Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(17): 13441-13451, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647259

RESUMEN

Soluble N-glycosyltransferase from Actinobacillus pleuropneumoniae (ApNGT) catalyzes the glycosylation of asparagine residues, and represents one of the most encouraging biocatalysts for N-glycoprotein production. Since the sugar tolerance of ApNGT is restricted to limited monosaccharides (e.g., Glc, GlcN, Gal, Xyl, and Man), tremendous efforts are devoted to expanding the substrate scope of ApNGT via enzyme engineering. However, rational design of novel NGT variants suffers from an elusive understanding of the substrate-binding process from a dynamic point of view. Here, by employing extensive all-atom molecular dynamics (MD) simulations integrated with a kinetic model, we reveal, at the atomic level, the complete donor-substrate binding process from the bulk solvent to the ApNGT active-site, and the key intermediate states of UDP-Glc during its loading dynamics. We are able to determine the critical transition event that limits the overall binding rate, which guides us to pinpoint the key ApNGT residues dictating the donor-substrate entry. The functional roles of several identified gating residues were evaluated through site-directed mutagenesis and enzymatic assays. Two single-point mutations, N471A and S496A, could profoundly enhance the catalytic activity of ApNGT. Our work provides deep mechanistic insights into the structural dynamics of the donor-substrate loading process for ApNGT, which sets a rational basis for design of novel NGT variants with desired substrate specificity.


Asunto(s)
Actinobacillus pleuropneumoniae , Glicosiltransferasas , Simulación de Dinámica Molecular , Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/metabolismo , Actinobacillus pleuropneumoniae/genética , Cinética , Especificidad por Sustrato , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Mutagénesis Sitio-Dirigida , Dominio Catalítico
2.
Bioorg Med Chem ; 33: 116037, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33515919

RESUMEN

The conventional use of E. coli system for protein expression is limited to non-glycosylated proteins. While yeast, insect and mammalian systems are available to produce heterologous glycoproteins, developing an engineered E. coli-based glycosylation platform will provide a faster, more economical, and more convenient alternative. In this work, we present a two-step approach for production of a homogeneously glycosylated eukaryotic protein using the E. coli expression system. Human interferon α-2b (IFNα) is used as a model protein to illustrate this glycosylation scheme. In the first step, the N-glycosyltransferase from Actinobacillus pleuropneumoniae (ApNGT) is co-expressed for in vivo transfer of a glucose residue to IFNα at an NX(S/T) N-glycosylation sequon. Several E. coli systems were examined to evaluate the efficiency of IFNα N-glucosylation. In the second step, the N-glucosylated protein is efficiently elaborated with biantennary sialylated complex-type N-glycan using an in vitro chemoenzymatic method. The N-glycosylated IFNα product was found to be biologically active and displayed significantly improved proteolytic stability. This work presents a feasible E. coli-based glycosylation machinery for producing therapeutic eukaryotic glycoproteins.


Asunto(s)
Escherichia coli/metabolismo , Interferón-alfa/biosíntesis , Actinobacillus pleuropneumoniae/enzimología , Glucosa/química , Glucosa/metabolismo , Glucosiltransferasas/metabolismo , Glicosilación , Interferón-alfa/química , Interferón-alfa/aislamiento & purificación
3.
J Biol Chem ; 295(17): 5771-5784, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152227

RESUMEN

Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-ß(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers.


Asunto(s)
Infecciones por Actinobacillus/microbiología , Actinobacillus pleuropneumoniae/química , Actinobacillus pleuropneumoniae/enzimología , Cápsulas Bacterianas/química , Oligosacáridos/química , Actinobacillus pleuropneumoniae/metabolismo , Cápsulas Bacterianas/enzimología , Cápsulas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Técnicas de Química Sintética , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Humanos , Oligosacáridos/síntesis química , Oligosacáridos/metabolismo
4.
Anal Chem ; 92(2): 1963-1971, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31854989

