabolism in mammals. However, the role of ACOX1 in fish has not been completely elucidated. Herein, this study was conducted to investigate the role of large yellow croaker (Larimichthys crocea) ACOX1 (Lc-ACOX1) on palmitate (PA)-induced inflammation and ROS production. In this study, Lc-ACOX1 was cloned and characterized. The full-length CDS of Lc-acox1 was 1986 bp, encoding 661 amino acids. Tissue distribution results showed that the gene expression of Lc-acox1 was the highest in the intestine and the lowest in the spleen. Moreover, results showed that the mRNA expression of Lc-acox1 was upregulated by PA, with elevated pro-inflammatory gene expression, including il-1ß, il-6, il-8, tnf-α, cox2 and ifn-γ, as well as ROS content in macrophages of large yellow croaker. Furthermore, the role of Lc-ACOX1 in inflammation induced by PA was investigated by using the ACOX1 inhibitor TDYA. Treatment of macrophages with TDYA reduced the mRNA expression of pro-inflammatory genes induced by PA. Moreover, inhibition of ACOX1 reduced the elevated level of ROS caused by PA and increased the mRNA expression of antioxidant genes. In conclusion, this study first identified that fish ACOX1 was involved in the PA-induced inflammatory response and ROS production.


Asunto(s)
Proteínas de Peces , Perciformes , Acil-CoA Oxidasa/metabolismo , Animales , Coenzima A/metabolismo , Proteínas de Peces/metabolismo , Inflamación/genética , Macrófagos/metabolismo , Mamíferos/genética , Palmitatos/metabolismo , Perciformes/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Mar Drugs ; 20(8)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35892940

RESUMEN

Filter-feeding bivalves can accumulate paralytic shellfish toxins (PST) produced by toxic microalgae, which may induce oxidative stress and lipid peroxidation. Peroxisomal acyl-coenzyme A oxidases (ACOXs) are key enzymes functioning in maintaining redox and lipid homeostasis, but their roles in PST response in bivalves are less understood. Herein, a total of six and six ACOXs were identified in the Chlamys farreri and Patinopecten yessoensis genome, respectively, and the expansion of ACOX1s was observed. Gene expression analysis revealed an organ/tissue-specific expression pattern in both scallops, with all ACOXs being predominantly expressed in the two most toxic organs, digestive glands and kidneys. The regulation patterns of scallop ACOXs after exposure to different PST-producing algaes Alexandrium catenella (ACDH) and A. minutum (AM-1) were revealed. After ACDH exposure, more differentially expressed genes (DEGs) were identified in C. farreri digestive glands (three) and kidneys (five) than that in P. yessoensis (two), but the up-regulated DEGs showed similar expression patterns in both species. In C. farreri, three DEGs were found in both digestive glands and kidneys after AM-1 exposure, with two same CfACOX1s being acutely and chronically induced, respectively. Notably, these two CfACOX1s also showed different expression patterns in kidneys between ACDH (acute response) and AM-1 (chronic response) exposure. Moreover, inductive expression of CfACOXs after AM-1 exposure was observed in gills and mantles, and all DEGs in both tissues were up-regulated and their common DEGs exhibited both acute and chronic induction. These results indicate the involvement of scallop ACOXs in PST response, and their plasticity expression patterns between scallop species, among tissues, and between the exposure of different PST analogs.


Asunto(s)
Bivalvos , Dinoflagelados , Pectinidae , Toxinas Biológicas , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Animales , Bivalvos/metabolismo , Coenzima A/metabolismo , Dinoflagelados/genética , Dinoflagelados/metabolismo , Oxidación-Reducción , Pectinidae/genética
13.
Int J Biol Macromol ; 215: 262-271, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35671909

