Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Int J Biol Macromol ; 266(Pt 2): 131239, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569992

RESUMEN

We present the design, synthesis, computational analysis, and biological assessment of several acrylonitrile derived imidazo[4,5-b]pyridines, which were evaluated for their anticancer and antioxidant properties. Our aim was to explore how the number of hydroxy groups and the nature of nitrogen substituents influence their biological activity. The prepared derivatives exhibited robust and selective antiproliferative effects against several pancreatic adenocarcinoma cells, most markedly targeting Capan-1 cells (IC50 1.2-5.3 µM), while their selectivity was probed relative to normal PBMC cells. Notably, compound 55, featuring dihydroxy and bromo substituents, emerged as a promising lead molecule. It displayed the most prominent antiproliferative activity without any adverse impact on the viability of normal cells. Furthermore, the majority of studied derivatives also exhibited significant antioxidative activity within the FRAP assay, even surpassing the reference molecule BHT. Computational analysis rationalized the results by highlighting the dominance of the electron ionization for the antioxidant features with the trend in the computed ionization energies well matching the observed activities. Still, in trihydroxy derivatives, their ability to release hydrogen atoms and form a stable O-H⋯O•⋯H-O fragment upon the H• abstraction prevails, promoting them as excellent antioxidants in DPPH• assays as well.


Asunto(s)
Acrilonitrilo , Antineoplásicos , Antioxidantes , Proliferación Celular , Neoplasias Pancreáticas , Piridinas , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Acrilonitrilo/química , Acrilonitrilo/farmacología , Acrilonitrilo/análogos & derivados , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Piridinas/química , Piridinas/farmacología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Relación Estructura-Actividad , Imidazoles/química , Imidazoles/farmacología , Imidazoles/síntesis química
2.
Environ Pollut ; 346: 123601, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373624

RESUMEN

The pesticide application method is one of the important factors affecting its effectiveness and residues, and the risk of pesticides to non-target organisms. To elucidate the effect of application methods on the efficacy and residue of cyenopyrafen, and the toxic effects on pollinators honeybees in strawberry cultivation, the efficacy and residual behavior of cyenopyrafen were investigated using foliar spray and backward leaf spray in field trials. The results showed that the initial deposition of cyenopyrafen using backward leaf spray on target leaves reached 5.06-9.81 mg/kg at the dose of 67.5-101.25 g a.i./ha, which was higher than that using foliar spray (2.62-3.71 mg/kg). The half-lives of cyenopyrafen in leaves for foliar and backward leaf spray was 2.3-3.3 and 5.3-5.9 d, respectively. The residues (10 d) of cyenopyrafen in leaves after backward leaf spray was 1.41-3.02 mg/kg, which was higher than that after foliar spraying (0.25-0.37 mg/kg). It is the main reason for the better efficacy after backward leaf spray. However, the residues (10 d) in strawberry after backward leaf spray and foliar spray was 0.04-0.10 and < 0.01 mg/kg, which were well below the established maximum residue levels of cyenopyrafen in Japan and South Korea for food safety. To further investigate the effects of cyenopyrafen residues after backward leaf spray application on pollinator honeybees, sublethal effects of cyenopyrafen on honeybees were studied. The results indicated a significant inhibition in the detoxification metabolic enzymes of honeybees under continuous exposure of cyenopyrafen (0.54 and 5.4 mg/L) over 8 d. The cyenopyrafen exposure also alters the composition of honeybee gut microbiota, such as increasing the relative abundance of Rhizobiales and decreasing the relative abundance of Acetobacterales. The comprehensive data on cyenopyrafen provide basic theoretical for environmental and ecological risk assessment, while backward leaf spray proved to be effective and safe for strawberry cultivation.


