Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
ACS Biomater Sci Eng ; 10(4): 2270-2281, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38536862

RESUMEN

Tumor hypoxia-associated drug resistance presents a major challenge for cancer chemotherapy. However, sustained delivery systems with a high loading capability of hypoxia-inducible factor-1 (HIF-1) inhibitors are still limited. Here, we developed an ultrastable iodinated oil-based Pickering emulsion (PE) to achieve locally sustained codelivery of a HIF-1 inhibitor of acriflavine and an anticancer drug of doxorubicin for tumor synergistic chemotherapy. The PE exhibited facile injectability for intratumoral administration, great radiopacity for in vivo examination, excellent physical stability (>1 mo), and long-term sustained release capability of both hydrophilic drugs (i.e., acriflavine and doxorubicin). We found that the codelivery of acriflavine and doxorubicin from the PE promoted the local accumulation and retention of both drugs using an acellular liver organ model and demonstrated significant inhibition of tumor growth in a 4T1 tumor-bearing mouse model, improving the chemotherapeutic efficacy through the synergistic effects of direct cytotoxicity with the functional suppression of HIF-1 pathways of tumor cells. Such an iodinated oil-based PE provides a great injectable sustained delivery platform of hydrophilic drugs for locoregional chemotherapy.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Emulsiones/uso terapéutico , Acriflavina/farmacología , Acriflavina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Quimioterapia Combinada , Hipoxia/tratamiento farmacológico
2.
Front Immunol ; 14: 1271118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942317

RESUMEN

Introduction: Optic neuritis (ON) is often an early sign of multiple sclerosis (MS), and recent studies show a link between HIF-1 pathway activation and inflammation. This study aimed to determine if inhibition of the HIF-1 pathway using the HIF-1a antagonist acriflavine (ACF) can reduce clinical progression and rescue the ocular phenotype in an experimental autoimmune encephalomyelitis (EAE) ON model. Methods: EAE-related ON was induced in 60 female C57BL/6J mice by immunization with MOG33-55, and 20 EAE mice received daily systemic injections of ACF at 5 mg/kg. Changes in the visual function and structure of ACF-treated EAE mice were compared to those of placebo-injected EAE mice and naïve control mice. Results: ACF treatment improved motor-sensory impairment along with preserving visual acuity and optic nerve function. Analysis of retinal ganglion cell complex alsoshowed preserved thickness correlating with increased survival of retinal ganglion cells and their axons. Optic nerve cell infiltration and magnitude of demyelination were decreased in ACF-treated EAE mice. Subsequent in vitro studies revealed improvements not only attributed to the inhibition of HIF-1 butalso to previously unappreciated interaction with the eIF2a/ATF4 axis in the unfolded protein response pathway. Discussion: This study suggests that ACF treatment is effective in an animal model of MS via its pleiotropic effects on the inhibition of HIF-1 and UPR signaling, and it may be a viable approach to promote rehabilitation in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Neuritis Óptica , Femenino , Animales , Ratones , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Acriflavina/farmacología , Acriflavina/uso terapéutico , Acriflavina/metabolismo , Ratones Endogámicos C57BL , Neuritis Óptica/tratamiento farmacológico , Células Ganglionares de la Retina/metabolismo , Esclerosis Múltiple/metabolismo
3.
J Clin Invest ; 133(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37227777

RESUMEN

Many patients with diabetic eye disease respond inadequately to anti-VEGF therapies, implicating additional vasoactive mediators in its pathogenesis. We demonstrate that levels of angiogenic proteins regulated by HIF-1 and -2 remain elevated in the eyes of people with diabetes despite treatment with anti-VEGF therapy. Conversely, by inhibiting HIFs, we normalized the expression of multiple vasoactive mediators in mouse models of diabetic eye disease. Accumulation of HIFs and HIF-regulated vasoactive mediators in hyperglycemic animals was observed in the absence of tissue hypoxia, suggesting that targeting HIFs may be an effective early treatment for diabetic retinopathy. However, while the HIF inhibitor acriflavine prevented retinal vascular hyperpermeability in diabetic mice for several months following a single intraocular injection, accumulation of acriflavine in the retina resulted in retinal toxicity over time, raising concerns for its use in patients. Conversely, 32-134D, a recently developed HIF inhibitor structurally unrelated to acriflavine, was not toxic to the retina, yet effectively inhibited HIF accumulation and normalized HIF-regulated gene expression in mice and in human retinal organoids. Intraocular administration of 32-134D prevented retinal neovascularization and vascular hyperpermeability in mice. These results provide the foundation for clinical studies assessing 32-134D for the treatment of patients with diabetic eye disease.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Neovascularización Retiniana , Humanos , Ratones , Animales , Acriflavina/metabolismo , Acriflavina/farmacología , Acriflavina/uso terapéutico , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Neovascularización Retiniana/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
4.
mBio ; 14(3): e0065923, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37067435