RESUMEN

Drought stress has been the main abiotic factor affecting the growth, development and production of common buckwheat (Fagopyrum esculentum). To explore the response mechanisms of regulating buckwheat drought stress on the post-transcriptional and translational levels, a comparative proteomic analysis was applied to monitor the short-term proteomic variations under the drought stress in the seedling stage. From which 593 differentially abundant proteins (DAPs) were identified using the TMT-based proteomics analysis. A number of DAPs were found to be intimately correlated with the styrene degradation, phenylpropanoid biosynthesis and stimulus response, within which. The acyl-CoA oxidase 4 (ACX4), a key regulator in plant abiotic stress response, was selected for further elucidation. Overexpression of the FeACX4 not only conferred drought and salt tolerance in the Arabidopsis, but also significantly increased the root length and fresh weight in the overexpression lines plant relative to the wild type (WT) plant, accompanied by the elevated activities of catalase (CAT) and lowered malonaldehyde (MDA) and H2O2 contents, therefore allowing plants to better adapt to adverse environments. Our results provided information in the exploring of the molecular regulation mechanism responding to drought tolerance in common buckwheat.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fagopyrum , Acil-CoA Oxidasa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Fagopyrum/genética , Fagopyrum/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteómica , Estrés Fisiológico
14.
Front Cell Infect Microbiol ; 12: 824597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531334

RESUMEN

Aim: To investigate the treating effect of Yiqi-Bushen-Tiaozhi (YBT) recipe on nonalcoholic steatohepatitis (NASH) mice, determine whether the outcome was associated with gut microbiota, and clarify the regulating mechanism. Methods: NASH mice were induced by high-fat and high-fructose diets (HFFD). In the fifth week, mice in the YBT group were orally administrated YBT (22.12g·kg-1·d-1) daily for 12 weeks. Fresh stool of mice was collected at the 16th week for fecal 16S rDNA analysis. Hepatic pathology and biochemical indicators were used to reflect the improvement of YBT on hepatic inflammation and lipid metabolism in NASH mice. Quantitative real-time PCR (qRT-PCR) was used to verify the results of PICRUSt analysis. Results: Results of the pathological and biochemical index showed that YBT could improve NASH mice. Compared with improving inflammation and hepatocyte damage, YBT may be more focused on enhancing metabolic disorders in mice, such as increasing HDL-c level. The diversity and richness of the gut microbiota of NASH mice induced by HFFD are significantly different from the normal control (NC) group. After YBT treatment, the diversity and richness of the mice microbiota will be increased to similar NC mice. Intestinimonas, Acetatifactor, Alistipes, Intestinimonas, Acetatifactor, and Alistipes have the most significant changes in the class level. PICRUSt analysis was performed to predict genomic functions based on the 16S rDNA results and reference sequencing. The efficacy of YBT in the treatment of NASH can be achieved by regulating the diversity and richness of gut microbiota. PICRUSt analysis results showed that the most relevant function of the microbiota construction variations is α- Linolenic acid (ALA) metabolism. Results of qRT-PCR showed significant differences between groups in the expression of Fatty acid desaturase 1 (FADS1), Fatty acid desaturase 2 (FADS2), Acyl-CoA Oxidase 1 (ACOX1), and Acyl-CoA Oxidase 2 (ACOX2) related to ALA metabolism. The expression of the above genes will be inhibited in the liver and small intestine of the HFFD group mice, and the expression can be restored after YBT treatment. Conclusion: YBT could treat NASH mice by improving the diversity and richness of gut microbiota and further the improvement of ALA metabolism.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Acil-CoA Oxidasa/metabolismo , Animales , ADN Ribosómico , Dieta Alta en Grasa/efectos adversos , Medicamentos Herbarios Chinos/farmacología , Ácido Graso Desaturasas , Fructosa/efectos adversos , Microbioma Gastrointestinal/fisiología , Inflamación/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo
15.
Biochem Biophys Res Commun ; 613: 47-52, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35526488