Asunto(s)
Acrilonitrilo/análogos & derivados , Fragaria , Plaguicidas , Abejas , Animales , Pirazoles
3.
Phys Chem Chem Phys ; 24(38): 23049-23075, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36128991

RESUMEN

Aggregation-induced emission (AIE) is a unique photophysical phenomenon of organic chromophores, exhibiting a significant emission enhancement in the condensed phase (aggregate/solid/film) than in the solution phase. This remarkable feature offers excellent strategies to obtain molecular materials possessing unique spectral signatures such as high fluorescence intensity, excellent quantum yield, large Stokes shift, and exquisite optoelectronic properties. Unlike a great library of articles with propeller-shaped tetraphenylethene molecular frameworks, reviews based on the mechanistic understandings of α-cyanostilbenes are relatively rare. Considering this, herein, we highlight the structure-property relationship of α-cyanostilbene-based AIE frameworks for tuning the aggregation through molecular displacement with reference to transition dipoles based on the following parameters: (i) positional substitution and orientation of the α-cyano unit, (ii) π-conjugation length (da or db), (iii) molecular size (DAr) of the peripheral substitutions with respect to the α-cyano unit, and (iv) branching effect. In addition, we explain the utility of their unique AIE characteristics for various optoelectronic applications, including self-assembled nanostructures, chemical sensing, organogelation, white light emission, molecular switches, multiphoton absorption, liquid crystals, anion receptors, and biological probes. It is anticipated that organic materials with a cyanostilbene framework will continue to garner attention in the interdisciplinary fields of biology, chemistry, and materials science for diverse applications.


Asunto(s)
Acrilonitrilo , Nanoestructuras , Acrilonitrilo/análogos & derivados , Fluorescencia , Colorantes Fluorescentes/química
4.
Chem Commun (Camb) ; 58(83): 11661-11664, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36169286

RESUMEN

Dissolution dynamic nuclear polarization (dDNP) is a versatile hyperpolarization technique to boost signal intensities in nuclear magnetic resonance (NMR) spectroscopy. The possibility to dissolve biomolecules in a hyperpolarized aqueous buffer under mild conditions has recently widened the scope of NMR by dDNP. The water-to-target hyperpolarization transfer mechanisms remain yet unclear, not least due to an often-encountered dilemma of dDNP experiments: The strongly enhanced signal intensities are accompanied by limited structural information as data acquisition is restricted to short time series of only one-dimensional spectra or a single correlation spectrum. Tackling this challenge, we combine dDNP with molecular dynamics (MD) simulations and predictions of cross-relaxation rates to unravel the spin dynamics of magnetization flow in hyperpolarized solutions.


Asunto(s)
Imagen por Resonancia Magnética , Agua , 2-Naftilamina/análogos & derivados , Acrilonitrilo/análogos & derivados , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Agua/química
5.
NMR Biomed ; 35(11): e4787, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35704397

RESUMEN

Hyperpolarized 15 N sites have been found to be promising for generating long-lived hyperpolarized states in solution, and present a promising approach for utilizing dissolution-dynamic nuclear polarization (dDNP)-driven hyperpolarized MRI for imaging in biology and medicine. Specifically, 15 N sites with directly bound protons were shown to be useful when dissolved in D2 O. The purpose of the current study was to further characterize and increase the visibility of such 15 N sites in solutions that mimic an intravenous injection during the first cardiac pass in terms of their H2 O:D2 O composition. The T1 values of hyperpolarized 15 N in [15 N2 ]urea and [15 N]NH4 Cl demonstrated similar dependences on the H2 O:D2 O composition of the solution, with a T1 of about 140 s in 100% D2 O, about twofold shortening in 90% and 80% D2 O, and about threefold shortening in 50% D2 O. [13 C]urea was found to be a useful solid-state 13 C marker for qualitative monitoring of the 15 N polarization process in a commercial pre-clinical dDNP device. Adding trace amounts of Gd3+ to the polarization formulation led to higher solid-state polarization of [13 C]urea and to higher polarization levels of [15 N2 ]urea in solution.


Asunto(s)
Protones , Agua , 2-Naftilamina/análogos & derivados , Acrilonitrilo/análogos & derivados , Imagen por Resonancia Magnética , Urea
6.
Insect Biochem Mol Biol ; 144: 103761, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35341907

