Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 9, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170239

RESUMEN

During the course of development plants form tight interactions with microorganisms inhabiting their root zone. In turn, rhizosphere bacteria, in particular members of the phylum Actinomycetota, positively influence the host plant by increasing access to essential nutrients and controlling the pathogenic microorganism's population. Herein, we report the characterisation of the rhizosphere associated actinobacteria community of Phyllostachys viridiglaucescens growing in the Nikitsky Botanical Garden (Crimean Peninsula, Ukraine). The overall composition of the bacterial community was elucidated by 16S rRNA gene amplicon sequencing followed by isolation of culturable microorganisms with the focus on actinomycetes. The metagenomic approach revealed that the representatives of phylum Actinomycetota (57.1%), Pseudomonadota (20.0%), and Acidobacteriota (12.2%) were dominating in the studied microbiome with Ilumatobacter (phylum Actinomycetota) (13.1%) being the dominant genus. Furthermore, a total of 159 actinomycete isolates, belonging to eight genera of Streptomyces, Micromonospora, Nonomuraea, Arthrobacter, Actinomadura, Kribbella, Cellulosimicrobium, and Mumia, were recovered from P. viridiglaucescens rhizosphere. The isolated species were tested for antimicrobial activity. 64% of isolates were active against at least one bacterial test-culture and 7.5% against fungal test culture. In overall, the rhizosphere bacterial communities act as a great source of actinobacterial diversity with the high potential for production of new bioactive compounds.


Asunto(s)
Actinobacteria , Actinomycetales , Streptomyces , Actinomyces/genética , Rizosfera , ARN Ribosómico 16S/genética , Actinomycetales/genética , Poaceae , Microbiología del Suelo
2.
BMC Microbiol ; 23(1): 396, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087203

RESUMEN

Malaria is a persistent illness that is still a public health issue. On the other hand, marine organisms are considered a rich source of anti­infective drugs and other medically significant compounds. Herein, we reported the isolation of the actinomycete associated with the Red Sea sponge Callyspongia siphonella. Using "one strain many compounds" (OSMAC) approach, a suitable strain was identified and then sub-cultured in three different media (M1, ISP2 and OLIGO). The extracts were evaluated for their in-vitro antimalarial activity against Plasmodium falciparum strain and subsequently analyzed by Liquid chromatography coupled with high-resolution mass spectrometry (LC-HR-MS). In addition, MetaboAnalyst 5.0 was used to statistically analyze the LC-MS data. Finally, Molecular docking was carried out for the dereplicated metabolites against lysyl-tRNA synthetase (PfKRS1). The phylogenetic study of the 16S rRNA sequence of the actinomycete isolate revealed its affiliation to Streptomyces genus. Antimalarial screening revealed that ISP2 media is the most active against Plasmodium falciparum strain. Based on LC-HR-MS based metabolomics and multivariate analyses, the static cultures of the media, ISP2 (ISP2-S) and M1 (M1-S), are the optimal media for metabolites production. OPLS-DA suggested that quinone derivatives are abundant in the extracts with the highest antimalarial activity. Fifteen compounds were identified where eight of these metabolites were correlated to the observed antimalarial activity of the active extracts. According to molecular docking experiments, saframycin Y3 and juglomycin E showed the greatest binding energy scores (-6.2 and -5.13) to lysyl-tRNA synthetase (PfKRS1), respectively. Using metabolomics and molecular docking investigation, the quinones, saframycin Y3 (5) and juglomycin E (1) were identified as promising antimalarial therapeutic candidates. Our approach can be used as a first evaluation stage in natural product drug development, facilitating the separation of chosen metabolites, particularly biologically active ones.


Asunto(s)
Actinobacteria , Antimaláricos , Callyspongia , Lisina-ARNt Ligasa , Animales , Antimaláricos/farmacología , Actinobacteria/genética , Actinobacteria/química , Callyspongia/química , Actinomyces/genética , Océano Índico , Filogenia , ARN Ribosómico 16S/genética , Simulación del Acoplamiento Molecular , Lisina-ARNt Ligasa/genética , Plasmodium falciparum
3.
BMC Genomics ; 24(1): 734, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049764