RESUMEN

The continued challenges of the COVID-19 pandemic combined with the growing problem of antimicrobial-resistant bacterial infections has severely impacted global health. Specifically, the Gram-negative pathogen Klebsiella pneumoniae is one of the most prevalent causes of secondary bacterial infection in COVID-19 patients, with approximately an 83% mortality rate observed among COVID-19 patients with these bacterial coinfections. K. pneumoniae belongs to the ESKAPE group of pathogens, a group that commonly gives rise to severe infections that are often life-threatening. Recently, K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae has drawn wide public attention, as the mortality rate for this infection can be as high as 71%. The most predominant and clinically important multidrug efflux system in K. pneumoniae is the acriflavine resistance B (AcrB) multidrug efflux pump. This pump mediates resistance to different classes of structurally diverse antimicrobial agents, including quinolones, ß-lactams, tetracyclines, macrolides, aminoglycosides, and chloramphenicol. We here report single-particle cryo-electron microscopy (cryo-EM) structures of K. pneumoniae AcrB, in both the absence and the presence of the antibiotic erythromycin. These structures allow us to elucidate specific pump-drug interactions and pinpoint exactly how this pump recognizes antibiotics. IMPORTANCE Klebsiella pneumoniae has emerged as one of the most problematic and highly antibiotic-resistant pathogens worldwide. It is the second most common causative agent involved in secondary bacterial infection in COVID-19 patients. K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae is a major concern in global public health because of the high mortality rate of this infection. Its drug resistance is due, in a significant part, to active efflux of these bactericides, a major mechanism that K. pneumoniae uses to resist to the action of multiple classes of antibiotics. Here, we report cryo-electron microscopy (cryo-EM) structures of the prevalent and clinically important K. pneumoniae AcrB multidrug efflux pump, in both the absence and the presence of the erythromycin antibiotic. These structures allow us to understand the action mechanism for drug recognition in this pump. Our studies will ultimately inform an era in structure-guided drug design to combat multidrug resistance in these Gram-negative pathogens.


Asunto(s)
COVID-19 , Infecciones por Klebsiella , Humanos , Acriflavina/farmacología , Klebsiella pneumoniae , Microscopía por Crioelectrón , Pandemias , Antibacterianos/farmacología , Proteínas Bacterianas/farmacología , Eritromicina , Infecciones por Klebsiella/microbiología , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana
5.
Sci Rep ; 13(1): 4237, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918612

RESUMEN

The non-steroidal anti-inflammatory medication acemetacin was assessed via two straightforward green spectrofluorimetric techniques. The quenching-dependent derivatizing spectrofluorimetric reactions are the master point of this study. Acriflavine-based method (Method I) depends on forming an ion association complex between acriflavine and the drug in a ratio of 1:1, decreasing the former's fluorescence intensity. Acriflavine or Ag NP's intensity-related quenching action goes linearly with the acemetacin concentration in the 2.0-20.0 µg/mL and 1.0-16.0 µg/mL ranges, respectively. The second quenching mechanism depends on using the silver nanoparticles (Ag NP's) as a fluorescence probe (Method II); Ag NP's were prepared from reducing silver nitrate using sodium borohydride. Both methods could be applied to determine pure and pharmaceutical dosage forms of acemetacin. The methods proved valid according to the international conference on harmonization (ICH) guidelines. In addition to this, this work has been estimated under green criteria assessment tools. There is no significant difference between the proposed and the comparison methods after the statistical interpretation.