RESUMEN

Succinate dehydrogenase (SDH) inhibitors such as cyflumetofen, cyenopyrafen and pyflubumide, are selective acaricides that control plant-feeding spider mite pests. Resistance development to SDH inhibitors has been investigated in a limited number of populations of the spider mite Tetranychus urticae and is associated with cytochrome P450 based detoxification and target-site mutations such as I260 T/V in subunit B and S56L in subunit C of SDH. Here, we report the discovery of a H258Y substitution in subunit B of SDH in a highly pyflubumide resistant population of T. urticae. As this highly conserved residue corresponds to one of the ubiquinone binding residues in fungi and bacteria, we hypothesized that H258Y could have a strong impact on SDH inhibitors toxicity. Marker assisted introgression and toxicity bioassays revealed that H258Y caused high cross resistance between cyenopyrafen and pyflubumide, but increased cyflumetofen toxicity. Resistance associated with H258Y was determined as dominant for cyenopyrafen, but recessive for pyflubumide. In vitro SDH assays with extracted H258 mitochondria showed that cyenopyrafen and the active metabolites of pyflubumide and cyflumetofen, interacted strongly with complex II. However, a clear shift in IC50s was observed for cyenopyrafen and the metabolite of pyflubumide when Y258 mitochondria were investigated. In contrast, the mutation slightly increased affinity of the cyflumetofen metabolite, likely explaining its increased toxicity for the mite lines carrying the substitution. Homology modeling and ligand docking further revealed that, although the three acaricides share a common binding motif in the Q-site of SDH, H258Y eliminated an important hydrogen bond required for cyenopyrafen and pyflubumide binding. In addition, the hydrogen bond between cyenopyrafen and Y117 in subunit D was also lost upon mutation. In contrast, cyflumetofen affinity was enhanced due to an additional hydrogen bond to W215 and hydrophobic interactions with the introduced Y258 in subunit B. Altogether, our findings not only highlight the importance of the highly conserved histidine residue in the binding of SDH inhibitors, but also reveal that a resistance mutation can provide both positive and negative cross-resistance within the same acaricide mode of action group.


Asunto(s)
Acaricidas , Tetranychidae , Acaricidas/metabolismo , Acaricidas/farmacología , Acrilonitrilo/análogos & derivados , Animales , Mutación , Propionatos , Pirazoles , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Tetranychidae/genética , Tetranychidae/metabolismo
7.
Med Sci (Basel) ; 9(4)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34698235

RESUMEN

Melanoma accounts for 1.7% of global cancer diagnoses and is the fifth most common cancer in the US. Melanoma incidence is rising in developed, predominantly fair-skinned countries, growing over 320% in the US since 1975. However, US mortality has fallen almost 30% over the past decade with the approval of 10 new targeted or immunotherapy agents since 2011. Mutations in the signaling-protein BRAF, present in half of cases, are targeted with oral BRAF/MEK inhibitor combinations, while checkpoint inhibitors are used to restore immunosurveillance likely inactivated by UV radiation. Although the overall 5-year survival has risen to 93.3% in the US, survival for stage IV disease remains only 29.8%. Melanoma is most common in white, older men, with an average age of diagnosis of 65. Outdoor UV exposure without protection is the main risk factor, although indoor tanning beds, immunosuppression, family history and rare congenital diseases, moles, and obesity contribute to the disease. Primary prevention initiatives in Australia implemented since 1988, such as education on sun-protection, have increased sun-screen usage and curbed melanoma incidence, which peaked in Australia in 2005. In the US, melanoma incidence is not projected to peak until 2022-2026. Fewer than 40% of Americans report practicing adequate protection (sun avoidance from 10 a.m.-4 p.m. and regular application of broad-spectrum sunscreen with an SPF > 30). A 2-4-fold return on investment is predicted for a US sun-protection education initiative. Lesion-directed skin screening programs, especially for those at risk, have also cost-efficiently reduced melanoma mortality.


Asunto(s)
Melanoma/epidemiología , Neoplasias Cutáneas/epidemiología , Acrilonitrilo/análogos & derivados , Acrilonitrilo/uso terapéutico , Anciano , Compuestos de Anilina/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Incidencia , Melanoma/tratamiento farmacológico , Melanoma/prevención & control , Monitorización Inmunológica , Proteínas Proto-Oncogénicas B-raf/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/prevención & control , Protectores Solares/uso terapéutico , Estados Unidos/epidemiología
8.
Pest Manag Sci ; 77(11): 5149-5157, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34255424