RESUMEN

BACKGROUND: Actinomyces strains are commonly found as part of the normal microflora on human tissue surfaces, including the oropharynx, gastrointestinal tract, and female genital tract. Understanding the diversity and characterization of Actinomyces species is crucial for human health, as they play an important role in dental plaque formation and biofilm-related infections. Two Actinomyces strains ATCC 49340 T and ATCC 51655 T have been utilized in various studies, but their accurate species classification and description remain unresolved. RESULTS: To investigate the genomic properties and taxonomic status of these strains, we employed both 16S rRNA Sanger sequencing and whole-genome sequencing using the Illumina HiSeq X Ten platform with PE151 (paired-end) sequencing. Our analyses revealed that the draft genome of Actinomyces acetigenes ATCC 49340 T was 3.27 Mbp with a 68.0% GC content, and Actinomyces stomatis ATCC 51655 T has a genome size of 3.08 Mbp with a 68.1% GC content. Multi-locus (atpA, rpoB, pgi, metG, gltA, gyrA, and core genome SNPs) sequence analysis supported the phylogenetic placement of strains ATCC 51655 T and ATCC 49340 T as independent lineages. Digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and average amino acid identity (AAI) analyses indicated that both strains represented novel Actinomyces species, with values below the threshold for species demarcation (70% dDDH, 95% ANI and AAI). Pangenome analysis identified 5,731 gene clusters with strains ATCC 49340 T and ATCC 51655 T possessing 1,515 and 1,518 unique gene clusters, respectively. Additionally, genomic islands (GIs) prediction uncovered 24 putative GIs in strain ATCC 49340 T and 16 in strain ATCC 51655 T, contributing to their genetic diversity and potential adaptive capabilities. Pathogenicity analysis highlighted the potential human pathogenicity risk associated with both strains, with several virulence-associated factors identified. CRISPR-Cas analysis exposed the presence of CRISPR and Cas genes in both strains, indicating these strains might evolve a robust defense mechanism against them. CONCLUSION: This study supports the classification of strains ATCC 49340 T and ATCC 51655 T as novel species within the Actinomyces, in which the name Actinomyces acetigenes sp. nov. (type strain ATCC 49340 T = VPI D163E-3 T = CCUG 34286 T = CCUG 35339 T) and Actinomyces stomatis sp. nov. (type strain ATCC 51655 T = PK606T = CCUG 33930 T) are proposed.


Asunto(s)
Actinomyces , Boca , Humanos , Femenino , Actinomyces/genética , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Hibridación de Ácido Nucleico , Nucleótidos , ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química
4.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37653463

RESUMEN

Bacteria have long been a source of natural products with diverse bioactivities that have been developed into therapeutics to treat human disease. Historically, researchers have focused on a few taxa of bacteria, mainly Streptomyces and other actinomycetes. This strategy was initially highly successful and resulted in the golden era of antibiotic discovery. The golden era ended when the most common antibiotics from Streptomyces had been discovered. Rediscovery of known compounds has plagued natural product discovery ever since. Recently, there has been increasing interest in identifying other taxa that produce bioactive natural products. Several bioinformatics studies have identified promising taxa with high biosynthetic capacity. However, these studies do not address the question of whether any of the products produced by these taxa are likely to have activities that will make them useful as human therapeutics. We address this gap by applying a recently developed machine learning tool that predicts natural product activity from biosynthetic gene cluster (BGC) sequences to determine which taxa are likely to produce compounds that are not only novel but also bioactive. This machine learning tool is trained on a dataset of BGC-natural product activity pairs and relies on counts of different protein domains and resistance genes in the BGC to make its predictions. We find that rare and understudied actinomycetes are the most promising sources for novel active compounds. There are also several taxa outside of actinomycetes that are likely to produce novel active compounds. We also find that most strains of Streptomyces likely produce both characterized and uncharacterized bioactive natural products. The results of this study provide guidelines to increase the efficiency of future bioprospecting efforts. ONE-SENTENCE SUMMARY: This paper combines several bioinformatics workflows to identify which genera of bacteria are most likely to produce novel natural products with useful bioactivities such as antibacterial, antitumor, or antifungal activity.


Asunto(s)
Actinobacteria , Productos Biológicos , Humanos , Familia de Multigenes , Actinobacteria/genética , Actinobacteria/metabolismo , Biología Computacional , Actinomyces/genética , Productos Biológicos/farmacología , Productos Biológicos/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-37486349

