Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.616
Filtrar
1.
J Gen Physiol ; 156(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38652080

RESUMEN

Cannabidiol (CBD), the main non-psychotropic phytocannabinoid produced by the Cannabis sativa plant, blocks a variety of cardiac ion channels. We aimed to identify whether CBD regulated the cardiac pacemaker channel or the hyperpolarization-activated cyclic nucleotide-gated channel (HCN4). HCN4 channels are important for the generation of the action potential in the sinoatrial node of the heart and increased heart rate in response to ß-adrenergic stimulation. HCN4 channels were expressed in HEK 293T cells, and the effect of CBD application was examined using a whole-cell patch clamp. We found that CBD depolarized the V1/2 of activation in holo-HCN4 channels, with an EC50 of 1.6 µM, without changing the current density. CBD also sped activation kinetics by approximately threefold. CBD potentiation of HCN4 channels occurred via binding to the closed state of the channel. We found that CBD's mechanism of action was distinct from cAMP, as CBD also potentiated apo-HCN4 channels. The addition of an exogenous PIP2 analog did not alter the ability of CBD to potentiate HCN4 channels, suggesting that CBD also acts using a unique mechanism from the known HCN4 potentiator PIP2. Lastly, to gain insight into CBD's mechanism of action, computational modeling and targeted mutagenesis were used to predict that CBD binds to a lipid-binding pocket at the C-terminus of the voltage sensor. CBD represents the first FDA-approved drug to potentiate HCN4 channels, and our findings suggest a novel starting point for drug development targeting HCN4 channels.


Asunto(s)
Cannabidiol , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Proteínas Musculares , Cannabidiol/farmacología , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Células HEK293 , Canales de Potasio/metabolismo , Canales de Potasio/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos
2.
Nature ; 622(7981): 195-201, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37730991

RESUMEN

Type A γ-aminobutyric acid receptors (GABAARs) are the principal inhibitory receptors in the brain and the target of a wide range of clinical agents, including anaesthetics, sedatives, hypnotics and antidepressants1-3. However, our understanding of GABAAR pharmacology has been hindered by the vast number of pentameric assemblies that can be derived from 19 different subunits4 and the lack of structural knowledge of clinically relevant receptors. Here, we isolate native murine GABAAR assemblies containing the widely expressed α1 subunit and elucidate their structures in complex with drugs used to treat insomnia (zolpidem (ZOL) and flurazepam) and postpartum depression (the neurosteroid allopregnanolone (APG)). Using cryo-electron microscopy (cryo-EM) analysis and single-molecule photobleaching experiments, we uncover three major structural populations in the brain: the canonical α1ß2γ2 receptor containing two α1 subunits, and two assemblies containing one α1 and either an α2 or α3 subunit, in which the single α1-containing receptors feature a more compact arrangement between the transmembrane and extracellular domains. Interestingly, APG is bound at the transmembrane α/ß subunit interface, even when not added to the sample, revealing an important role for endogenous neurosteroids in modulating native GABAARs. Together with structurally engaged lipids, neurosteroids produce global conformational changes throughout the receptor that modify the ion channel pore and the binding sites for GABA and insomnia medications. Our data reveal the major α1-containing GABAAR assemblies, bound with endogenous neurosteroid, thus defining a structural landscape from which subtype-specific drugs can be developed.


Asunto(s)
Microscopía por Crioelectrón , Neuroesteroides , Receptores de GABA-A , Ácido gamma-Aminobutírico , Animales , Ratones , Sitios de Unión/efectos de los fármacos , Depresión Posparto/tratamiento farmacológico , Flurazepam/farmacología , Ácido gamma-Aminobutírico/metabolismo , Hipnóticos y Sedantes/farmacología , Activación del Canal Iónico/efectos de los fármacos , Neuroesteroides/metabolismo , Neuroesteroides/farmacología , Fotoblanqueo , Pregnanolona/farmacología , Conformación Proteica/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestructura , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Zolpidem/farmacología
3.
J Biol Chem ; 299(7): 104918, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37315791