RESUMEN

Peroxisome proliferator-activated receptor α (PPARα) regulates fatty acid oxidation (FAO). Usually, very-long chain fatty acids are first activated by acyl-CoA synthetase (ACS) to generate acyl-CoA for oxidation by acyl-CoA oxidase (ACOX) in peroxisomes, and the resultant shorter chain fatty acids will be further oxidized in mitochondria. ACS long-chain family member 4 (ACSL4) preferentially uses arachidonic acid (AA) as substrates to synthesize arachidonoyl-CoA. Arachidonoyl-CoA is usually esterified into phospholipids. When AA is released by phospholipase A2 (PLA2) from phospholipids, it will be used for prostaglandin synthesis by cyclooxygenases (COX). In this study, when PPARα agonist WY-14,643 was mixed in liquid Lieber-DeCarli ethanol or control diets and fed to mice, liver PLA2, COX-2, and ACOX1 were induced but ACSL4 was inhibited, suggesting that AA released by PLA2 from phospholipid will be metabolized to prostaglandin via COX-2 instead of being synthesized into acyl-CoA by ACSL4. However, liver prostaglandin E2 (PGE2), a major component of prostaglandin, was not increased with the induced COX-2 but decreased by WY-14,643. ACOX1 specific inhibitor mixed in the liquid diets restored both the WY-14,643-suppressed liver TG and PGE2, but COX-2 specific inhibitor celecoxib mixed in the liquid diets reversed the WY-14,643-suppressed liver TG but not liver PGE2 contents. These results suggest that induction of PLA2, COX-2 and ACOX1 orchestrates to increase oxidation of AA/PGE2, which constitutes one new mechanism by which PPARα induces peroxisomal FAO and inhibits ethanol-induced liver fat accumulation.


Asunto(s)
Acil-CoA Oxidasa , Ciclooxigenasa 2 , Hígado Graso Alcohólico , PPAR alfa , Fosfolipasas A2 , Pirimidinas , Acil-CoA Oxidasa/metabolismo , Animales , Coenzima A/metabolismo , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso Alcohólico/tratamiento farmacológico , Hígado Graso Alcohólico/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Ratones , PPAR alfa/agonistas , PPAR alfa/metabolismo , Peroxisomas/efectos de los fármacos , Peroxisomas/metabolismo , Fosfolipasas A2/metabolismo , Fosfolípidos/metabolismo , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos
16.
Toxicology ; 465: 153056, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34861291

RESUMEN

Perfluorooctane sulfonate (PFOS) is a stable environmental contaminant that can activate peroxisome proliferator-activated receptor alpha (PPARα). In the present work, the specific role of mouse and human PPARα in mediating the hepatic effects of PFOS was examined in short-term studies using wild type, Ppara-null and PPARA-humanized mice. Mice fed 0.006 % PFOS for seven days (∼10 mg/kg/day), or 0.003 % PFOS for twenty-eight days (∼5 mg/kg/day), exhibited higher liver and serum PFOS concentrations compared to controls. Relative liver weights were also higher following exposure to dietary PFOS in all three genotypes as compared vehicle fed control groups. Histopathological examination of liver sections from mice treated for twenty-eight days with 0.003 % PFOS revealed a phenotype consistent with peroxisome proliferation, in wild-type and PPARA-humanized mice that was not observed in Ppara-null mice. With both exposures, expression of the PPARα target genes, Acox1, Cyp4a10, was significantly increased in wild type mice but not in Ppara-null or PPARA-humanized mice. By contrast, expression of the constitutive androstane receptor (CAR) target gene, Cyp2b10, and the pregnane X receptor (PXR) target gene, Cyp3a11, were higher in response to PFOS administration in all three genotypes compared to controls for both exposure periods. These results indicate that mouse PPARα can be activated in the liver by PFOS causing increased expression of Acox1, Cyp4a10 and histopathological changes in the liver. While histopathological analyses indicated the presence of mouse PPARα-dependent hepatic peroxisome proliferation in wild-type (a response associated with activation of PPARα) and a similar phenotype in PPARA-humanized mice, the lack of increased Acox1 and Cyp4a10 mRNA by PFOS in PPARA-humanized mice indicates that the human PPARα was not as responsive to PFOS as mouse PPARα with this dose regimen. Moreover, results indicate that hepatomegaly caused by PFOS does not require mouse or human PPARα and could be due to effects induced by activation of CAR and/or PXR.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Contaminantes Ambientales/toxicidad , Fluorocarburos/toxicidad , Hígado/efectos de los fármacos , PPAR alfa/agonistas , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Receptor de Androstano Constitutivo/agonistas , Receptor de Androstano Constitutivo/genética , Receptor de Androstano Constitutivo/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 2 del Citocromo P450/genética , Familia 2 del Citocromo P450/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor X de Pregnano/agonistas , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo , Transducción de Señal , Especificidad de la Especie , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo
17.
Sci China Life Sci ; 64(12): 2153-2174, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34755252