RESUMEN

BACKGROUND: Pyflubumide and cyenopyrafen are respiratory complex II (complex II) inhibitors. Previous quantitative trait locus analyses suggested associations of I260V and S56L in complex II subunit B (B-I260V) and subunit C (C-S56L) with pyflubumide and cyenopyrafen resistance, respectively, in Tetranychus urticae. However, although resistant strains had been selected separately by these acaricides, all strains were homozygous for both B-I260V and C-S56L. Hence, the effects of each mutation on resistance development remain unclear. RESULTS: We established strains homozygous for B-I260V with C-S56 (B-I260V_I260V/C-S56_S56) and for C-S56L with B-I260 (B-I260_I260/C-S56L_S56L). High resistance levels (LC50 > 1000 mg L-1 ) to pyflubumide and cyenopyrafen was not conferred by B-I260V or C-S56L alone. Next, we prepared intermixed strains by crossing B-I260V_I260V/C-S56_S56 and B-I260_I260/C-S56L_S56L. Selection of the intermixed strains by either acaricide caused very high resistance levels (LC50 ≥ 10 000 mg L-1 ) to both acaricides and fixed both mutations. Allele-selected recoupling of the mutations without acaricide selection also conferred very high resistance levels to both acaricides in the intermixed strains. Unlike these, B-I260V or C-S56L alone conferred very high and high resistance levels to cyflumetofen, respectively. CONCLUSION: We conclude that the effect of individual mutations characteristically varies among complex II inhibitors. Moreover, very high resistance levels to pyflubumide and cyenopyrafen is conferred by the co-occurrence of B-I260V and C-S56L mutations, which alone have limited effects on resistance level.


Asunto(s)
Acaricidas , Tetranychidae , Acaricidas/farmacología , Acrilonitrilo/análogos & derivados , Animales , Complejo II de Transporte de Electrones , Mutación , Pirazoles , Tetranychidae/genética
9.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071193

RESUMEN

Cutaneous melanoma represents one of the deadliest types of skin cancer. The prognosis strongly depends on the disease stage, thus early detection is crucial. New therapies, including BRAF and MEK inhibitors and immunotherapies, have significantly improved the survival of patients in the last decade. However, intrinsic and acquired resistance is still a challenge. In this review, we discuss two major aspects that contribute to the aggressiveness of melanoma, namely, the embryonic origin of melanocytes and melanoma cells and cellular plasticity. First, we summarize the physiological function of epidermal melanocytes and their development from precursor cells that originate from the neural crest (NC). Next, we discuss the concepts of intratumoral heterogeneity, cellular plasticity, and phenotype switching that enable melanoma to adapt to changes in the tumor microenvironment and promote disease progression and drug resistance. Finally, we further dissect the connection of these two aspects by focusing on the transcriptional regulators MSX1, MITF, SOX10, PAX3, and FOXD3. These factors play a key role in NC initiation, NC cell migration, and melanocyte formation, and we discuss how they contribute to cellular plasticity and drug resistance in melanoma.


Asunto(s)
Plasticidad de la Célula/fisiología , Resistencia a Antineoplásicos/fisiología , Melanoma/metabolismo , Cresta Neural/metabolismo , Neoplasias Cutáneas/metabolismo , Acrilonitrilo/análogos & derivados , Acrilonitrilo/farmacología , Compuestos de Anilina/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Diferenciación Celular , Movimiento Celular , Resistencia a Antineoplásicos/genética , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factor de Transcripción MSX1/genética , Melanocitos/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/patología , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción PAX3/genética , Fenotipo , Pirimidinonas/farmacología , Factores de Transcripción SOXE/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología
10.
JCI Insight ; 6(15)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34156985

RESUMEN

Gorham-Stout disease (GSD) is a sporadically occurring lymphatic disorder. Patients with GSD develop ectopic lymphatics in bone, gradually lose bone, and can have life-threatening complications, such as chylothorax. The etiology of GSD is poorly understood, and current treatments for this disease are inadequate for most patients. To explore the pathogenesis of GSD, we performed targeted high-throughput sequencing with samples from a patient with GSD and identified an activating somatic mutation in KRAS (p.G12V). To characterize the effect of hyperactive KRAS signaling on lymphatic development, we expressed an active form of KRAS (p.G12D) in murine lymphatics (iLECKras mice). We found that iLECKras mice developed lymphatics in bone, which is a hallmark of GSD. We also found that lymphatic valve development and maintenance was altered in iLECKras mice. Because most iLECKras mice developed chylothorax and died before they had significant bone disease, we analyzed the effect of trametinib (an FDA-approved MEK1/2 inhibitor) on lymphatic valve regression in iLECKras mice. Notably, we found that trametinib suppressed this phenotype in iLECKras mice. Together, our results demonstrate that somatic activating mutations in KRAS can be associated with GSD and reveal that hyperactive KRAS signaling stimulates the formation of lymphatics in bone and impairs the development of lymphatic valves. These findings provide insight into the pathogenesis of GSD and suggest that trametinib could be an effective treatment for GSD.