RESUMEN

Unlike other members of the voltage-gated ion channel superfamily, voltage-gated proton (Hv) channels are solely composed of voltage sensor domains without separate ion-conducting pores. Due to their unique dependence on both voltage and transmembrane pH gradients, Hv channels normally open to mediate proton efflux. Multiple cellular ligands were also found to regulate the function of Hv channels, including Zn2+, cholesterol, polyunsaturated arachidonic acid, and albumin. Our previous work showed that Zn2+ and cholesterol inhibit the human voltage-gated proton channel (hHv1) by stabilizing its S4 segment at resting state conformations. Released from phospholipids by phospholipase A2 in cells upon infection or injury, arachidonic acid regulates the function of many ion channels, including hHv1. In the present work, we examined the effects of arachidonic acid on purified hHv1 channels using liposome flux assays and revealed underlying structural mechanisms using single-molecule FRET. Our data indicated that arachidonic acid strongly activates hHv1 channels by promoting transitions of the S4 segment toward opening or "preopening" conformations. Moreover, we found that arachidonic acid even activates hHv1 channels inhibited by Zn2+ and cholesterol, providing a biophysical mechanism to activate hHv1 channels in nonexcitable cells upon infection or injury.


Asunto(s)
Ácido Araquidónico , Colesterol , Activación del Canal Iónico , Canales Iónicos , Protones , Zinc , Humanos , Albúminas/farmacología , Ácido Araquidónico/farmacología , Colesterol/farmacología , Transferencia Resonante de Energía de Fluorescencia , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/agonistas , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/química , Canales Iónicos/metabolismo , Liposomas/metabolismo , Fosfolipasas A2/metabolismo , Imagen Individual de Molécula , Zinc/farmacología , Concentración de Iones de Hidrógeno
4.
Science ; 378(6616): eadd1268, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36227998

RESUMEN

The transient receptor potential melastatin 8 (TRPM8) channel is the primary molecular transducer responsible for the cool sensation elicited by menthol and cold in mammals. TRPM8 activation is controlled by cooling compounds together with the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Our knowledge of cold sensation and the therapeutic potential of TRPM8 for neuroinflammatory diseases and pain will be enhanced by understanding the structural basis of cooling agonist- and PIP2-dependent TRPM8 activation. We present cryo-electron microscopy structures of mouse TRPM8 in closed, intermediate, and open states along the ligand- and PIP2-dependent gating pathway. Our results uncover two discrete agonist sites, state-dependent rearrangements in the gate positions, and a disordered-to-ordered transition of the gate-forming S6-elucidating the molecular basis of chemically induced cool sensation in mammals.


Asunto(s)
Frío , Activación del Canal Iónico , Fosfatidilinositol 4,5-Difosfato , Pirimidinonas , Canales Catiónicos TRPM , Sensación Térmica , Animales , Ratones , Microscopía por Crioelectrón , Ligandos , Mentol/química , Mentol/farmacología , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/farmacología , Sensación Térmica/efectos de los fármacos , Sensación Térmica/fisiología , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Conformación Proteica , Pirimidinonas/química , Pirimidinonas/farmacología
5.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216338

RESUMEN

The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin veratridine (VTD) inhibits NaV1.5 inactivation resulting in longer channel opening times, and potentially fatal action potential prolongation. VTD is predicted to bind at the channel pore, but alternative binding sites have not been ruled out. To determine the binding site of VTD on NaV1.5, we perform docking calculations and high-throughput electrophysiology experiments in the present study. The docking calculations identified two distinct binding regions. The first site was in the pore, close to the binding site of NaV1.4 and NaV1.5 blocking drugs in experimental structures. The second site was at the "mouth" of the pore at the cytosolic side, partly solvent-exposed. Mutations at this site (L409, E417, and I1466) had large effects on VTD binding, while residues deeper in the pore had no effect, consistent with VTD binding at the mouth site. Overall, our results suggest a VTD binding site close to the cytoplasmic mouth of the channel pore. Binding at this alternative site might indicate an allosteric inactivation mechanism for VTD at NaV1.5.