RESUMEN

Developmental diapause is a widespread strategy for animals to survive seasonal starvation and environmental harshness. Diapaused animals often ration body fat to generate a basal level of energy for enduring survival. How diapause and fat rationing are coupled, however, is poorly understood. The nematode Caenorhabditis elegans excretes pheromones to the environment to induce a diapause form called dauer larva. Through saturated forward genetic screens and CRISPR knockout, we found that dauer pheromones feed back to repress the transcription of ACOX-3, MAOC-1, DHS-28, DAF-22 (peroxisomal ß-oxidation enzymes dually involved in pheromone synthesis and fat burning), ALH-4 (aldehyde dehydrogenase for pheromone synthesis), PRX-10 and PRX-11 (peroxisome assembly and proliferation factors). Dysfunction of these pheromone enzymes and factors relieves the repression. Surprisingly, transcription is repressed not by pheromones excreted but by pheromones endogenous to each animal. The endogenous pheromones regulate the nuclear translocation of HNF4α family nuclear receptor NHR-79 and its co-receptor NHR-49, and, repress transcription through the two receptors. The feedback repression maintains pheromone homeostasis, increases fat storage, decreases fat burning, and prolongs dauer lifespan. Thus, the exocrine dauer pheromones possess an unexpected endocrine function to mediate a peroxisome-nucleus crosstalk, coupling dauer diapause to fat rationing.


Asunto(s)
Acil-CoA Oxidasa/metabolismo , Caenorhabditis elegans/metabolismo , Ácidos Grasos/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Feromonas/metabolismo , Tejido Adiposo/metabolismo , Animales , Caenorhabditis elegans/genética , Diapausa/fisiología , Homeostasis/fisiología , Larva , Oxidación-Reducción , Peroxisomas/metabolismo , Transcripción Genética
18.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445672

RESUMEN

In mammalian cells, two cellular organelles, mitochondria and peroxisomes, share the ability to degrade fatty acid chains. Although each organelle harbors its own fatty acid ß-oxidation pathway, a distinct mitochondrial system feeds the oxidative phosphorylation pathway for ATP synthesis. At the same time, the peroxisomal ß-oxidation pathway participates in cellular thermogenesis. A scientific milestone in 1965 helped discover the hepatomegaly effect in rat liver by clofibrate, subsequently identified as a peroxisome proliferator in rodents and an activator of the peroxisomal fatty acid ß-oxidation pathway. These peroxisome proliferators were later identified as activating ligands of Peroxisome Proliferator-Activated Receptor α (PPARα), cloned in 1990. The ligand-activated heterodimer PPARα/RXRα recognizes a DNA sequence, called PPRE (Peroxisome Proliferator Response Element), corresponding to two half-consensus hexanucleotide motifs, AGGTCA, separated by one nucleotide. Accordingly, the assembled complex containing PPRE/PPARα/RXRα/ligands/Coregulators controls the expression of the genes involved in liver peroxisomal fatty acid ß-oxidation. This review mobilizes a considerable number of findings that discuss miscellaneous axes, covering the detailed expression pattern of PPARα in species and tissues, the lessons from several PPARα KO mouse models and the modulation of PPARα function by dietary micronutrients.