Asunto(s)
Huesos/patología , Vasos Linfáticos , Osteólisis Esencial , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridonas/farmacología , Pirimidinonas/farmacología , Acrilonitrilo/análogos & derivados , Acrilonitrilo/farmacología , Compuestos de Anilina/farmacología , Animales , Modelos Animales de Enfermedad , Mutación con Ganancia de Función , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Linfangiogénesis/genética , Vasos Linfáticos/anomalías , Vasos Linfáticos/patología , Ratones , Osteólisis Esencial/genética , Osteólisis Esencial/patología , Transducción de Señal , Estructuras Linfoides Terciarias/genética , Estructuras Linfoides Terciarias/patología
11.
Food Chem ; 359: 129925, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33964657

RESUMEN

A modified QuEChERS method for determining cyenopyrafen in strawberries, mandarins and their processed products was established with a good linearity (R2 > 0.9981), accuracy (recoveries of 83% to 111%) and precision (relative standard deviations of 0.9% to 14%). The limit of quantification (LOQ) was 0.01 mg/kg. Field results showed that the half-lives of cyenopyrafen were 6.8 and 11.8 d in strawberry and mandarin respectively, and that the final residues were within established maximum residue limits (MRLs). The household processing factors (PFs) for cyenopyrafen residues in strawberry and mandarin fruits were also studied: residues increased in strawberry jam (PF 1.51) and mandarin juice (1.31) but decreased in strawberries (0.58) and mandarin pulp (<0.17) after washing and peeling, respectively. A risk assessment showed that the risk from long-term dietary exposures to cyenopyrafen was 73.73%, indicating that consuming these products was unlikely to present a public health concern.


Asunto(s)
Acrilonitrilo/análogos & derivados , Citrus sinensis/química , Fragaria/química , Frutas/química , Residuos de Plaguicidas/química , Pirazoles/química , Acrilonitrilo/análisis , Acrilonitrilo/química , Exposición Dietética , Residuos de Plaguicidas/análisis , Pirazoles/análisis , Medición de Riesgo
12.
J Comput Aided Mol Des ; 35(5): 613-628, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33945106

RESUMEN

The Arylhydrocarbon Receptor (AhR), a member of the Per-ARNT-SIM transcription factor family, has been as a potential new target to treat breast cancer sufferers. A series of 2-phenylacrylonitriles targeting AhR has been developed that have shown promising and selective activity against cancerous cell lines while sparing normal non-cancerous cells. A quantitative structure-activity relationship (QSAR) modeling approach was pursued in order to generate a predictive model for cytotoxicity to support ongoing synthetic activities and provide important structure-activity information for new structure design. Recent work conducted by us has identified a number of compounds that exhibited false positive cytotoxicity values in the standard MTT assay. This work describes a good quality model that not only predicts the activity of compounds in the MCF-7 breast cancer cell line, but was also able to identify structures that subsequently gave false positive values in the MTT assay by identifying compounds with aberrant biological behavior. This work not only allows the design of future breast cancer cytotoxic activity in vitro, but allows the avoidance of the synthesis of those compounds anticipated to result in anomalous cytotoxic behavior, greatly enhancing the design of such compounds.