Asunto(s)
Boca/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sodio/metabolismo , Veratridina/farmacología , Sitios de Unión/fisiología , Línea Celular , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Neurotoxinas/farmacología
6.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055012

RESUMEN

Thanks to the crosstalk between Na+ and Ca2+ channels, Na+ and Ca2+ homeostasis interplay in so-called excitable cells enables the generation of action potential in response to electrical stimulation. Here, we investigated the impact of persistent activation of voltage-gated Na+ (NaV) channels by neurotoxins, such as veratridine (VTD), on intracellular Ca2+ concentration ([Ca2+]i) in a model of excitable cells, the rat pituitary GH3b6 cells, in order to identify the molecular actors involved in Na+-Ca2+ homeostasis crosstalk. By combining RT-qPCR, immunoblotting, immunocytochemistry, and patch-clamp techniques, we showed that GH3b6 cells predominantly express the NaV1.3 channel subtype, which likely endorses their voltage-activated Na+ currents. Notably, these Na+ currents were blocked by ICA-121431 and activated by the ß-scorpion toxin Tf2, two selective NaV1.3 channel ligands. Using Fura-2, we showed that VTD induced a [Ca2+]i increase. This effect was suppressed by the selective NaV channel blocker tetrodotoxin, as well by the selective L-type CaV channel (LTCC) blocker nifedipine. We also evidenced that crobenetine, a NaV channel blocker, abolished VTD-induced [Ca2+]i elevation, while it had no effects on LTCC. Altogether, our findings highlight a crosstalk between NaV and LTCC in GH3b6 cells, providing a new insight into the mode of action of neurotoxins.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Transducción de Señal/efectos de los fármacos , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Fenómenos Electrofisiológicos , Técnica del Anticuerpo Fluorescente , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Activación del Canal Iónico/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Neurotoxinas/farmacología , Técnicas de Placa-Clamp , Unión Proteica , Isoformas de Proteínas , Ratas , Canales de Sodio Activados por Voltaje/genética
7.
PLoS One ; 17(1): e0261960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35030226

RESUMEN

Inhibitory regulation of the heart is determined by both cholinergic M2 receptors (M2R) and adenosine A1 receptors (A1R) that activate the same signaling pathway, the ACh-gated inward rectifier K+ (KACh) channels via Gi/o proteins. Previously, we have shown that the agonist-specific voltage sensitivity of M2R underlies several voltage-dependent features of IKACh, including the 'relaxation' property, which is characterized by a gradual increase or decrease of the current when cardiomyocytes are stepped to hyperpolarized or depolarized voltages, respectively. However, it is unknown whether membrane potential also affects A1R and how this could impact IKACh. Upon recording whole-cell currents of guinea-pig cardiomyocytes, we found that stimulation of the A1R-Gi/o-IKACh pathway with adenosine only caused a very slight voltage dependence in concentration-response relationships (~1.2-fold EC50 increase with depolarization) that was not manifested in the relative affinity, as estimated by the current deactivation kinetics (τ = 4074 ± 214 ms at -100 mV and τ = 4331 ± 341 ms at +30 mV; P = 0.31). Moreover, IKACh did not exhibit relaxation. Contrarily, activation of the M2R-Gi/o-IKACh pathway with acetylcholine induced the typical relaxation of the current, which correlated with the clear voltage-dependent effect observed in the concentration-response curves (~2.8-fold EC50 increase with depolarization) and in the IKACh deactivation kinetics (τ = 1762 ± 119 ms at -100 mV and τ = 1503 ± 160 ms at +30 mV; P = 0.01). Our findings further substantiate the hypothesis of the agonist-specific voltage dependence of GPCRs and that the IKACh relaxation is consequence of this property.


Asunto(s)
Acetilcolina/farmacología , Agonistas del Receptor de Adenosina A1/farmacología , Adenosina/farmacología , Activación del Canal Iónico/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Canales de Potasio/metabolismo , Receptor de Adenosina A1/metabolismo , Animales , Femenino , Cobayas , Masculino , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo
8.
Cell Death Dis ; 13(1): 47, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013127