Asunto(s)
Acriflavina , Nanopartículas del Metal , Acriflavina/farmacología , Colorantes Fluorescentes , Espectrometría de Fluorescencia/métodos , Plata
6.
Bioorg Chem ; 129: 106185, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36240541

RESUMEN

The evolving SARS-CoV-2 epidemic buffets the world, and the concerted efforts are needed to explore effective drugs. Mpro is an intriguing antiviral target for interfering with viral RNA replication and transcription. In order to get potential anti-SARS-CoV-2 agents, we established an enzymatic assay using a fluorogenic substrate to screen the inhibitors of Mpro. Fortunately, Acriflavine (ACF) and Proflavine Hemisulfate (PRF) with the same acridine scaffold were picked out for their good inhibitory activity against Mpro with IC50 of 5.60 ± 0.29 µM and 2.07 ± 0.01 µM, respectively. Further evaluation of MST assay and enzymatic kinetics experiment in vitro showed that they had a certain affinity to SARS-CoV-2 Mpro and were both non-competitive inhibitors. In addition, they inhibited about 90 % HCoV-OC43 replication in BHK-21 cells at 1 µM. Both compounds showed nano-molar activities against SARS-CoV-2 virus, which were superior to GC376 for anti-HCoV-43, and equivalent to the standard molecule remdesivir. Our study demonstrated that ACF and PRF were inhibitors of Mpro, and ACF has been previously reported as a PLpro inhibitor. Taken together, ACF and PRF might be dual-targeted inhibitors to provide protection against infections of coronaviruses.


Asunto(s)
Acriflavina , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa , Proflavina , SARS-CoV-2 , Inhibidores de Proteasa Viral , Acriflavina/farmacología , Proflavina/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Inhibidores de Proteasa Viral/farmacología , Mesocricetus , Animales , Cricetinae , Línea Celular , Replicación Viral/efectos de los fármacos
7.
Drug Deliv ; 29(1): 3233-3244, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36299245

RESUMEN

Cutaneous burn wounds are a common and troublesome critical issue of public health. Over the last decade, many researchers have investigated the development of novel therapeutic modalities which are capable of fully regeneration and reinstatement of structure and function of the skin with no or limited scar formation. Novel pharmaceutical carriers are offering a potential platform to deliver the drug effectively and to overcome the limitation associated with conventional wound dressings. The aim of this study was to investigate a pharmaceutical acriflavine-loaded polycaprolactone nanoemulsion (ACR-PCL-NE) for burn wound healing. Nanoemulsion was prepared by using the double emulsion solvent evaporation technique and it was subjected to thermodynamic stability testing, droplet size, polydispersity, zeta potential, pH, and surface morphology analysis. The in vivo study was performed to evaluate the efficacy of nanoemulsion using Sprague-Dawley rats as an animal model. The results of this study revealed that the optimized nanoemulsion was stable and had desirable physicochemical properties. The pH was about 4.02 at 25 °C and the particle size was found to be in the range of 302 ± 4.62 nm while the zeta potential was -7.8 ± 1.22 mV and the polydispersity index of 0.221 ± 0.017. The wound regeneration process was evaluated in vivo by different techniques, the formulation group (FG) showed high wound healing potential as compared to the standard group (SD) and control group (CG). These findings reveal that this nanoemulsion formulation can be used effectively for wound healing.


Asunto(s)
Acriflavina , Quemaduras , Ratas , Animales , Emulsiones/química , Acriflavina/farmacología , Ratas Sprague-Dawley , Cicatrización de Heridas , Tamaño de la Partícula , Quemaduras/tratamiento farmacológico , Solventes
8.
Biomaterials ; 289: 121801, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36137416

RESUMEN

Iodine-125 (125I) brachytherapy has become one of the most effective palliative treatment options for advanced esophageal cancer. However, resistance toward 125I brachytherapy caused by pre-existing tumor hypoxia and hypoxia-inducible factor 1 (HIF-1) signaling pathway activation represents a significant limitation in esophageal cancer treatment. To circumvent these problems, herein, we proposed an innovative strategy to alleviate radioresistance of brachytherapy by co-encapsulating catalase (CAT) and HIF-1 inhibitor-acriflavine (ACF) into the hydrophilic cavities of liposome, termed as "ACF-CAT@Lipo". Under overexpressed H2O2 stimulation in the tumor region, the fabricated ACF-CAT@Lipo can generate an amount of O2 and alleviate tumor hypoxia in vitro and in vivo. Furthermore, cooperating with ACF, the expression of hypoxia-related protein (e.g. HIF-1α, VEGF, MMP-2) are obviously decreased. Importantly, the copious oxygenation and the significant inhibition expression of HIF-1α can further improve the radiosensitivity of 125I brachytherapy and finally realize the eradication of esophageal cancer in vivo. The oxygen enrichment and HIF-1 inhibition function of ACF-CAT@Lipo provides a new strategy to overcome the brachytherapy resistance of esophageal cancer therapy.