Asunto(s)
Acrilonitrilo/análogos & derivados , Acrilonitrilo/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Femenino , Humanos , Células MCF-7 , Relación Estructura-Actividad Cuantitativa , Receptores de Hidrocarburo de Aril/metabolismo
13.
Inflammopharmacology ; 29(3): 617-640, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34002330

RESUMEN

Inflammation is not only a defense mechanism of the innate immune system against invaders, but it is also involved in the pathogenesis of many diseases such as atherosclerosis, thrombosis, diabetes, epilepsy, and many neurodegenerative disorders. The World Health Organization (WHO) reports worldwide estimates of people (9.6% in males and 18.0% in females) aged over 60 years, suffering from symptomatic osteoarthritis, and around 339 million suffering from asthma. Other chronic inflammatory diseases, such as ulcerative colitis and Crohn's disease are also highly prevalent. The existing anti-inflammatory agents, both non-steroidal and steroidal, are highly effective; however, their prolonged use is marred by the severity of associated side effects. A holistic approach to ensure patient compliance requires understanding the pathophysiology of inflammation and exploring new targets for drug development. In this regard, various intracellular cell signaling pathways and their signaling molecules have been identified to be associated with inflammation. Therefore, chemical inhibitors of these pathways may be potential candidates for novel anti-inflammatory drug approaches. This review focuses on the anti-inflammatory effect of these inhibitors (for JAK/STAT, MAPK, and mTOR pathways) describing their mechanism of action through literature search, current patents, and molecules under clinical trials.


Asunto(s)
Acrilonitrilo/análogos & derivados , Compuestos de Anilina/uso terapéutico , Antiinflamatorios/uso terapéutico , Líquido Intracelular/efectos de los fármacos , Inhibidores de las Cinasas Janus/uso terapéutico , Inhibidores mTOR/uso terapéutico , Transducción de Señal/efectos de los fármacos , Acrilonitrilo/farmacología , Acrilonitrilo/uso terapéutico , Compuestos de Anilina/farmacología , Animales , Antiinflamatorios/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Líquido Intracelular/metabolismo , Inhibidores de las Cinasas Janus/farmacología , Inhibidores mTOR/farmacología , Factores de Transcripción STAT/antagonistas & inhibidores , Transducción de Señal/fisiología
15.
Melanoma Res ; 31(3): 197-207, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33904516

RESUMEN

Melanoma remains the most aggressive and fatal form of skin cancer, despite several FDA-approved targeted chemotherapies and immunotherapies for use in advanced disease. Of the 100 350 new patients diagnosed with melanoma in 2020 in the US, more than half will develop metastatic disease leading to a 5-year survival rate <30%, with a majority of these developing drug-resistance within the first year of treatment. These statistics underscore the critical need in the field to develop more durable therapeutics as well as those that can overcome chemotherapy-induced drug resistance from currently approved agents. Fortunately, several of the drug-resistance pathways in melanoma, including the proteins in those pathways, rely in part on Hsp90 chaperone function. This presents a unique and novel opportunity to simultaneously target multiple proteins and drug-resistant pathways in this disease via molecular chaperone inhibition. Taken together, we hypothesize that our novel C-terminal Hsp90 inhibitor, KU758, in combination with the current standard of care targeted therapies (e.g. vemurafenib and cobimetinib) can both synergize melanoma treatment efficacy in BRAF-mutant tumors, as well as target and overcome several major resistance pathways in this disease. Using in vitro proliferation and protein-based Western Blot analyses, our novel inhibitor, KU758, potently inhibited melanoma cell proliferation (without induction of the heat shock response) in vitro and synergized with both BRAF and MEK inhibitors in inhibition of cell migration and protein expression from resistance pathways. Overall, our work provides early support for further translation of C-terminal Hsp90 inhibitor and mitogen-activated protein kinase pathway inhibitor combinations as a novel therapeutic strategy for BRAF-mutant melanomas.


Asunto(s)
Acrilonitrilo/análogos & derivados , Compuestos de Anilina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Acrilonitrilo/farmacología , Acrilonitrilo/uso terapéutico , Compuestos de Anilina/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Antineoplásicos , Humanos , Melanoma/mortalidad , Melanoma/patología , Análisis de Supervivencia
16.
Inflammation ; 44(3): 899-907, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33236262