RESUMEN

Hereditary degeneration of photoreceptors has been linked to over-activation of Ca2+-permeable channels, excessive Ca2+-influx, and downstream activation of Ca2+-dependent calpain-type proteases. Unfortunately, after more than 20 years of pertinent research, unequivocal evidence proving significant and reproducible photoreceptor protection with Ca2+-channel blockers is still lacking. Here, we show that both D- and L-cis enantiomers of the anti-hypertensive drug diltiazem were very effective at blocking photoreceptor Ca2+-influx, most probably by blocking the pore of Ca2+-permeable channels. Yet, unexpectedly, this block neither reduced the activity of calpain-type proteases, nor did it result in photoreceptor protection. Remarkably, application of the L-cis enantiomer of diltiazem even led to a strong increase in photoreceptor cell death. These findings shed doubt on the previously proposed links between Ca2+ and retinal degeneration and are highly relevant for future therapy development as they may serve to refocus research efforts towards alternative, Ca2+-independent degenerative mechanisms.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Diltiazem/farmacología , Degeneración Retiniana/metabolismo , Animales , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , GMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Diltiazem/química , Activación del Canal Iónico/efectos de los fármacos , Cinética , Ratones , Proteolisis , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología
9.
Molecules ; 27(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011530

RESUMEN

Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/agonistas , Canales de Potasio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Humanos , Potasio/metabolismo , Canales de Potasio/clasificación
10.
Molecules ; 27(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011544

RESUMEN

Natural plant compounds, such as betaine, are described to have nematocidal properties. Betaine also acts as a neurotransmitter in the free-living model nematode Caenorhabditis elegans, where it is required for normal motility. Worm motility is mediated by nicotinic acetylcholine receptors (nAChRs), including subunits from the nematode-specific DEG-3 group. Not all types of nAChRs in this group are associated with motility, and one of these is the DEG-3/DES-2 channel from C. elegans, which is involved in nociception and possibly chemotaxis. Interestingly, the activity of DEG-3/DES-2 channel from the parasitic nematode of ruminants, Haemonchus contortus, is modulated by monepantel and its sulfone metabolite, which belong to the amino-acetonitrile derivative anthelmintic drug class. Here, our aim was to advance the pharmacological knowledge of the DEG-3/DES-2 channel from C. elegans by functionally expressing the DEG-3/DES-2 channel in Xenopus laevis oocytes and using two-electrode voltage-clamp electrophysiology. We found that the DEG-3/DES-2 channel was more sensitive to betaine than ACh and choline, but insensitive to monepantel and monepantel sulfone when used as direct agonists and as allosteric modulators in co-application with betaine. These findings provide important insight into the pharmacology of DEG-3/DES-2 from C. elegans and highlight the pharmacological differences between non-parasitic and parasitic nematode species.


Asunto(s)
Aminoacetonitrilo/análogos & derivados , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Aminoacetonitrilo/farmacología , Animales , Caenorhabditis elegans , Potenciales de la Membrana/efectos de los fármacos , Sulfonas/farmacología , Xenopus laevis
11.
Immunology ; 165(1): 3-21, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34558663

RESUMEN

An autoimmune disease is an inappropriate response to one's tissues due to a break in immune tolerance and exposure to self-antigens. It often leads to structural and functional damage to organs and systemic disorders. To date, there are no effective interventions to prevent the progression of autoimmune diseases. Hence, there is an urgent need for new treatment targets. TRPM7 is an enzyme-coupled, transient receptor ion channel of the subfamily M that plays a vital role in pathologic and physiologic conditions. While TRPM7 is constitutively activated under certain conditions, it can regulate cell migration, polarization, proliferation and cytokine secretion. However, a growing body of evidence highlights the critical role of TRPM7 in autoimmune diseases, including rheumatoid arthritis, multiple sclerosis and diabetes. Herein, we present (a) a review of the channel kinase properties of TRPM7 and its pharmacological properties, (b) discuss the role of TRPM7 in immune cells (neutrophils, macrophages, lymphocytes and mast cells) and its upstream immunoreactive substances, and (c) highlight TRPM7 as a potential therapeutic target for autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Inmunomodulación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Animales , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/terapia , Biomarcadores , Susceptibilidad a Enfermedades , Desarrollo de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunomodulación/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Canales Catiónicos TRPM/química
12.
Clin Exp Pharmacol Physiol ; 49(3): 350-359, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34750860