RESUMEN

Filamentous actinomycetes, designated SL13 and SL54T, were isolated from pine litter and their taxonomic status resolved using a polyphasic approach. The isolates exhibit chemotaxonomic and morphological properties consistent with their classification in the family Streptomycetaceae. They form extensively branched substrate mycelia bearing aerial hyphae that differentiate into straight chains of cylindrical spores. The whole-organism hydrolysates contain ll-diaminopimelic acid, glucose, mannose and ribose, the predominant isoprenologue is MK-9(H8), the polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and glycophospholipids, and the major fatty acids are anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. Phylogenetic trees based on 16S rRNA gene sequences and multilocus gene sequences of conserved housekeeping genes show that the isolates form a well-supported lineage that is most closely related to Streptomyces parmotrematis NBRC 115203T. All of these strains form a well-defined clade in the multilocus sequence analysis tree together with Streptantibioticus cattleyicolor DSM 46488T, Streptomyces ferralitis DSM 41836T and Streptomyces rubrisoli DSM 42083T. Draft genomes assemblies of the isolates are rich in biosynthetic gene clusters predicted to produce novel specialized metabolites and stress-related genes which provide an insight into how they have adapted to the harsh conditions that prevail in pine litter. Phylogenomically, both isolates belong to the same lineage as the type strains of S. cattleyicolor, S. ferralitis, S. parmotrematis and S. rubrisoli; these relationships are underpinned by high average amino acid identity, average nucleotide identity and genomic DNA-DNA hybridization values. These metrics confirm that isolates SL13 and SL54T belong to a novel species that is most closely related to S. parmotrematis NBRC 115203T and that these strains together with S. ferralitis DSM 41836T, S. rubrisoli DSM 42083T belong to the genus Streptantibioticus. Consequently, it is proposed that the isolates be recognized as a new Streptantibioticus species, Streptantibioticus silvisoli comb. nov., with isolate SL54T (=DSM 111111T=PCM3044T) as the type strain, and that S. ferralitis, S. parmotrematis and S. rubrisoli be transferred to the genus Streptantibioticus as Streptantibioticus ferralitis comb. nov., Streptantibioticus parmotrematis comb. nov. and Streptantibioticus rubrisoli comb. nov. Emended descriptions are given for the genus Streptantibioticus, the family Streptomycetaceae and for Streptomyces iconiensis which was found to be a close relative of the isolates in the 16S rRNA gene sequence analyses. It is also proposed that Streptomyces cocklensis be transferred to the genus Actinacidiphila as Actinacidiphila cocklensis comb. nov based on its position in the MLSA and phylogenomic trees and associated genomic data.


Asunto(s)
Actinobacteria , Streptomyces , Streptomycetaceae , Actinomyces/genética , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Fosfolípidos/química
6.
Artículo en Inglés | MEDLINE | ID: mdl-37068120

RESUMEN

Two Gram-positive, aerobic and non-motile actinomycetes, designated S1-96T and N2-109T, were isolated from soils collected from a cotton field. They are described as representing two novel species of genera Actinophytocola and Streptomyces through a polyphasic approach. Analysis of 16S rRNA gene sequences revealed that strains S1-96T and N2-109T showed highest similarity to Actinophytocola xinjiangensis CGMCC 4.4663T (99.10 %) and Streptomyces iconiensis BNT558T (98.21 %), respectively. Phylogenetic analyses based on 16S rRNA and core genes confirmed the close relationships of these strains. Genomic analyses further supported the novel taxonomic delimitation of these two species based on digital DNA-DNA hybridization and average nucleotide identity. Strains S1-96T and N2-109T contained MK-9(H4) and MK-9(H6) as the most abundant menaquinone, respectively. High abundances of iso-fatty acids were detected in both strains, which was similar to their close relatives. Physiological and polar lipid analyses also revealed differences between these strains and their phylogenetic neighbours, supporting their taxonomic delimitation as novel species. The names Actinophytocola gossypii sp. nov. (type strain S1-96T=JCM 34412T=CGMCC 4.7707T) and Streptomyces gossypii sp. nov. (type strain N2-109T=JCM 34628T=CGMCC 4.7717T) are proposed.


Asunto(s)
Actinobacteria , Actinomycetales , Streptomyces , Ácidos Grasos/química , Actinomyces/genética , Rizosfera , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico , Actinobacteria/genética , Gossypium
7.
Rev Argent Microbiol ; 55(3): 235-239, 2023.
Artículo en Español | MEDLINE | ID: mdl-36642684

RESUMEN

A brain abscess is a focal infection characterized by a collection of pus in the brain parenchyma. It is a life-threatening condition that should be diagnosed and treated as soon as possible. We report here three cases of patients with otogenic brain abscesses of polymicrobial origin that had in common the isolation of Actinomyces europaeus, which has not been previously described in this location. A. europaeus was identified by the conventional methodology, matrix-associated laser deionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing. Antibiotic susceptibility was evaluated by the epsilometric method, and all isolates showed sensitivity to penicillin, vancomycin and linezolid, whereas susceptibility to clindamycin and erythromycin was variable. MALDI-TOF MS identification allowed a quick and reliable species level identification in order to provide a rapid and effective response to avoid treatment delay that could lead to increased morbidity and even mortality.