RESUMEN

High-throughput quantification of the post-translational modification of many individual protein samples is challenging with current label-based methods. This paper demonstrates an efficient method that addresses this gap by combining Escherichia coli-based cell-free protein synthesis (CFPS) and self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry (SAMDI-MS) to analyze intact proteins. This high-throughput approach begins with polyhistidine-tagged protein substrates expressed from linear DNA templates by CFPS. Here, we synthesized an 87-member library of the E. coli Immunity Protein 7 (Im7) containing an acceptor sequence optimized for glycosylation by the Actinobacillus pleuropneumoniae N-glycosyltransferase (NGT) at every possible position along the protein backbone. These protein substrates were individually treated with NGT and then selectively immobilized to self-assembled monolayers presenting nickel-nitrilotriacetic acid (Ni-NTA) complexes before final analysis by SAMDI-MS to quantify the conversion of substrate to glycoprotein. This method offers new opportunities for rapid synthesis and quantitative evaluation of intact glycoproteins.


Asunto(s)
Proteínas Portadoras/análisis , Proteínas de Escherichia coli/análisis , Glicoproteínas/análisis , Ensayos Analíticos de Alto Rendimiento/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Actinobacillus pleuropneumoniae/enzimología , Proteínas Portadoras/síntesis química , Proteínas Portadoras/genética , Escherichia coli/química , Proteínas de Escherichia coli/síntesis química , Proteínas de Escherichia coli/genética , Glicoproteínas/síntesis química , Glicoproteínas/genética , Glicosilación , Glicosiltransferasas/química , Mutación , Biblioteca de Péptidos , Prueba de Estudio Conceptual , Proteínas Recombinantes/análisis , Proteínas Recombinantes/síntesis química , Proteínas Recombinantes/genética
5.
J Vet Diagn Invest ; 30(1): 172-174, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29145759

RESUMEN

An atypical urease-negative mutant of Actinobacillus pleuropneumoniae serovar 2 was isolated in Japan. Nucleotide sequence analysis of the urease gene cluster revealed that the insertion of a short DNA sequence into the cbiM gene was responsible for the urease-negative activity of the mutant. Veterinary diagnostic laboratories should be watchful for the presence of aberrant urease-negative A. pleuropneumoniae isolates.


Asunto(s)
Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/aislamiento & purificación , Pleuroneumonía/veterinaria , Enfermedades de los Porcinos/microbiología , Ureasa/metabolismo , Infecciones por Actinobacillus/diagnóstico , Infecciones por Actinobacillus/epidemiología , Infecciones por Actinobacillus/microbiología , Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/genética , Animales , Secuencia de Bases , Japón , Pleuroneumonía/diagnóstico , Pleuroneumonía/epidemiología , Serogrupo , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/epidemiología
6.
PLoS One ; 12(4): e0176374, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28448619

RESUMEN

Pyridoxal 5'-phosphate (PLP) is an essential cofactor for numerous enzymes involved in a diversity of cellular processes in living organisms. Previous analysis of the Actinobacillus pleuropneumoniae S-8 genome sequence revealed the presence of pdxS and pdxT genes, which are implicated in deoxyxylulose 5-phosphate (DXP)-independent pathway of PLP biosynthesis; however, little is known about their roles in A. pleuropneumoniae pathogenicity. Our data demonstrated that A. pleuropneumoniae could synthesize PLP by PdxS and PdxT enzymes. Disruption of the pdxS and pdxT genes rendered the pathogen auxotrophic for PLP, and the defective growth as a result of these mutants was chemically compensated by the addition of PLP, suggesting the importance of PLP production for A. pleuropneumoniae growth and viability. Additionally, the pdxS and pdxT deletion mutants displayed morphological defects as indicated by irregular and aberrant shapes in the absence of PLP. The reduced growth of the pdxS and pdxT deletion mutants under osmotic and oxidative stress conditions suggests that the PLP synthases PdxS/PdxT are associated with the stress tolerance of A. pleuropneumoniae. Furthermore, disruption of the PLP biosynthesis pathway led to reduced colonization and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model. The data presented in this study reveal the critical role of PLP synthases PdxS/PdxT in viability, stress tolerance, and virulence of A. pleuropneumoniae.