RESUMEN

It has been repeatedly proved that Nav1.8 tetrodotoxin (TTX)-resistant sodium currents are expressed in peripheral sensory neurons where they play important role in nociception. There are very few publications that show the presence of TTX-resistant sodium currents in central neurons. The aim of this study was to assess if functional Nav1.8 TTX-resistant sodium currents are expressed in prefrontal cortex pyramidal neurons. All recordings were performed in the presence of TTX in the extracellular solution to block TTX-sensitive sodium currents. The TTX-resistant sodium current recorded in this study was mainly carried by the Nav1.8 sodium channel isoform because the Nav1.9 current was inhibited by the -65 mV holding potential that we used throughout the study. Moreover, the sodium current that we recorded was inhibited by treatment with the selective Nav1.8 inhibitor A-803467. Confocal microscopy experiments confirmed the presence of the Nav1.8 α subunit in prefrontal cortex pyramidal neurons. Activation and steady state inactivation properties of TTX-resistant sodium currents were also assessed in this study and they were similar to activation and inactivation properties of TTX-resistant sodium currents expressed in dorsal root ganglia (DRG) neurons. Moreover, this study showed that carbamazepine (60 µM) inhibited the maximal amplitude of the TTX-resistant sodium current. Furthermore, we found that carbamazepine shifts steady state inactivation curve of TTX-resistant sodium currents toward hyperpolarization. This study suggests that the Nav1.8 TTX-resistant sodium channel is expressed not only in DRG neurons, but also in cortical neurons and may be molecular target for antiepileptic drugs such as carbamazepine.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Corteza Prefrontal/citología , Células Piramidales/fisiología , Sodio/metabolismo , Tetrodotoxina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Anticonvulsivantes/farmacología , Carbamazepina/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.8/genética , Ratas , Ratas Wistar
13.
Biochem Biophys Res Commun ; 588: 41-46, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34942533

RESUMEN

TRAAK (KCNK4, K2P4.1) is a mechanosensitive two-pore domain potassium (K2P) channel. Due to its expression within sensory neurons and genetic link to neuropathic pain it represents a promising potential target for novel analgesics. In common with many other channels in the wider K2P sub-family, there remains a paucity of small molecule pharmacological tools. Specifically, there is a lack of molecules selective for TRAAK over the other members of the TREK subfamily of K2P channels. We developed a thallium flux assay to allow high throughput screening of compounds and facilitate the identification of novel TRAAK activators. Using a library of ∼1200 drug like molecules we identified Aprepitant as a small molecule activator of TRAAK. Aprepitant is an NK-1 antagonist used to treat nausea and vomiting. Close structural analogues of Aprepitant and a range of NK-1 antagonists were also selected or designed for purchase or brief chemical synthesis and screened for their ability to activate TRAAK. Electrophysiology experiments confirmed that Aprepitant activates both the 'long' and 'short' transcript variants of TRAAK. We also demonstrated that Aprepitant is selective and does not activate other members of the K2P superfamily. This work describes the development of a high throughput assay to identify potential TRAAK activators and subsequent identification and confirmation of the novel TRAAK activator Aprepitant. This discovery identifies a useful tool compound which can be used to further probe the function of TRAAK K2P channels.


Asunto(s)
Aprepitant/farmacología , Canales de Potasio/metabolismo , Línea Celular , Humanos , Activación del Canal Iónico/efectos de los fármacos , Antagonistas del Receptor de Neuroquinina-1/farmacología , Técnicas de Placa-Clamp , Receptores de Neuroquinina-1/metabolismo , Relación Estructura-Actividad , Talio/metabolismo
14.
Cells ; 10(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34831326