Asunto(s)
Actinomyces , Absceso Encefálico , Humanos , ARN Ribosómico 16S/genética , Actinomyces/genética , Absceso Encefálico/complicaciones , Clindamicina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
8.
Arch Microbiol ; 205(1): 9, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459234

RESUMEN

An obligately anaerobic, rod-shaped, Gram-stain-positive, non-spore-forming, non-motile bacterial strain; designated as CtC72T was isolated from the rumen of cattle. The 16S rRNA gene sequence similarity of less than 98.65% revealed the strain as a member of the genus Actinomyces, nearest to but distinct from Actinomyces qiguomingii DSM 106201T, Actinomyces ruminicola DSM 27982T, Actinomyces procaprae JCM 33484T, Actinomyces succiniciruminis TISTR 2317, Actinomyces glycerinitolerans TISTR 2318. The low values of digital DNA-DNA hybridization (< 70%) and average nucleotide identity (< 95%) further highlighted the distinctive nature of strain CtC72T from its closest relatives. The strain CtC72T could grow at temperatures between 30 and 50 °C (optimum 40 °C), pH between 6.0 and 9.0 (optimum 7.5-8.0), and NaCl between 0 and 1.5% (optimum 0%). The strain hydrolysed cellulose and xylan and utilised a range of mono-, di-, and oligo-saccharides as a source of carbon and energy. Glucose fermentation resulted in acetic acid and formic acid as major metabolic products, while propionic acid, lactic acid, and ethanol as minor products along with CO2 production. The DNA G + C content of strain CtC72T was 68.40 (mol%, Tm) and 68.05 (%, digital). Major cellular fatty acids (> 10%) were C16:0, C18:1 ω9c, and C18:1 ω9c DMA. Based on these data, we propose that strain CtC72T be classified as a novel species, Actinomyces ruminis sp. nov., under the genus Actinomyces. The type strain is CtC72T (= KCTC 15726T = JCM 32641T = MCC 3500T).


Asunto(s)
Bacterias Anaerobias , Rumen , Bovinos , Animales , ARN Ribosómico 16S/genética , Anaerobiosis , Composición de Base , Filogenia , Análisis de Secuencia de ADN , Actinomyces/genética
9.
Curr Microbiol ; 79(11): 344, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209310

RESUMEN

Odor caused by the presence of geosmin and 2-methylisoborneol (2-MIB) in aquatic ecosystems leads to considerable economic loss worldwide. The odorous compounds are primarily produced by cyanobacteria and actinomycetes. While the contribution of odorous compounds-producing cyanobacteria has been thoroughly investigated, the production of geosmin and 2-MIB by actinomycetes in aquatic ecosystems is poorly understood. In this study, we isolated geosmin and/or 2-MIB-producing actinomycetes in sediments collected from the Sanbe Reservoir, Japan, identified the biosynthetic gene of geosmin and 2-MIB, and investigated the production of the odorous compounds by the isolated strains. Partial sequence of 16S rRNA and the biosynthetic genes was determined to analyze the phylogenetic relationship among the strains. The geosmin and 2-MIB concentrations in the culture of the isolated strains were measured using gas chromatography mass spectrometry. Fifty-four strains of odorous compounds-producing and non-geosmin-producing actinomycetes were isolated from sediments from the Sanbe Reservoir. Diverse actinomycetes were identified and many of them produced geosmin and/or 2-MIB. Many odorous compounds-producing actinomycetes were phylogenetically different from previously reported producing actinomycetes. The producing ability of the odorous compounds of the isolated strains in this study was not significantly related with the phylogenetic groups of 16S rRNA and the biosynthetic genes. The findings suggest that the odorous compounds-producing actinomycetes in the sediments are diverse and different from previously reported strains.


Asunto(s)
Actinobacteria , Cianobacterias , Agua Potable , Actinobacteria/genética , Actinomyces/genética , Cianobacterias/genética , Ecosistema , Japón , Naftoles , Odorantes/análisis , Filogenia , ARN Ribosómico 16S/genética
10.
Front Immunol ; 13: 1008975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119074