RESUMEN

Morita-Baylis-Hillman adducts (MBHA) are synthetic molecules with several biological actions already described in the literature. It has been previously described that adduct 2-(3-hydroxy-2-oxoindolin-3-yl)acrylonitrile (ISACN) has anticancer potential in leukemic cells. Inflammation is often associated with the development and progression of cancer. Therefore, to better understand the effect of ISACN, this study aimed to evaluate the anti-inflammatory potential of ISACN both in vitro and in vivo. Results demonstrated that ISACN negatively modulated the production of inflammatory cytokines IL-1ß, TNF-α, and IL-6 by cultured macrophages. In vivo, ISACN 6 and 24 mg/kg treatment promoted reduced leukocyte migration, especially neutrophils, to the peritoneal cavity of zymosan-challenged animals. ISACN displays no anti-edematogenic activity, but it was able to promote a significant reduction in the production of inflammatory cytokines in the peritoneal cavity. These data show, for the first time, that MBHA ISACN negatively modulates several aspects of the inflammatory response, such as cell migration and cytokine production in vivo and in vitro, thus having an anti-inflammatory potential.


Asunto(s)
Acrilonitrilo/farmacología , Antiinflamatorios/farmacología , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Peritonitis/prevención & control , Acrilonitrilo/análogos & derivados , Animales , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Ratones , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Peritonitis/inducido químicamente , Peritonitis/inmunología , Peritonitis/metabolismo , Zimosan
17.
ACS Chem Neurosci ; 11(24): 4191-4202, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33226775

RESUMEN

The aggregation of proteins into amyloid fibrils has been implicated in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Benzothiazole dyes such as Thioflavin T (ThT) are well-characterized and widely used fluorescent probes for monitoring amyloid fibril formation. However, existing dyes lack sensitivity and specificity to oligomeric intermediates formed during fibril formation. In this work, we describe the use of an α-cyanostilbene derivative (called ASCP) with aggregation-induced emission properties as a fluorescent probe for the detection of amyloid fibrils. Similar to ThT, ASCP is fluorogenic in the presence of amyloid fibrils and, upon binding and excitation at 460 nm, produces a red-shifted emission with a large Stokes shift of 145 nm. ASCP has a higher binding affinity to fibrillar α-synuclein than ThT and likely shares the same binding sites to amyloid fibrils. Importantly, ASCP was found to also be fluorogenic in the presence of amorphous aggregates and can detect oligomeric species formed early during aggregation. Moreover, ASCP can be used to visualize fibrils via total internal reflection fluorescence microscopy and, due to its large Stokes shift, simultaneously monitor the fluorescence emission of other labelled proteins following excitation with the same laser used to excite ASCP. Consequently, ASCP possesses enhanced and unique spectral characteristics compared to ThT that make it a promising alternative for the in vitro study of amyloid fibrils and the mechanisms by which they form.


Asunto(s)
Acrilonitrilo , Amiloide , Acrilonitrilo/análogos & derivados , Benzotiazoles , Fluorescencia , Colorantes Fluorescentes , alfa-Sinucleína
18.
Int J Biol Macromol ; 164: 2312-2322, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32810531

RESUMEN

In this work, lignin was grafted with acrylonitrile to control the molecular weights and molecular architecture of polyacrylonitrile (PAN)/lignin copolymer. Lignin-acrylonitrile monomer (LA-AN) and its copolymers with AN were synthesized successfully. First, lignin was aminated (LA) and then grafted with 2-chloroacrylonitrile to prepare LA-AN. The copolymerization of LA-AN and AN was carried out using 2,2-azobis(2-methylpropionitrile) as initiator. The modification, grafting, and copolymerization were confirmed with Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy. Contrary to the previous studies, gel permeation chromatography showed that the molecular weight of the copolymers was increased significantly due to the presence of lignin (up to 203,944). Viscosity analysis revealed that the addition of lignin reduces the viscosity of the copolymer solution. While thermogravimetric analysis showed improvement in the degradation temperature, and lowering of the melt temperature, as revealed by differential scanning calorimetry. These findings indicated that the attaching acrylonitrile on lignin molecules result in control of the molecular weight and molecular structure of PAN/Lignin copolymers which results in enhanced solubility, spinnability, and other properties associated with molecular weight.