RESUMEN

Voltage-gated Na+ (Nav) channels are a primary molecular determinant of the action potential (AP). Despite the canonical role of the pore-forming α subunit in conferring this function, protein-protein interactions (PPI) between the Nav channel α subunit and its auxiliary proteins are necessary to reconstitute the full physiological activity of the channel and to fine-tune neuronal excitability. In the brain, the Nav channel isoforms 1.2 (Nav1.2) and 1.6 (Nav1.6) are enriched, and their activities are differentially regulated by the Nav channel auxiliary protein fibroblast growth factor 14 (FGF14). Despite the known regulation of neuronal Nav channel activity by FGF14, less is known about cellular signaling molecules that might modulate these regulatory effects of FGF14. To that end, and building upon our previous investigations suggesting that neuronal Nav channel activity is regulated by a kinase network involving GSK3, AKT, and Wee1, we interrogate in our current investigation how pharmacological inhibition of Wee1 kinase, a serine/threonine and tyrosine kinase that is a crucial component of the G2-M cell cycle checkpoint, affects the Nav1.2 and Nav1.6 channel macromolecular complexes. Our results show that the highly selective inhibitor of Wee1 kinase, called Wee1 inhibitor II, modulates FGF14:Nav1.2 complex assembly, but does not significantly affect FGF14:Nav1.6 complex assembly. These results are functionally recapitulated, as Wee1 inhibitor II entirely alters FGF14-mediated regulation of the Nav1.2 channel, but displays no effects on the Nav1.6 channel. At the molecular level, these effects of Wee1 inhibitor II on FGF14:Nav1.2 complex assembly and FGF14-mediated regulation of Nav1.2-mediated Na+ currents are shown to be dependent upon the presence of Y158 of FGF14, a residue known to be a prominent site for phosphorylation-mediated regulation of the protein. Overall, our data suggest that pharmacological inhibition of Wee1 confers selective modulatory effects on Nav1.2 channel activity, which has important implications for unraveling cellular signaling pathways that fine-tune neuronal excitability.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Sustancias Macromoleculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/metabolismo
15.
Cell Rep ; 37(5): 109931, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731621

RESUMEN

N-type voltage-gated calcium (CaV) channels mediate Ca2+ influx at presynaptic terminals in response to action potentials and play vital roles in synaptogenesis, release of neurotransmitters, and nociceptive transmission. Here, we elucidate a cryo-electron microscopy (cryo-EM) structure of the human CaV2.2 complex in apo, ziconotide-bound, and two CaV2.2-specific pore blockers-bound states. The second voltage-sensing domain (VSD) is captured in a resting-state conformation, trapped by a phosphatidylinositol 4,5-bisphosphate (PIP2) molecule, which is distinct from the other three VSDs of CaV2.2, as well as activated VSDs observed in previous structures of CaV channels. This structure reveals the molecular basis for the unique inactivation process of CaV2.2 channels, in which the intracellular gate formed by S6 helices is closed and a W-helix from the domain II-III linker stabilizes closed-state inactivation. The structures of this inactivated, drug-bound complex lay a solid foundation for developing new state-dependent blockers for treatment of chronic pain.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/efectos de los fármacos , Dipéptidos/farmacología , Activación del Canal Iónico/efectos de los fármacos , omega-Conotoxinas/farmacología , Potenciales de Acción , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , Canales de Calcio Tipo N/ultraestructura , Señalización del Calcio , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/metabolismo , Conformación Proteica en Hélice alfa , Relación Estructura-Actividad
16.
Plant Physiol ; 187(4): 2092-2109, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618033

RESUMEN

Potassium (K+) channels serve a wide range of functions in plants from mineral nutrition and osmotic balance to turgor generation for cell expansion and guard cell aperture control. Plant K+ channels are members of the superfamily of voltage-dependent K+ channels, or Kv channels, that include the Shaker channels first identified in fruit flies (Drosophila melanogaster). Kv channels have been studied in depth over the past half century and are the best-known of the voltage-dependent channels in plants. Like the Kv channels of animals, the plant Kv channels are regulated over timescales of milliseconds by conformational mechanisms that are commonly referred to as gating. Many aspects of gating are now well established, but these channels still hold some secrets, especially when it comes to the control of gating. How this control is achieved is especially important, as it holds substantial prospects for solutions to plant breeding with improved growth and water use efficiencies. Resolution of the structure for the KAT1 K+ channel, the first channel from plants to be crystallized, shows that many previous assumptions about how the channels function need now to be revisited. Here, I strip the plant Kv channels bare to understand how they work, how they are gated by voltage and, in some cases, by K+ itself, and how the gating of these channels can be regulated by the binding with other protein partners. Each of these features of plant Kv channels has important implications for plant physiology.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Fenómenos Fisiológicos de las Plantas/efectos de los fármacos , Plantas/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo
17.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638858