Asunto(s)
Braquiterapia , Neoplasias Esofágicas , Acriflavina/farmacología , Catalasa , Línea Celular Tumoral , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/radioterapia , Humanos , Peróxido de Hidrógeno , Hipoxia , Factor 1 Inducible por Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia , Radioisótopos de Yodo , Liposomas , Metaloproteinasa 2 de la Matriz , Oxígeno/metabolismo , Factor A de Crecimiento Endotelial Vascular
9.
J Photochem Photobiol B ; 234: 112537, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35939916

RESUMEN

BACKGROUND: photodynamics therapy (PDT) induces tumor cell death through oxidative stress and is closely associated with the expression of hypoxia inducible factor-1a (HIF1a), which activates multiple downstream survival signaling pathways. Therefore, the purpose of this study was to investigate the expression levels of HIF1a proteins in PDT-treated GBM cells and to determine whether inhibition of HIF1a reduces survival signals to enhance the efficacy of PDT. RESULTS: PDT combined with Acriflavine (ACF, PA) decreased the expression of HIF1a and regulated the downstream expression of GLUT-1, GLUT-3, HK2 and other gluconeogenic pathway proteins. PA group significantly suppressed tumor growth to improve the efficacy of PDT. METHODS: We first performed the correlation of HIF1a, GLUT-1, GLUT-3, and HK2, and quantified the expression of HIF1a on tumor grades and IDH mutation classification by TCGA and CGGA databases. Then, we used immunohistochemistry method to detect four gene expression levels in human GBM tissues. Besides, we examined the effects of different treatments on the proliferation, migration and invasion ability of GBM cell lines by CCK8, wound healing and transwell assays. ACF, a HIF1a/HIF1ß dimerization inhibitor, was used to evaluate its adjuvant effect on the efficacy of PDT. CONCLUSION: HIF1a is activated in GBM cell lines and contributes to the survival of tumor cells after PDT in vitro and in vivo. PA group inhibited HIF1a expression and improved PDT efficacy in the treatment of recalcitrant GBM.


Asunto(s)
Glioblastoma , Fotoquimioterapia , Acriflavina/farmacología , Acriflavina/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Humanos , Factor 1 Inducible por Hipoxia/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia , Transducción de Señal
10.
J Med Chem ; 65(17): 11415-11432, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36018000

RESUMEN

Acriflavine (ACF) has been known for years as an antibacterial drug. The identification of key oncogenic mechanisms has brought, in recent years, a significant increase in studies on ACF as a multipurpose drug that would improve the prognosis for cancer patients. ACF interferes with the expression of the hypoxia inducible factor, thus acting on metastatic niches of tumors and significantly enhancing the effects of other anticancer therapies. It has been recognized as the most potent HIF-1 inhibitor out of the 336 drugs approved by the FDA. This work presents up-to-date knowledge about the mechanisms of action of ACF and its related prodrug systems in the context of anticancer and SARS-CoV-2 inhibitory properties. It explains the multitask nature of this drug and suggests mechanisms of ACF's action on the coronavirus. Other recent reports on ACF-based systems as potential antibacterial and antiviral drugs are also described.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Neoplasias , Acridinas/farmacología , Acridinas/uso terapéutico , Acriflavina/farmacología , Acriflavina/uso terapéutico , Antibacterianos , Humanos , Sustancias Intercalantes , SARS-CoV-2
11.
J Immunol Res ; 2022: 1328542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935580