RESUMEN

Colorectal cancer (CRC) is the third most common form of cancer, and the incidence of sporadic young-onset colorectal cancer (yCRC) has been increasing. Microbiota residing in the tumor microenvironment are emerging tumor components. The colonic microbiome differs between patients with CRC and healthy controls; however, few studies have investigated the role of the tumor microbiota in disease diagnosis and tumorigenesis of yCRC. We performed 16S rRNA sequencing analysis to identify the microbiome in CRC and found that tumor microbial diversity decreased in yCRC. Proteobacteria and Firmicutes were the most abundant phyla in all CRC samples, and Actinomyces and Schaalia cardiffensis were the key microbiota in the yCRC group. Correlation analysis revealed that Actinomyces co-occurred with various pro-tumor microbial taxa, including Bacteroidia, Gammaproteobacteria, and Pseudomonas. An independent cohort was used to validate the results. The Actinomyces in CRC was co-localized with cancer-associated fibroblasts and activated the TLR2/NF-κB pathway and reduces CD8+ T lymphocyte infiltration in CRC microenvironment. This study suggests that tumoral microbiota plays an important role in promoting tumorigenesis and therefore has potential as a promising non-invasive tool and intervention target for anti-tumor therapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Microbiota , Actinomyces/genética , Fibroblastos Asociados al Cáncer/patología , Carcinogénesis , Transformación Celular Neoplásica , Neoplasias Colorrectales/patología , Disbiosis/microbiología , Humanos , FN-kappa B , ARN Ribosómico 16S/genética , Receptor Toll-Like 2 , Microambiente Tumoral
11.
J Basic Microbiol ; 62(10): 1202-1215, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35945171

RESUMEN

The study aimed to isolate rare halophilic actinomycetes from hypersaline soils of Algerian inland Wetland Ecosystems "Sebkhas-Chotts" located in arid and hot hyperarid lands with international importance under the Ramsar Convention and to explore their enzyme-producing and antibacterial abilities. The halophilic actinomycetes were selectively isolated using agar-rich media supplemented with 5, 10, and 15% (W/V) of total salts. Thirty-one isolates were obtained and 16S rRNA gene sequencing analysis revealed the presence of members affiliated to rare halophilic actinobacterial genera (Actinopolyspora and Nocardiopsis) accounting for 74.19% (23 isolates out of 31) and 25.8% (8 isolates), respectively. Both phylotypes are alkalitolerant and halophilic thermotolerant actinomycetes displaying significant hydrolytic activities relative to (amylase, asparaginase, cellulase, esterase, glutaminase, inulinase, protease, pectinase, xylanase), and over 96% of tested isolates exhibited all common enzymes, mainly active at 10% of growing salt. In addition, high antibacterial activity was observed against Bacillus cereus, Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus. The findings showed that saline wetlands ecosystems represent a rich reservoir for the isolation of significant rare halophilic actinomycetes with potential adaptive features and valuable sources for novel bioactive metabolites and biocatalysts of biotechnological interest.


Asunto(s)
Actinobacteria , Celulasas , Actinomyces/genética , Agar , Argelia , Amilasas , Antibacterianos/farmacología , Asparaginasa/genética , Celulasas/genética , Ecosistema , Esterasas/genética , Glutaminasa/genética , Péptido Hidrolasas/genética , Filogenia , Poligalacturonasa , ARN Ribosómico 16S/genética , Sales (Química) , Suelo , Humedales
12.
Mol Oral Microbiol ; 37(5): 167-179, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35859343

RESUMEN

Oral microbiome sequencing efforts revealed the presence of hundreds of different microbes. Interindividual differences at strain and species resolution suggest that microbiome diversity could lead to mechanistically distinct gene regulation as well as species-related differences in phenotypes. Commonly, gene regulation and related phenotypes are studied in a few selected strains of a particular species with conclusions that are mostly generalized. The aim of this study was to isolate several species of Corynebacterium using an established protocol that led to the previous isolation of C. durum. Characterization of C. durum interspecies interactions revealed a specific mechanism for chain elongation in Streptococcus sanguinis that was the result of corynebacterial fatty acid production and secretion. While the protocol was successfully applied to isolate what we presumed to be additional Corynebacterium based on several phenotypic traits that seem to be identical to C. durum, genome sequencing of the newly isolated strains placed them closer to Actinomyces. Both Corynebacterium and Actinomyces are suborders of the Actinobacteridae and related species. Our study suggests to take several comprehensive strategies into consideration when taxonomically identifying closely related microorganisms. Furthermore, it seems to be important to test common core phenotypes in bacterial ecology to understand the behavior of specific groups of microbes, rather than simply relying upon genome sequence homology to establish relationships in the microbiome.