Asunto(s)
Resinas Acrílicas/química , Lignina/química , Polímeros/química , Acrilonitrilo/análogos & derivados , Acrilonitrilo/química , Rastreo Diferencial de Calorimetría/métodos , Peso Molecular , Fenómenos Físicos , Polimerizacion , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Temperatura , Viscosidad
19.
Cancer Immunol Res ; 8(9): 1114-1121, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32661093

RESUMEN

Concurrent MEK and CDK4/6 inhibition shows promise in clinical trials for patients with advanced-stage mutant BRAF/NRAS solid tumors. The effects of CDK4/6 inhibitor (CDK4/6i) in combination with BRAF/MEK-targeting agents on the tumor immune microenvironment are unclear, especially in melanoma, for which immune checkpoint inhibitors are effective in approximately 50% of patients. Here, we show that patients progressing on CDK4/6i/MEK pathway inhibitor combinations exhibit T-cell exclusion. We found that MEK and CDK4/6 targeting was more effective at delaying regrowth of mutant BRAF melanoma in immunocompetent versus immune-deficient mice. Although MEK inhibitor (MEKi) treatment increased tumor immunogenicity and intratumoral recruitment of CD8+ T cells, the main effect of CDK4/6i alone and in combination with MEKi was increased expression of CD137L, a T-cell costimulatory molecule on immune cells. Depletion of CD8+ T cells or blockade of the CD137 ligand-receptor interaction reduced time to regrowth of melanomas in the context of treatment with CDK4/6i plus MEKi treatment in vivo Together, our data outline an antitumor immune-based mechanism and show the efficacy of targeting both the MEK pathway and CDK4/6.


Asunto(s)
Acrilonitrilo/análogos & derivados , Compuestos de Anilina/uso terapéutico , Linfocitos T CD8-positivos/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Acrilonitrilo/farmacología , Acrilonitrilo/uso terapéutico , Compuestos de Anilina/farmacología , Animales , Humanos , Masculino , Ratones
20.
Insect Biochem Mol Biol ; 123: 103410, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32442626

RESUMEN

The acaricides cyflumetofen, cyenopyrafen, and pyflubumide act as inhibitors of the mitochondrial electron transport system at complex II (succinate dehydrogenase; SDH), a new mode of action in arthropods. The development and mechanisms of low-level resistance against cyenopyrafen and cyflumetofen have been previously reported in Tetranychus urticae. In the present study, we investigated high levels of resistance against three SDH inhibitors in T. urticae field populations and clarify the genetic basis of resistance using quantitative trait locus (QTL) analysis. First, we constructed a microsatellite linkage map comprising 64 markers assembled into three linkage groups (LGs) with total length of 683.8 cM and average marker spacing of 11.03 cM. We then used the linkage map to perform QTL mapping, and identified significant QTLs contributing to resistance to cyflumetofen (one QTL on LG1), cyenopyrafen (one QTL on LG3), and pyflubumide (two QTLs on LG1 and LG3). The QTL peaks on LG1 for cyflumetofen and pyflubumide overlapped and included the SdhB locus. For cyenopyrafen resistance, the QTLs on LG3 included the SdhC locus. For cyflumetofen resistance, we found an I260T mutation in SdhB. For pyflubumide and cyenopyrafen resistance, we detected I260V and S56L substitutions in SdhB and SdhC, respectively, by direct sequencing. Both I260 in SdhB and S56 in SdhC were present in highly conserved regions of the ubiquinone binding site formed at the interface among SdhB, SdhC, and SdhD. Mutations at these positions have been implicated in resistance against fungicides that act as Sdh inhibitors in various pathogens. Therefore, we consider these mutations to be target-site resistance mutations for these acaricidal SDH inhibitors.


Asunto(s)
Acaricidas/farmacología , Mapeo Cromosómico/métodos , Resistencia a Medicamentos/genética , Succinato Deshidrogenasa/antagonistas & inhibidores , Tetranychidae , Acrilonitrilo/análogos & derivados , Acrilonitrilo/farmacología , Animales , Proteínas de Artrópodos/antagonistas & inhibidores , Proteínas de Artrópodos/efectos de los fármacos , Proteínas de Artrópodos/metabolismo , Ligamiento Genético , Genoma de los Insectos , Repeticiones de Microsatélite , Mutación , Propionatos/farmacología , Pirazoles/farmacología , Sitios de Carácter Cuantitativo , RNA-Seq , Succinato Deshidrogenasa/efectos de los fármacos , Succinato Deshidrogenasa/metabolismo , Tetranychidae/efectos de los fármacos , Tetranychidae/genética , Tetranychidae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...