RESUMEN

Colon cancer ranks third worldwide, and it has a growing incidence with urbanization and industrialization. Drug resistance in colon cancer is gradually affecting the treatment. This study focused on the mechanisms by which acriflavine (ACF) enhances the radiosensitivity of colon cancer cells. First, the expression and activation levels of tumor suppressor protein p53 were shown high in normal cells and tissues in its detection, which suggests that p53 is likely to be a key factor in colon cancer. Then, the expression of p53 ended up increasing in ACF group after SW620 cells were cultured with ACF. In addition, ACF group had some other changes. The expression of mitochondrial related antiapoptotic protein Bcl-2 increased, while the expression of proapoptotic protein Bax, Bad, cytopigment C, and apoptotic inducer AIF decreased. At the same time, the ability of apoptosis was enhanced, and the ability of proliferation and invasion was decreased. This suggests that ACF can promote p53 expression and affect mitochondrial function and the radiosensitivity of SW620. The luciferase reporting experiment showed that there was a binding site between ACF and p53. Besides, when IR treatment was applied to SW620 with high p53 expression, there was an increase in the expression of Bcl-2 in SW620 and decrease in Bax, Bad, and cytopigment C in AIF. Meanwhile, the cell apoptosis became stronger, and the proliferation and invasion became weaker. The experimental results were similar to those of SW620 cells cultured with ACF, suggesting that p53 is an intermediate factor in the regulation of SW620 by ACF. Finally, in this study, cells were cultured with ACF, and p53 was knocked down at the same time. The experimental results showed that after p53 was knocked down. ACF's ability to regulate SW620 is partially removed. This confirms the view that ACF regulates SW620 cells by regulating p53. In summary, this study found the mechanism by which ACF causes mitochondrial dysfunction and improves the radiosensitivity of colon cancer cells by activating the tumor suppressor protein p53, which may contribute to solving the drug resistance in colon cancer.


Asunto(s)
Neoplasias del Colon , Proteína p53 Supresora de Tumor , Acriflavina/metabolismo , Acriflavina/farmacología , Acriflavina/uso terapéutico , Proteínas Reguladoras de la Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/radioterapia , Humanos , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Tolerancia a Radiación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo
12.
ACS Appl Mater Interfaces ; 14(25): 28615-28627, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35700479

RESUMEN

In this study, we present a complementary approach for obtaining an effective drug, based on acriflavine (ACF) and zirconium-based metal-organic frameworks (MOFs), against SARS-CoV-2. The experimental results showed that acriflavine inhibits the interaction between viral receptor-binding domain (RBD) of spike protein and angiotensin converting enzyme-2 (ACE2) host receptor driving viral cell entry. The prepared ACF@MOF composites exhibited low (MOF-808 and UiO-66) and high (UiO-67 and NU-1000) ACF loadings. The drug release profiles from prepared composites showed different release kinetics depending on the local pore environment. The long-term ACF release with the effective antiviral ACF concentration was observed for all studied ACF@MOF composites. The density functional theory (DFT) calculations allowed us to determine that π-π stacking together with electrostatic interaction plays an important role in acriflavine adsorption and release from ACF@MOF composites. The molecular docking results have shown that acriflavine interacts with several possible binding sites within the RBD and binding site at the RBD/ACE2 interface. The cytotoxicity and ecotoxicity results have confirmed that the prepared ACF@MOF composites may be considered potentially safe for living organisms. The complementary experimental and theoretical results presented in this study have confirmed that the ACF@MOF composites may be considered a potential candidate for the COVID-19 treatment, which makes them good candidates for clinical trials.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Estructuras Metalorgánicas , Acriflavina/farmacología , Enzima Convertidora de Angiotensina 2 , Humanos , Simulación del Acoplamiento Molecular , Ácidos Ftálicos , Unión Proteica , SARS-CoV-2 , Circonio/química
13.
Mol Biol Rep ; 49(4): 2755-2763, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35088375

RESUMEN

BACKGROUND: Resistance to cisplatin is a major obstacle to effective treatment of bladder cancer (BC). The present study aimed to determine whether a combination of acriflavine (ACF) with cisplatin could potentiate the antitumor property of cisplatin against the BC cells. Furthermore, the molecular mechanism behind the anticancer action of ACF was considered. METHODS AND RESULTS: Two human BC cells (5637 and EJ138) contain mutated form of p53 was culture in standard condition. Cotreatment protocol (simultaneous combination of IC30 value of ACF + various dose of cisplatin for 72 h) and pretreatment protocol (pretreatment with IC15 value of ACF for 24 h + various dose of cisplatin for 48 h) was used to determine the effect of ACF on the cells' sensitivity to main drug cisplatin. To assess the mechanism of action of ACF, real-time PCR was used to evaluate mRNA levels of hypoxia-inducible factor-1α (HIF-1α), Bax, Bcl-2, topoisomerase1 (TOP1) and topoisomerase 2 (TOP2A). Combination of ACF with cisplatin either as cotreatment or opretreatment protocol could significantly reduce the IC50 values of cisplatin as compared to the IC50 of cisplatin when use as a single drug. In addition, ACF could markedly decrease mRNA expression of TOP1 and TOP2A without changing the expression of HIF-1ɑ, Bax and Bcl-2. CONCLUSIONS: Our findings indicate that combination of cisplatin with ACF was able to significantly enhance the sensitivity of BC cells to cisplatin. The antitumor activity of ACF is exerted through the downregulation of TOP1 and TOP2A genes expression. ACF may serve as an adjuvant to boost cisplatin-based chemotherapy.