Asunto(s)
Corynebacterium , Microbiota , Actinomyces/genética , Corynebacterium/genética , ADN Bacteriano/genética , Ácidos Grasos , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptococcus sanguis/genética
13.
Rev Argent Microbiol ; 54(4): 326-334, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35725666

RESUMEN

Diverse habitats have been screened for novel antimicrobial actinomycetes, while others remain unexplored. In this study, we analyzed the bioactivities of actinomycetes cultured from rhizosphere soils of the desert plant Artemisia tridentata and the nearby bulk soils. Actinomycetes were screened for antifungal and antibacterial activities toward a panel of plant pathogens; all comparisons were between activities of rhizosphere soil isolates toward those of its counterpart bulk soil. A selected group of the strongest antifungal isolates were also tested against two antifungal-drug resistant strains of Candida albicans. 16S rDNA partial sequences and phylogenetic analysis of isolates that showed broad-spectrum antifungal activities were performed. Forty-two out of 200 and two soil isolated actinomycetes were selected for their strong antifungal activities. The highest proportion of isolates (p<0.05) from rhizosphere soil of an old plant showed antagonism against gram-positive bacteria (0.483 and 0.224 proportions against Bacillus subtilis and Rathayibacter tritici, respectively), and phytopathogenic fungi (0.259, 0.431, and 0.345 proportions against Fusarium oxysporum, Rhizoctonia solani and Pythium ultimum, respectively), while the highest antagonism against the gram-negative bacteria predominated in isolates from the bulk soils. Isolates from a rhizosphere soil of a young plant were characterized for strong antagonist activities against Fusarium oxysporum (0.333 proportion, p<0.05). Phylogenetic analysis of 16S rDNA sequences showed that isolates that exhibited strong antifungal activity were genetically similar. We conclude that the rhizosphere soil of A. tridentata is an excellent source for discovery of actinomycetes with potentially novel antifungal compounds.


Asunto(s)
Actinobacteria , Artemisia , Streptomyces , Filogenia , Microbiología del Suelo , Antifúngicos , Artemisia/genética , Artemisia/microbiología , Actinomyces/genética , Actinobacteria/genética , Rizosfera , Suelo , ADN Ribosómico/genética , Enfermedades de las Plantas/microbiología
14.
Pol J Microbiol ; 71(2): 191-204, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35676828

RESUMEN

Exploring untapped microbial potentials in previously uncharted environments has become crucial in discovering novel secondary metabolites and enzymes for biotechnological applications. Among prokaryotes, actinomycetes are well recognized for producing a vast range of secondary metabolites and extracellular enzymes. In the present study, we have used surface sediments from 'Kadolkele' mangrove ecosystem located in the Negombo lagoon area, Sri Lanka, to isolate actinomycetes with bioactive potentials. A total of six actinomycetes were isolated on modified-starch casein agar and characterized. The isolates were evaluated for their antibacterial activity against four selected bacterial strains and to produce extracellular enzymes: cellulase, amylase, protease, and lipase. Three out of the six isolates exhibited antibacterial activity against Staphylococcus aureus, Escherichia coli, and Bacillus cereus, but not against Listeria monocytogenes. Five strains could produce extracellular cellulase, while all six isolates exhibited amylase activity. Only three of the six isolates were positive for protease and lipase assays separately. Ac-1, Ac-2, and Ac-9, identified as Streptomyces spp. with the 16S rRNA gene sequencing, were used for pigment extraction using four different solvents. Acetone-extracted crude pigments of Ac-1 and Ac-2 were further used in well-diffusion assays, and growth inhibition of test bacteria was observed only with the crude pigment extract of Ac-2. Further, six different commercially available fabrics were dyed with crude pigments of Ac-1. The dyed fabrics retained the yellow color after acid, alkaline, and cold-water treatments suggesting the potential of the Ac-1 pigment to be used in biotechnological applications.


Asunto(s)
Actinobacteria , Celulasas , Streptomyces , Actinomyces/genética , Actinomyces/metabolismo , Amilasas/genética , Amilasas/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Celulasas/metabolismo , Ecosistema , Escherichia coli/genética , Lipasa/genética , Lipasa/metabolismo , Péptido Hidrolasas/genética , Filogenia , ARN Ribosómico 16S/genética , Sri Lanka , Streptomyces/genética
15.
Curr Microbiol ; 79(6): 168, 2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35460380

RESUMEN

Species composition and diversity dynamics of the actinomycetes was studied in five salt basins of arid and semi-arid areas of Rajasthan, India. A novel approach integrating molecular (16S rRNA gene) and diversity indices was applied to reveal species composition and diversity dynamics. Fifty-three actinomycetes isolates were isolated from five arid and semi-arid salt basins. Molecular characterization resulted in the identification of actinomycetes species belonging to three genera namely, Streptomyces, Nocardiopsis, and Actinoalloteichus. The diversity study among actinomycetes species validates their universal occurrence in arid and semi-arid regions of Rajasthan. The species N. dassonvillei subsp. albirubida was omnipresent in all the five salt basins but its relative manifestation was not static across habitats. The study revealed that three species N. chromatogenes, S. durbertensis, and S. mangrovicola are being reported for the first time from India. The maximum species of actinomycetes were recorded from Pachpadra (14) and the minimum from Didwana area (6). This study not only documents the hitherto wealth of actinomycetes species in arid and semi-arid salt basins of Rajasthan but also reveals the composition and diversity dynamics of actinomycetes.