Asunto(s)
Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/fisiología , Ligasas/metabolismo , Viabilidad Microbiana , Fosfato de Piridoxal/biosíntesis , Estrés Fisiológico , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/patogenicidad , Animales , Femenino , Técnicas de Inactivación de Genes , Peróxido de Hidrógeno/farmacología , Ligasas/deficiencia , Ligasas/genética , Ratones , Ratones Endogámicos BALB C , Mutación , Cloruro de Sodio/farmacología , Virulencia
7.
Appl Microbiol Biotechnol ; 100(14): 6279-6289, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26996628

RESUMEN

Glutathione (GSH), an important bioactive substance, is widely applied in pharmaceutical and food industries. In this work, two bifunctional L-glutathione synthetases (GshF) from Actinobacillus pleuropneumoniae (GshFAp) and Actinobacillus succinogenes (GshFAs) were successfully expressed in Escherichia coli BL-21(DE3). Similar to the GshF from Streptococcus thermophilus (GshFSt), GshFAp and GshFAs can be applied for high titer GSH production because they are less sensitive to end-product inhibition (Ki values 33 and 43 mM, respectively). The active catalytic forms of GshFAs and GshFAp are dimers, consistent with those of GshFPm (GshF from Pasteurella multocida) and GshFSa (GshF from Streptococcus agalactiae), but are different from GshFSt (GshF from S. thermophilus) which is an active monomer. The analysis of the protein sequences and three dimensional structures of GshFs suggested that the binding sites of GshFs for substrates, L-cysteine, L-glutamate, γ-glutamylcysteine, adenosine-triphosphate, and glycine are highly conserved with only very few differences. With sufficient supply of the precursors, the recombinant strains BL-21(DE3)/pET28a-gshFas and BL-21(DE3)/pET28a-gshFap were able to produce 36.6 and 34.1 mM GSH, with the molar yield of 0.92 and 0.85 mol/mol, respectively, based on the added L-cysteine. The results showed that GshFAp and GshFAs are potentially good candidates for industrial GSH production.


Asunto(s)
Actinobacillus pleuropneumoniae/enzimología , Actinobacillus/enzimología , Proteínas Bacterianas/metabolismo , Glutatión Sintasa/metabolismo , Glutatión/biosíntesis , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular , Cisteína/metabolismo , Dipéptidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Glutámico/metabolismo , Glutatión Sintasa/genética , Glicina/metabolismo , Concentración de Iones de Hidrógeno , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , Conformación Proteica , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo
8.
Microb Pathog ; 93: 38-43, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26796296

RESUMEN

Lon proteases are a family of ATP-dependent proteases that are involved in the degradation of abnormal proteins in bacteria exposed to adverse environmental stress. An analysis of the genome sequence of Actinobacillus pleuropneumoniae revealed the unusual presence of two putative ATP-dependent Lon homologues, LonA and LonC. Sequence comparisons indicated that LonA has the classical domain organization of the LonA subfamily, which includes the N-terminal domain, central ATPase (AAA) domain, and C-terminal proteolytic (P) domain. LonC belongs to the recently classified LonC subfamily, which includes Lon proteases that contain neither the N-terminal domain of LonA nor the transmembrane region that is present only in LonB subfamily members. To investigate the roles of LonA and LonC in A. pleuropneumoniae, mutants with deletions in the lonA and lonC genes were constructed. The impaired growth of the △lonA mutant exposed to low and high temperatures and osmotic and oxidative stress conditions indicates that the LonA protease is required for the stress tolerance of A. pleuropneumoniae. Furthermore, the △lonA mutant exhibited significantly reduced biofilm formation compared to the wild-type strain. However, no significant differences in stress responses or biofilm formation were observed between the △lonC mutant and the wild-type strain. The △lonA mutant exhibited reduced colonization ability and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model compared to the wild-type strain. Disruption of lonC gene did not significantly influence the colonization and virulence of A. pleuropneumoniae. The data presented in this study illustrate that the LonA protease, but not the LonC protease, is required for the stress tolerance, biofilm formation and pathogenicity of A. pleuropneumoniae.