Asunto(s)
Ácidos Grasos/metabolismo , PPAR alfa/metabolismo , Peroxisomas/metabolismo , Acil-CoA Oxidasa/metabolismo , Animales , Humanos , Hígado/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , PPAR alfa/fisiología , Proliferadores de Peroxisomas , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Ácido Retinoico/metabolismo , Elementos de Respuesta/genética , Receptores X Retinoide/metabolismo , Activación Transcripcional/genética
19.
PLoS Pathog ; 17(7): e1009767, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34270617

RESUMEN

Hypobiosis (facultative developmental arrest) is the most important life-cycle adaptation ensuring survival of parasitic nematodes under adverse conditions. Little is known about such survival mechanisms, although ascarosides (ascarylose with fatty acid-derived side chains) have been reported to mediate the formation of dauer larvae in the free-living nematode Caenorhabditis elegans. Here, we investigated the role of a key gene acox-1, in the larval development of Haemonchus contortus, one of the most important parasitic nematodes that employ hypobiosis as a routine survival mechanism. In this parasite, acox-1 encodes three proteins (ACOXs) that all show a fatty acid oxidation activity in vitro and in vivo, and interact with a peroxin PEX-5 in peroxisomes. In particular, a peroxisomal targeting signal type1 (PTS1) sequence is required for ACOX-1 to be recognised by PEX-5. Analyses on developmental transcription and tissue expression show that acox-1 is predominantly expressed in the intestine and hypodermis of H. contortus, particularly in the early larval stages in the environment and the arrested fourth larval stage within host animals. Knockdown of acox-1 and pex-5 in parasitic H. contortus shows that these genes play essential roles in the post-embryonic larval development and likely in the facultative arrest of this species. A comprehensive understanding of these genes and the associated ß-oxidation cycle of fatty acids should provide novel insights into the developmental regulation of parasitic nematodes, and into the discovery of novel interventions for species of socioeconomic importance.


Asunto(s)
Acil-CoA Oxidasa/metabolismo , Haemonchus/metabolismo , Proteínas del Helminto/metabolismo , Larva/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Animales , Hemoncosis/metabolismo , Haemonchus/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Conejos , Ovinos
20.
Nutr Res ; 92: 12-20, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34174520

RESUMEN

Preliminary studies have shown that a lithogenic diet (LG), which contains cholesterol and cholic acid, induces gallstones and hepatic lipid accumulation (HLA), and reduction of blood triglyceride in mice. We hypothesized that an LG induces HLA by diminishing hepatic triglyceride excretion; however, there is no clear understanding of the mechanism of LG-induced HLA. This study aimed to investigate transcript expression related to the synthesis, expenditure, and efflux of hepatic triglyceride, in mice fed an LG for 4 weeks. Results showed lower plasma concentrations of triglyceride in the LG group than in the control group, but no symptoms of hepatic injury were observed. Hepatic mRNA expressions of patatin-like phospholipase domain containing 3 (Pnpla3), microsomal triglyceride transfer protein (Mttp), and acyl-CoA oxidase 1 (Acox1) were also reduced in the LG group. Deoxycholic acid and lithocholic acid promoted intracellular lipid accumulation, reduced triglyceride concentration in media, and suppressed expression of PNPLA3 and MTTP in HepG2 human hepatoma cells. These findings suggest that deoxycholic acid and lithocholic acid promote HLA by inhibiting the expression of PNPLA3, ACOX1, and MTTP that are involved in lipid metabolism.


Asunto(s)
Ácidos y Sales Biliares/efectos adversos , Proteínas Portadoras/metabolismo , Lipasa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Fosfolipasas A2 Calcio-Independiente/metabolismo , Acil-CoA Oxidasa/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Proteínas Portadoras/genética , Colesterol/metabolismo , Dieta/efectos adversos , Células Hep G2 , Humanos , Lipasa/genética , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos ICR , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfolipasas , Fosfolipasas A2 Calcio-Independiente/genética , ARN Mensajero/metabolismo , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...