Asunto(s)
Actinobacteria , Actinomyces/genética , Clima Desértico , India , Filogenia , ARN Ribosómico 16S/genética
16.
Sheng Wu Gong Cheng Xue Bao ; 38(2): 546-564, 2022 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-35234381

RESUMEN

Ribosomal engineering is a technique that can improve the biosynthesis of secondary metabolites in the antibiotics-resistant mutants by attacking the bacterial RNA polymerase or ribosome units using the corresponding antibiotics. Ribosomal engineering can be used to discover and increase the production of valuable bioactive secondary metabolites from almost all actinomycetes strains regardless of their genetic accessibility. As a consequence, ribosomal engineering has been widely applied to genome mining and production optimization of secondary metabolites in actinomycetes. To date, more than a dozen of new molecules were discovered and production of approximately 30 secondary metabolites were enhanced using actinomycetes mutant strains generated by ribosomal engineering. This review summarized the mechanism, development, and protocol of ribosomal engineering, highlighting the application of ribosomal engineering in actinomycetes, with the aim to facilitate future development of ribosomal engineering and discovery of actinomycetes secondary metabolites.


Asunto(s)
Actinobacteria , Actinobacteria/genética , Actinobacteria/metabolismo , Actinomyces/genética , Antibacterianos/metabolismo , Familia de Multigenes , Ribosomas/genética
17.
Syst Appl Microbiol ; 45(2): 126294, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35101732

RESUMEN

Four white-pigmented, Gram-staining-positive, strictly aerobic, non-spore-forming, irregular rod-shaped bacteria were isolated from the faeces of bats collected from Guangxi autonomous region (22°20'54″N, 106°49'20″E; July 28, 2011) and Chongqing city (30°02'15″N, 107°07'4″E; September 1, 2011) of South China. The strains shared 99.3-99.9% 16S rRNA gene sequence similarity by BLAST search among them, and belonged to genus Tomitella according to 16S rRNA gene and genomic sequence-based phylogenetic/phylogenomic analyses. Strains HY172T and HY188T contained meso-diaminopimelic acid as the diagnostic diamino acid, and arabinose, glucose, galactose or ribose in their whole-cell hydrolysates. Besides sharing phosphatidylethanolamine, diphosphatidylglycerol and unidentified glycolipid(s) in their polar lipid profiles, additionally HY172T had one unidentified phosphoglycolipid and three unidentified phospholipids whereas HY188T had phosphatidyl inositol mannoside and four unidentified aminolipids. The main cellular fatty acids of strains HY172T and HY188T were C16:0, C18:0 10-methyl, C18:1ω9c and summed feature 3. The genomic DNA G + C contents of both strains (HY172T and HY188T) were 70.9 %. The genus Tomitella contains 2311 core genes, and resuscitation promoting factor (rpf) genes can be found in all members of Tomitella. The digital DNA-DNA hybridization and average nucleotide identity values of the four novel strains with other members of the genus Tomitella were within the ranges of 20.1-45.2% and 74.8-91.9%, respectively, all below the respective recommended 70.0% and 95-96% cutoff point. Based on phylogenetic, chemotaxonomic and phenotypic analyses, these four strains could be classified as two novel species of the genus Tomitella, for which the names Tomitella gaofuii sp. nov. and Tomitella fengzijianii sp. nov. are proposed. The type strains are HY172T (= CGMCC 1.18701T = JCM 34231T) and HY188T (= CGMCC 1.16971T = JCM 33467T), respectively.


Asunto(s)
Actinobacteria , Quirópteros , Actinomyces/genética , Animales , Técnicas de Tipificación Bacteriana , China , Quirópteros/microbiología , ADN Bacteriano/genética , Ácidos Grasos/química , Heces/microbiología , Genómica , Hibridación de Ácido Nucleico , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
18.
J Appl Microbiol ; 132(4): 2870-2882, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34919313