Asunto(s)
Infecciones por Actinobacillus/microbiología , Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/fisiología , Proteínas Bacterianas/metabolismo , Biopelículas , Proteasa La/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Proteasa La/química , Proteasa La/genética , Dominios Proteicos , Estrés Fisiológico
9.
J Antimicrob Chemother ; 70(8): 2217-22, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25957382

RESUMEN

OBJECTIVES: The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. METHODS: Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. RESULTS: A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. CONCLUSIONS: This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial.


Asunto(s)
Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/efectos de los fármacos , Plásmidos , Enfermedades de los Porcinos/microbiología , Tetrahidrofolato Deshidrogenasa/genética , Resistencia al Trimetoprim , Infecciones por Actinobacillus/microbiología , Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/aislamiento & purificación , Animales , Antiinfecciosos/farmacología , Inglaterra , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Sulfisoxazol/farmacología , Porcinos , Trimetoprim/farmacología
10.
Proc Natl Acad Sci U S A ; 112(23): E3058-66, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26016525

RESUMEN

Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.


Asunto(s)
Actinobacillus pleuropneumoniae/enzimología , Aciltransferasas/química , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido
11.
J Biol Chem ; 289(4): 2170-9, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24275653

RESUMEN

N-Linked protein glycosylation is a frequent post-translational modification that can be found in all three domains of life. In a canonical, highly conserved pathway, an oligosaccharide is transferred by a membrane-bound oligosaccharyltransferase from a lipid donor to asparagines in the sequon NX(S/T) of secreted polypeptides. The δ-proteobacterium Actinobacillus pleuropneumoniae encodes an unusual pathway for N-linked protein glycosylation. This pathway takes place in the cytoplasm and is mediated by a soluble N-glycosyltransferase (NGT) that uses nucleotide-activated monosaccharides to glycosylate asparagine residues. To characterize the process of cytoplasmic N-glycosylation in more detail, we studied the glycosylation in A. pleuropneumoniae and functionally transferred the glycosylation system to Escherichia coli. N-Linked glucose specific human sera were used for the analysis of the glycosylation process. We identified autotransporter adhesins as the preferred protein substrate of NGT in vivo, and in depth analysis of the modified sites in E. coli revealed a surprisingly relaxed peptide substrate specificity. Although NX(S/T) is the preferred acceptor sequon, we detected glycosylation of alternative sequons, including modification of glutamine and serine residues. We also demonstrate the use of NGT to glycosylate heterologous proteins. Therefore, our study could provide the basis for a novel route for the engineering of N-glycoproteins in bacteria.


Asunto(s)
Actinobacillus pleuropneumoniae/enzimología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Actinobacillus pleuropneumoniae/genética , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glicosilación , Hexosiltransferasas/genética , Humanos , Proteínas de la Membrana/genética , Ingeniería de Proteínas , Especificidad por Sustrato/fisiología
12.
Curr Microbiol ; 67(5): 564-71, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23743601