Asunto(s)
Antineoplásicos , Neoplasias de la Vejiga Urinaria , Acriflavina/farmacología , Acriflavina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Regulación hacia Abajo , Resistencia a Antineoplásicos , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
14.
Chem Commun (Camb) ; 58(12): 1926-1929, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35040832

RESUMEN

Intracellular photocatalytic-proximity labeling (iPPL) was developed to profile protein-protein interactions in the microenvironment of living cells. Acriflavine was found to be an efficient cell-membrane-permeable photocatalyst for introduction into the genetically HaloTag-fused protein of interest for iPPL with a radical labeling reagent, 1-methyl-4-arylurazole. iPPL was applied to the histone-associated protein H2B in HaloTag-H2B expressing HEK293FT cells. The proteins directly interacting with histones and RNA-binding proteins were selectively labeled in the intracellular environment, suggesting that the iPPL method has a smaller labeling radius (CA. 6 nm) than the BioID and APEX methods.


Asunto(s)
Procesos Fotoquímicos , Mapeo de Interacción de Proteínas , Acriflavina/farmacología , Catálisis , Células HEK293 , Histonas/metabolismo , Humanos , Proteínas de Unión al ARN/metabolismo
15.
Int J Oncol ; 60(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34913076

RESUMEN

Myeloid cell leukemia sequence 1 (MCL­1), an anti­apoptotic B­cell lymphoma 2 (BCL­2) family molecule frequently amplified in various human cancer cells, is known to be critical for cancer cell survival. MCL­1 has been recognized as a target molecule for cancer treatment. While various agents have emerged as potential MCL­1 blockers, the present study presented acriflavine (ACF) as a novel MCL­1 inhibitor in triple­negative breast cancer (TNBC). Further evaluation of its treatment potential on lung adenocarcinoma and glioblastoma multiforme (GBM) was also investigated. The anticancer effect of ACF on TNBC cells was demonstrated when MDA­MB­231 and HS578T cells were treated with ACF. ACF significantly induced typical intrinsic apoptosis in TNBCs in a dose­ and time­dependent manner via MCL­1 downregulation. MCL­1 downregulation by ACF treatment was revealed at each phase of protein expression. Initially, transcriptional regulation via reverse transcription­quantitative PCR was validated. Then, post­translational regulation was explained by utilizing an inhibitor against protein biosynthesis and proteasome. Lastly, immunoprecipitation of ubiquitinated MCL­1 confirmed the post­translational downregulation of MCL­1. In addition, the synergistic treatment efficacy of ACF with the well­known MCL­1 inhibitor ABT­263 against the TNBC cells was explored [combination index (CI)<1]. Conjointly, the anticancer effect of ACF was assessed in GBM (U87, U251 and U343), and lung cancer (A549 and NCI­H69) cell lines as well, using immunoblotting, cytotoxicity assay and FACS. The effect of the combination treatment using ACF and ABT­263 was estimated in GBM (U87, U343 and U251), and non­small cell lung cancer (A549) cells likewise. The present study suggested a novel MCL­1 inhibitory function of ACF and the synergistic antitumor effect with ABT­263.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Acriflavina/farmacología , Acriflavina/uso terapéutico , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Línea Celular Tumoral/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Combinación de Medicamentos , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico
16.
Eur J Pharm Biopharm ; 170: 179-186, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34968646