RESUMEN

AIMS: The current study aimed to evaluate the occurrence of actinomycetes in the Coast of Bejaia City using selective isolation, as well as their bioactivity and phylogenitic diversity. METHODS AND RESULTS: Different selective media and methods were used, leading to the isolation of 103 actinomycete strains. The number of strains was influenced by isolation procedures and their interactions based on a three-way ANOVA and a post hoc Tukey test, which revealed that using M2 medium, dilution of samples followed by moderate heat treatment, and sampling at 10-20 m yielded the highest numbers of actinomycetes. The isolates were screened for their antimicrobial activity against human pathogenic microorganisms using agar and well diffusion methods. Of all the isolates, ten displayed activity against at least one Gram-positive bacterium, of which P21 showed the highest activity against Staphylococcus aureus, Methicillin-resistant S. aureus and Bacillus subtilis, with a diameter of 32, 28 and 25 mm respectively. Subsequently, active isolates were assigned to Streptomyces spp. and Nocardiopsis spp. based on 16S rRNA gene sequencing, including a putative new Streptomyces species (S3). The phenotypic characteristics of the P21 strain were determined, and interesting enzymatic capacities were shown. CONCLUSION: The recovery of actinomycetes along the Coast of Bejaia City was influenced by the isolation procedure. Ten strains displayed interesting antibacterial activity against Gram-positive bacteria, of which the P21 strain was selected as the most active strain. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides a new insight into the occurrence of actinobacteria in the Coast of Bejaia. It suggests also that polluted environments such as Bejaia Bay could provide access to interesting actinomycetes as sources of antibiotic leads.


Asunto(s)
Actinobacteria , Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Streptomyces , Actinomyces/genética , Argelia , Antibacterianos/farmacología , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Filogenia , ARN Ribosómico 16S/genética , Streptomyces/genética
19.
Chinese Journal of Biotechnology ; (12): 546-564, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-927727

RESUMEN

Ribosomal engineering is a technique that can improve the biosynthesis of secondary metabolites in the antibiotics-resistant mutants by attacking the bacterial RNA polymerase or ribosome units using the corresponding antibiotics. Ribosomal engineering can be used to discover and increase the production of valuable bioactive secondary metabolites from almost all actinomycetes strains regardless of their genetic accessibility. As a consequence, ribosomal engineering has been widely applied to genome mining and production optimization of secondary metabolites in actinomycetes. To date, more than a dozen of new molecules were discovered and production of approximately 30 secondary metabolites were enhanced using actinomycetes mutant strains generated by ribosomal engineering. This review summarized the mechanism, development, and protocol of ribosomal engineering, highlighting the application of ribosomal engineering in actinomycetes, with the aim to facilitate future development of ribosomal engineering and discovery of actinomycetes secondary metabolites.


Asunto(s)
Actinobacteria/metabolismo , Actinomyces/genética , Antibacterianos/metabolismo , Familia de Multigenes , Ribosomas/genética
20.
Medicina (Kaunas) ; 57(10)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34684101

RESUMEN

Background and Objectives: Actinomyces species are part of the normal flora of humans and rarely cause disease. It is an uncommon cause of disease in humans. The clinical features of actinomycosis have been described, and various anatomical sites (such as face, bones and joints, respiratory tract, genitourinary tract, digestive tract, central nervous system, skin, and soft tissue structures) can be affected. It is not easy to identify actinomycosis because it sometimes mimics cancer due to under-recognition. As new diagnostic methods have been applied, Actinomyces can now more easily be identified at the species level. Recent studies have also highlighted differences among Actinomyces species. We report a case of Actinomyces viscosus bacteremia with cutaneous actinomycosis. Materials and Methods: A 66 years old male developed fever for a day with progressive right lower-leg erythematous swelling. Blood culture isolates yielded Actinomyces species, which was identified as Actinomyces viscosus by sequencing of the 16S rRNA gene. In addition, we searched for the term Actinomyces or actinomycosis cross-referenced with bacteremia or "blood culture" or "blood stream" from January 2010 to July 2020. The infectious diseases caused by species of A. viscosus from January 1977 to July 2020 were also reviewed. Results: The patient recovered well after intravenous ampicillin treatment. Poor oral hygiene was confirmed by dental examination. There were no disease relapses during the following period. Most cases of actinomycosis can be treated with penicillin. However, clinical alertness, risk factor evaluation, and identification of Actinomyces species can prevent inappropriate antibiotic or intervention. We also compiled a total of 18 cases of Actinomyces bacteremia after conducting an online database search. Conclusions: In summary, we describe a case of fever and progressive cellulitis. Actinomyces species was isolated from blood culture, which was further identified as Actinomyces viscosus by 16S rRNA sequencing. The cellulitis improved after pathogen-directed antibiotics. Evaluation of risk factors in patients with Actinomyces bacteremia and further identification of the Actinomyces species are recommended for successful treatment.


Asunto(s)
Actinomicosis , Bacteriemia , Actinomyces/genética , Actinomyces viscosus , Actinomicosis/diagnóstico , Actinomicosis/tratamiento farmacológico , Anciano , Bacteriemia/diagnóstico , Bacteriemia/tratamiento farmacológico , Humanos , Masculino , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...