RESUMEN

LuxS, a conserved bacterial enzyme involved in the activated methyl cycle, catalyzes S-ribosylhomocysteine (SRH) into homocysteine and AI-2 (the inter-species quorum-sensing signal molecule). This enzyme has been reported to be essential for the survival of Actinobacillus pleuropneumoniae in its natural host. Therefore, it is a potential drug target against A. pleuropneumoniae, an important swine respiratory pathogen causing great economic losses in the pig industry worldwide. In this study, the enzymatic activity determination method was established using the recombinant LuxS of A. pleuropneumoniae. Thirty-five compounds similar to the shape of SRH were screened from the Specs compound library by the software vROCS and were evaluated for LuxS inhibition. Three compounds could inhibit LuxS activity. Two of them were confirmed to be competitive inhibitors and the third one was uncompetitive. All the three compounds displayed inhibitory effects on the growth of A. pleuropneumoniae and two other important swine pathogens, Haemophilis parasuis and Streptococcus suis, with MIC50 values ranging from 11 to 51 µg/ml. No significant cytotoxic effect of the compounds was detected on porcine PK-15 cells at the concentration which showed inhibitory effect on bacterial growth. These results suggest that LuxS is an ideal target to develop antimicrobials for porcine bacterial pathogens. The three LuxS inhibitors identified in this study can be used as lead compounds for drug design.


Asunto(s)
Actinobacillus pleuropneumoniae/efectos de los fármacos , Actinobacillus pleuropneumoniae/enzimología , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Liasas de Carbono-Azufre/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Actinobacillus pleuropneumoniae/genética , Antibacterianos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Clonación Molecular , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Expresión Génica , Concentración 50 Inhibidora , Cinética , Pruebas de Sensibilidad Microbiana , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas
13.
PLoS One ; 8(1): e55546, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23383222

RESUMEN

We experimentally identified the activities of six predicted heptosyltransferases in Actinobacillus pleuropneumoniae genome serotype 5b strain L20 and serotype 3 strain JL03. The initial identification was based on a bioinformatic analysis of the amino acid similarity between these putative heptosyltrasferases with others of known function from enteric bacteria and Aeromonas. The putative functions of all the Actinobacillus pleuropneumoniae heptosyltrasferases were determined by using surrogate LPS acceptor molecules from well-defined A. hydrophyla AH-3 and A. salmonicida A450 mutants. Our results show that heptosyltransferases APL_0981 and APJL_1001 are responsible for the transfer of the terminal outer core D-glycero-D-manno-heptose (D,D-Hep) residue although they are not currently included in the CAZY glycosyltransferase 9 family. The WahF heptosyltransferase group signature sequence [S(T/S)(GA)XXH] differs from the heptosyltransferases consensus signature sequence [D(TS)(GA)XXH], because of the substitution of D(261) for S(261), being unique.


Asunto(s)
Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biología Computacional , Glicosiltransferasas/clasificación , Lipopolisacáridos/química , Mutación , Filogenia
14.
PLoS One ; 8(1): e53600, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326465

RESUMEN

In the respiratory tract and lung tissue, a balanced physiological response is essential for Actinobacillus pleuropneumoniae to survive various types of challenges. ClpP, the catalytic core of the Clp proteolytic complex, is involved in various stresses response and regulation of biofilm formation in many pathogenic bacteria. To investigate the role of ClpP in the virulence of A. pleuropneumoniae, the clpP gene was deleted by homologous recombination, resulting in the mutant strain S8ΔclpP. The reduced growth of S8ΔclpP mutant at high temperatures and under several other stress conditions suggests that the ClpP protein is required for the stress tolerance of A. pleuropneumoniae. Interestingly, we observed that the S8ΔclpP mutant exhibited an increased ability to take up iron in vitro compared to the wild-type strain. We also found that the cells without ClpP displayed rough and irregular surfaces and increased cell volume relative to the wild-type strain using scanning electron microscopy (SEM). Confocal laser scanning microscopy (CLSM) revealed that the S8ΔclpP mutant showed decreased biofilm formation compared to the wild-type strain. We examined the transcriptional profiles of the wild type S8 and the S8ΔclpP mutant strains of A. pleuropneumoniae using RNA sequencing. Our analysis revealed that the expression of 16 genes was changed by the deletion of the clpP gene. The data presented in this study illustrate the important role of ClpP protease in the stress response, iron acquisition, cell morphology and biofilm formation related to A. pleuropneumoniae and further suggest a putative role of ClpP protease in virulence regulation.