RESUMEN

Glioblastomas have been historically difficult to treat with poor long-term survival. With novel strategies focused on targeting hypoxia-inducible factor (HIF) regulatory pathways, recent evidence has shown that Acriflavine (ACF) can effectively target glioma invasiveness and recurrence. However, local delivery of ACF and its combinatory effects with Temozolomide (TMZ) and radiation therapy (XRT) have not yet been optimized. In this study we test a novel polymeric matrix that can gradually release ACF at the tumor bed site in combination with systemic TMZ and XRT. In vitro cytotoxicity assays of ACF in combination with TMZ and XRT were performed on rodent and human cell lines with CCK-8 and flow cytometry. In vitro drug release was measured and intracranial safety was assessed in tumor-free animals. Finally, efficacy was assessed in an intracranial gliosarcoma model and combination therapy with TMZ and XRT evaluated. Combination therapy of ACF, TMZ, and XRT was able to reduce cell viability and induce apoptosis in glioma cells. In vitro and in vivo release of ACF was measured in benchtop and animal models. Efficacy was established in an in vivo gliosarcoma model in which intracranial ACF (p < 0.01) significantly improved median survival and the combination therapy of ACF, TMZ and XRT (p < 0.01) significantly improved median survival and led to long-term survival (LTS). We provide evidence that ACF, combined with TMZ and XRT, led to LTS in an intracranial model of rat gliosarcoma. These findings, in combination with the use of a novel polymeric matrix that allows more gradual drug delivery, constitute a first step in the translation of this novel strategy to human use.


Asunto(s)
Acriflavina/administración & dosificación , Neoplasias Encefálicas/terapia , Implantes de Medicamentos , Glioma/terapia , Dosificación Radioterapéutica , Temozolomida/administración & dosificación , Implantes Absorbibles , Acriflavina/farmacología , Animales , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Terapia Combinada , Polímeros/química , Ratas , Ratas Endogámicas F344 , Tasa de Supervivencia , Temozolomida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Pharm Dev Technol ; 26(9): 934-942, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34338582

RESUMEN

Acriflavine (ACF) is an antiseptic compound with the potential antitumor activity which is used for the fluorescent staining of RNA due to its dominant fluorescent emission at ∼515 nm. Here, solid lipid nanoparticles (SLNs) containing ACF (ACF-SLNs) were prepared and their physicochemical properties, potential geno/cytotoxicity, as well as the fluorescent properties were investigated. FITC-annexin V/PI staining and cell cycle assays were carried out to find the type of cellular death caused. Particle size analysis and SEM images revealed that spherical ACF-SLNs had a homogeneous dispersion with a mean diameter of 106 ± 5.7 nm. Drug loading (DL) of 31.25 ± 4.21 mg/mL and high encapsulation efficiency (EE%) (89.75 ± 5.44) were found. ACF-SLNs physically were relatively stable in terms of dispersion, size, and EE. The uptake study demonstrated the potential use of fluorescent ACF-SLNs in bio-distribution studies. MTT assay showed that plain ACF could induce growth inhibition of A549 cells with IC50 of 8.5, 6, and 4.5 µMol after 24, 48, and 72 hours, respectively, while ACF-SLNs had stable cytotoxic effects after 48 hours. ACF-SLNs induced remarkable apoptosis and even necrosis after 48 h. Conclusively, ACF-SLNs with acceptable physicochemical features showed increased bioimpacts after 48 h compared to plain ACF.


Asunto(s)
Acriflavina/síntesis química , Antiinfecciosos Locales/síntesis química , Proliferación Celular/efectos de los fármacos , Química Farmacéutica/métodos , Liposomas/síntesis química , Células A549 , Acriflavina/farmacología , Antiinfecciosos Locales/farmacología , Proliferación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Humanos , Liposomas/farmacología , Nanopartículas , Tamaño de la Partícula
18.
Arch Microbiol ; 203(1): 183-191, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32803345

RESUMEN

In this study, the presence of plasmids responsible for carbohydrate fermentation and antibiotic resistance and the stability of these plasmids in artificial gastric juice were investigated in 20 Lactobacillus plantarum strains with probiotic properties. Plasmid curing was performed with novobiocin, acriflavine and elevated incubation temperature to identify plasmids encoded with carbohydrate fermentation and antibiotic resistance genes and to compare them with artificial gastric juice. Plasmid profiling of the strains revealed that 100% of the strains were harbouring plasmids in varying sizes and numbers. The plasmid number of the potential probiotic strains ranged between 1 and 4, and the plasmid size ranged between 5.779 and 16.138 kb. The potential probiotic strains could not survive in the artificial gastric juice at pH 2.0. Although the strains maintained their viability in an artificial gastric juice at pH 2.5 and 3.0, and their derivatives lost their plasmids at a high rate (100%). Similarly, high levels of cured derivatives were obtained with 8 µg/mL novobiocin and 100 µg/mL acriflavine applications, and 24 h incubation at 43 °C. All the experiments were also performed to compare with two L. plantarum-type strains containing plasmids responsible for tetracycline and tetracycline + erythromycin resistances. Artificial gastric juice and other plasmid curing treatments caused a high-frequency loss in the antibiotic resistances of type strains. Determining plasmid stability in artificial gastric juice is a novel approach. Plasmid stability in the gastrointestinal tract is important for maintaining the plasmid-encoded probiotic properties.