Asunto(s)
Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/fisiología , Adaptación Fisiológica , Biopelículas/crecimiento & desarrollo , Endopeptidasa Clp/metabolismo , Estrés Fisiológico , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/ultraestructura , Adaptación Fisiológica/efectos de los fármacos , Biopelículas/efectos de los fármacos , Endopeptidasa Clp/deficiencia , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Hierro/metabolismo , Hierro/farmacología , Poliestirenos , Estrés Fisiológico/efectos de los fármacos , Temperatura
15.
Glycobiology ; 23(3): 286-94, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23118207

RESUMEN

Pasteurella multocida strains are classified into 16 Heddleston serovars on the basis of the lipopolysaccharide (LPS) antigens expressed on the surface of the bacteria. The LPS structure and the corresponding LPS outer core biosynthesis loci of strains belonging to serovars 1, 2, 3, 5, 9 and 14 have been characterized, revealing a clear structural basis for serovar classification. However, several of these serovars are genetically related, sharing the same LPS outer core biosynthesis locus, but producing different LPS molecules as a result of mutations within LPS assembly genes. In this article, we report that the P. multocida type strains belonging to serovars 8 and 13 share the same LPS outer core biosynthesis locus and produce structurally related LPS molecules. Structural analysis of the serovar 8 LPS revealed an inner core that is conserved among P. multocida strains and the following outer core structure: X-(1-6)-(1S)GalaNAC-(1-4-6)-α-Gal-(1-3)-ß-Gal(PEtn)-(1-4)-L,D-α-Hep-(1-6) where X is a unique phospho-glycero moiety, 1-((4-aminobutyl)amino)-3-hydroxy-1-oxopropan-2-yl hydrogen phosphate, attached to the sixth position of (1S)GalaNAc. For serovar 13, the LPS structure is the same except for the absence of the terminal phospho-glycero moiety. Analysis of the common outer core biosynthesis locus from the serovar 8 and 13 type strains identified three genes that we predict are involved in the biosynthesis of this terminal moiety. Furthermore, bioinformatic comparisons with the characterized LPS outer core glycosyltransferases from Actinobacillus pleuropneumoniae serovar 1, strain 4074, allowed us to assign a function for each of the glycosyltransferases encoded within the serovar 8/13 LPS outer core biosynthesis locus.


Asunto(s)
Lipopolisacáridos/química , Pasteurella multocida/química , Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/genética , Conformación de Carbohidratos , Secuencia de Carbohidratos , Genes Bacterianos , Sitios Genéticos , Glicosiltransferasas/genética , Lipopolisacáridos/biosíntesis , Pasteurella multocida/enzimología , Pasteurella multocida/genética
16.
J Inorg Biochem ; 106(1): 10-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22105012

RESUMEN

The Cu,Zn superoxide dismutases (Cu,Zn SOD) isolated from some Gram-negative bacteria possess a His-rich N-terminal metal binding extension. The N-terminal domain of Haemophilus ducreyi Cu,Zn SOD has been previously proposed to play a copper(II)-, and may be a zinc(II)-chaperoning role under metal ion starvation, and to behave as a temporary (low activity) superoxide dismutating center if copper(II) is available. The N-terminal extension of Cu,Zn SOD from Actinobacillus pleuropneumoniae starts with an analogous sequence (HxDHxH), but contains considerably fewer metal binding sites. In order to study the possibility of the generalization of the above mentioned functions over all Gram-negative bacteria possessing His-rich N-terminal extension, here we report thermodynamic and solution structural analysis of the copper(II) and zinc(II) complexes of a peptide corresponding to the first eight amino acids (HADHDHKK-NH(2), L) of the enzyme isolated from A. pleuropneumoniae. In equimolar solutions of Cu(II)/Zn(II) and the peptide the MH(2)L complexes are dominant in the neutral pH-range. L has extraordinary copper(II) sequestering capacity (K(D,Cu)=7.4×10(-13)M at pH 7.4), which is provided only by non-amide (side chain) donors. The central ion in CuH(2)L is coordinated by four nitrogens {NH(2),3N(im)} in the equatorial plane. In ZnH(2)L the peptide binds to zinc(II) through a {NH(2),2N(im),COO(-)} donor set, and its zinc binding affinity is relatively modest (K(D,Zn)=4.8×10(-7)M at pH 7.4). Consequently, the presented data do support a general chaperoning role of the N-terminal His-rich region of Gram-negative bacteria in copper(II) uptake, but do not confirm similar function for zinc(II). Interestingly, the complex CuH(2)L has very high SOD-like activity, which may further support the multifunctional role of the copper(II)-bound N-terminal His-rich domain of Cu,Zn SODs of Gram-negative bacteria. The proposed structure for the MH(2)L complexes has been verified by semiempirical quantum chemical calculations (PM6), too.