Asunto(s)
Acriflavina/farmacología , Farmacorresistencia Bacteriana/genética , Jugo Gástrico/microbiología , Lactobacillus plantarum/efectos de los fármacos , Novobiocina/farmacología , Antibacterianos/farmacología , Fermentación , Jugo Gástrico/efectos de los fármacos , Calor , Lactobacillus plantarum/genética , Plásmidos/genética , Probióticos , Resistencia a la Tetraciclina/genética
19.
FEMS Microbiol Lett ; 367(21)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33118020

RESUMEN

Helicobacter pylori, a type 1 carcinogen, accounts for numerous gastric cancer-related deaths worldwide. Repurposing existing drugs or developing new ones for a combinatorial approach against increasing antimicrobial resistance is the need of the hour. This study highlights the efficacy of acriflavine hydrochloride (ACF-HCl) in inhibiting the growth of H. pylori reference strain and antibiotic-resistant clinical isolates at low concentrations. ACF-HCl inhibits H. pylori growth at MIC value 10 times less than that in Escherichia coli, another Gram-negative bacteria. Furthermore, ACF-HCl demonstrates synergistic effect with clarithromycin, a commonly used antibiotic against H. pylori. ACF-HCl treatment also eradicates H. pylori infection in the mice model efficiently. Our in vitro data indicate that bacterial membrane is the prime target. The novel action of ACF-HCl against antibiotic-resistant clinical isolates, synergistic effect with the conventional antibiotic clarithromycin and eradication of H. pylori from infected mice highlight the potential of ACF-HCl as a promising therapeutic agent against H. pylori by itself as well as for combinatorial therapy.


Asunto(s)
Acriflavina/análogos & derivados , Acriflavina/farmacología , Acriflavina/uso terapéutico , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Animales , Antibacterianos/farmacología , Claritromicina/uso terapéutico , Farmacorresistencia Bacteriana/efectos de los fármacos , Sinergismo Farmacológico , Ratones , Pruebas de Sensibilidad Microbiana , Resultado del Tratamiento
20.
Angew Chem Int Ed Engl ; 59(51): 23228-23238, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-32881223

RESUMEN

A facile approach to assemble catalase-like photosensitizing nanozymes with a self-oxygen-supplying ability was developed. The process involved Fe3+ -driven self-assembly of fluorenylmethyloxycarbonyl (Fmoc)-protected amino acids. By adding a zinc(II) phthalocyanine-based photosensitizer (ZnPc) and the hypoxia-inducible factor 1 (HIF-1) inhibitor acriflavine (ACF) during the Fe3+ -promoted self-assembly of Fmoc-protected cysteine (Fmoc-Cys), the nanovesicles Fmoc-Cys/Fe@Pc and Fmoc-Cys/Fe@Pc/ACF were prepared, which could be disassembled intracellularly. The released Fe3+ could catalyze the transformation of H2 O2 enriched in cancer cells to oxygen efficiently, thereby ameliorating the hypoxic condition and promoting the photosensitizing activity of the released ZnPc. With an additional therapeutic component, Fmoc-Cys/Fe@Pc/ACF exhibited higher in vitro and in vivo photodynamic activities than Fmoc-Cys/Fe@Pc, demonstrating the synergistic effect of ZnPc and ACF.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Férricos/farmacología , Indoles/farmacología , Nanopartículas/química , Compuestos Organometálicos/farmacología , Fármacos Fotosensibilizantes/farmacología , Hipoxia Tumoral/efectos de los fármacos , Acriflavina/química , Acriflavina/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Compuestos Férricos/síntesis química , Compuestos Férricos/química , Células HT29 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Indoles/síntesis química , Indoles/química , Iones/síntesis química , Iones/química , Iones/farmacología , Isoindoles , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/farmacología , Ratones , Ratones Desnudos , Imagen Óptica , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Tamaño de la Partícula , Fotoquimioterapia , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Propiedades de Superficie , Compuestos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...