Asunto(s)
Proteínas Bacterianas/química , Bacterias Gramnegativas/enzimología , Estructura Terciaria de Proteína , Superóxido Dismutasa/química , Actinobacillus pleuropneumoniae/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Dicroismo Circular , Cobre/química , Cobre/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Haemophilus ducreyi/enzimología , Histidina/química , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Ligandos , Modelos Moleculares , Unión Proteica , Espectrofotometría , Superóxido Dismutasa/metabolismo , Zinc/química , Zinc/metabolismo
17.
J Biol Chem ; 286(40): 35267-74, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21852240

RESUMEN

N-Linked glycosylation is a frequent protein modification that occurs in all three domains of life. This process involves the transfer of a preassembled oligosaccharide from a lipid donor to asparagine side chains of polypeptides and is catalyzed by the membrane-bound oligosaccharyltransferase (OST). We characterized an alternative bacterial pathway wherein a cytoplasmic N-glycosyltransferase uses nucleotide-activated monosaccharides as donors to modify asparagine residues of peptides and proteins. N-Glycosyltransferase is an inverting glycosyltransferase and recognizes the NX(S/T) consensus sequence. It therefore exhibits similar acceptor site specificity as eukaryotic OST, despite the unrelated predicted structural architecture and the apparently different catalytic mechanism. The identification of an enzyme that integrates some of the features of OST in a cytoplasmic pathway defines a novel class of N-linked protein glycosylation found in pathogenic bacteria.


Asunto(s)
Actinobacillus pleuropneumoniae/enzimología , Proteínas Bacterianas/química , Citoplasma/metabolismo , Glucosiltransferasas/química , Sitios de Unión , Escherichia coli/metabolismo , Glucosa/química , Glicosilación , Hexosiltransferasas/química , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Monosacáridos/química , Plásmidos/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína
18.
Infect Immun ; 76(12): 5608-14, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18852244

RESUMEN

Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a highly contagious respiratory infection in pigs. AasP, a putative subtilisin-like serine protease autotransporter, has recently been identified in A. pleuropneumoniae. We hypothesized that, similarly to other autotransporters of this type, AasP may undergo autocatalytic cleavage resulting in release of the passenger domain of the protein. Furthermore, AasP may be responsible for cleavage of other A. pleuropneumoniae outer membrane proteins. To address these hypotheses, the aasP gene was cloned and the expressed recombinant AasP protein used to raise monospecific rabbit antiserum. Immunoblot analysis of whole-cell lysates and secreted proteins demonstrated that AasP does not undergo proteolytic cleavage. Immunoblot analysis also confirmed that AasP is universally expressed by A. pleuropneumoniae. Confirmation of the maturation protease function of AasP was obtained through phenotypic analysis of an A. pleuropneumoniae aasP deletion mutant and by functional complementation. Comparison of the secreted proteins of the wild type, an aasP mutant derivative, and an aasP mutant complemented in trans led to the identification of OmlA protein fragments that were present only in the secreted-protein preparations of the wild-type and complemented strains, indicating that AasP is involved in modification of OmlA. This is the first demonstration of a function for any autotransporter protein in Actinobacillus pleuropneumoniae.


Asunto(s)
Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/genética , Proteínas de la Membrana Bacteriana Externa/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Péptido Hidrolasas/metabolismo , Conejos , Proteínas Recombinantes/genética
19.
Infect Immun ; 76(6): 2284-95, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18378638

RESUMEN

The ability of the bacterial pathogen Actinobacillus pleuropneumoniae to grow anaerobically allows the bacterium to persist in the lung. The ArcAB two-component system is crucial for metabolic adaptation in response to anaerobic conditions, and we recently showed that an A. pleuropneumoniae arcA mutant had reduced virulence compared to the wild type (F. F. Buettner, A. Maas, and G.-F. Gerlach, Vet. Microbiol. 127:106-115, 2008). In order to understand the attenuated phenotype, we investigated the ArcA regulon of A. pleuropneumoniae by using a combination of transcriptome (microarray) and proteome (two-dimensional difference gel electrophoresis and subsequent mass spectrometry) analyses. We show that ArcA negatively regulates the expression of many genes, including those encoding enzymes which consume intermediates during fumarate synthesis. Simultaneously, the expression of glycerol-3-phosphate dehydrogenase, a component of the respiratory chain serving as a direct reduction equivalent for fumarate reductase, was upregulated. This result, together with the in silico analysis finding that A. pleuropneumoniae has no oxidative branch of the citric acid cycle, led to the hypothesis that fumarate reductase might be crucial for virulence by providing (i) energy via fumarate respiration and (ii) succinate and other essential metabolic intermediates via the reductive branch of the citric acid cycle. To test this hypothesis, an isogenic A. pleuropneumoniae fumarate reductase deletion mutant was constructed and studied by using a pig aerosol infection model. The mutant was shown to be significantly attenuated, thereby strongly supporting a crucial role for fumarate reductase in the pathogenesis of A. pleuropneumoniae infection.


Asunto(s)
Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/patogenicidad , Regulón/fisiología , Succinato Deshidrogenasa/metabolismo , Infecciones por Actinobacillus/inmunología , Infecciones por Actinobacillus/microbiología , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/inmunología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/fisiología , Masculino , Distribución Aleatoria , Regulón/genética , Organismos Libres de Patógenos Específicos , Succinato Deshidrogenasa/genética , Porcinos , Virulencia
20.
Wei Sheng Wu Xue Bao ; 48(1): 73-9, 2008 Jan.
Artículo en Chino | MEDLINE | ID: mdl-18338580

RESUMEN

Actinobacillus pleuropneumoniae is a very important respiratory pathogen for swine and causes great economic losses in pig industry worldwide. Signature-tagged mutagenesis (STM) is an effective method to identify virulence genes in bacteria. In this study, we selected nalidixic acid-resistant strains of APP serotypes 1 and 3 by in vitro cultivation, and used as receipt strains for constructing transposon mutants by mating with E. coli CC 118 lambdapir or S17-1 lambdapir containing mini-Tn10 tag plasmids pLOF/TAG1-48, with or without the help of E. coli DH5alpha (pRK2073). We screened mutant strains by antibiotics selection, PCR and Southern blot identification. Our data revealed that nalidixic acid-resistance of APP strains could easily be induced in vitro and the resistance was due to the mutation in the DNA gyrase A subunit gene gyrA. In the mating experiments, the bi-parental mating was more effective and easier than tri-parental mating. Different APP strains showed a different mating and transposon efficiency in the bi-parental mating, with the strains of serotype 1 much higher than serotype 3 and the reference strain of serotype 3 higher than the field strains. These data were helpful for the construction of STM mutants and pickup of virulence genes of APP.


Asunto(s)
Actinobacillus pleuropneumoniae/efectos de los fármacos , Actinobacillus pleuropneumoniae/genética , Farmacorresistencia Bacteriana , Mutación , Ácido Nalidíxico/farmacología , Actinobacillus pleuropneumoniae/química , Actinobacillus pleuropneumoniae/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Girasa de ADN/química , Girasa de ADN/genética , Girasa de ADN/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...