RESUMEN

TMEM175 (transmembrane protein 175) coding sequence variants are associated with increased risk of Parkinson's disease. TMEM175 is the ubiquitous lysosomal K+ channel regulated by growth factor receptor signaling and direct interaction with protein kinase B (PKB/Akt). In the present study, we show that the expression of mouse TMEM175 results in very small K+ currents through the plasma membrane in Xenopus laevis oocytes, in good accordance with the previously reported intracellular localization of the channel. However, the application of the dynamin inhibitor compounds, dynasore or dyngo-4a, substantially increased TMEM175 currents measured by the two-electrode voltage clamp method. TMEM175 was more permeable to cesium than potassium ions, voltage-dependently blocked by 4-aminopyridine (4-AP), and slightly inhibited by extracellular acidification. Immunocytochemistry experiments indicated that dyngo-4a increased the amount of epitope-tagged TMEM175 channel on the cell surface. The coexpression of dominant-negative dynamin, and the inhibition of clathrin- or caveolin-dependent endocytosis increased TMEM175 current much less than dynasore. Therefore, dynamin-independent pharmacological effects of dynasore may also contribute to the action on the channel. TMEM175 current rapidly decays after the withdrawal of dynasore, raising the possibility that an efficient internalization mechanism removes the channel from the plasma membrane. Dyngo-4a induced about 20-fold larger TMEM175 currents than the PKB activator SC79, or the coexpression of a constitutively active mutant PKB with the channel. In contrast, the allosteric PKB inhibitor MK2206 diminished the TMEM175 current in the presence of dyngo-4a. These data suggest that, in addition to the lysosomes, PKB-dependent regulation also influences TMEM175 current in the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Hidrazonas/farmacología , Lisosomas/metabolismo , Naftoles/farmacología , Canales de Potasio/metabolismo , 4-Aminopiridina/farmacología , Animales , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Microscopía Confocal/métodos , Oocitos/citología , Oocitos/metabolismo , Oocitos/fisiología , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/genética , Transporte de Proteínas/efectos de los fármacos , Xenopus laevis
18.
Clin Transl Med ; 11(10): e530, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34709746

RESUMEN

Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.


Asunto(s)
Antiarrítmicos/farmacología , Antipsicóticos/farmacología , Técnicas Electrofisiológicas Cardíacas/métodos , Fármacos Gastrointestinales/farmacología , Corazón/efectos de los fármacos , Antagonistas de los Receptores Histamínicos/farmacología , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Potenciales de Acción , Humanos , Activación del Canal Iónico/efectos de los fármacos
19.
Nat Commun ; 12(1): 5616, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556670

RESUMEN

Coptis chinensis is an ancient Chinese herb treating diabetes in China for thousands of years. However, its underlying mechanism remains poorly understood. Here, we report the effects of its main active component, berberine (BBR), on stimulating insulin secretion. In mice with hyperglycemia induced by a high-fat diet, BBR significantly increases insulin secretion and reduced blood glucose levels. However, in mice with hyperglycemia induced by global or pancreatic islet ß-cell-specific Kcnh6 knockout, BBR does not exert beneficial effects. BBR directly binds KCNH6 potassium channels, significantly accelerates channel closure, and subsequently reduces KCNH6 currents. Consequently, blocking KCNH6 currents prolongs high glucose-dependent cell membrane depolarization and increases insulin secretion. Finally, to assess the effect of BBR on insulin secretion in humans, a randomized, double-blind, placebo-controlled, two-period crossover, single-dose, phase 1 clinical trial (NCT03972215) including 15 healthy men receiving a 160-min hyperglycemic clamp experiment is performed. The pre-specified primary outcomes are assessment of the differences of serum insulin and C-peptide levels between BBR and placebo treatment groups during the hyperglycemic clamp study. BBR significantly promotes insulin secretion under hyperglycemic state comparing with placebo treatment, while does not affect basal insulin secretion in humans. All subjects tolerate BBR well, and we observe no side effects in the 14-day follow up period. In this study, we identify BBR as a glucose-dependent insulin secretagogue for treating diabetes without causing hypoglycemia that targets KCNH6 channels.


Asunto(s)
Berberina/farmacología , Canales de Potasio Éter-A-Go-Go/metabolismo , Hiperglucemia/metabolismo , Secreción de Insulina/efectos de los fármacos , Secretagogos/farmacología , Adolescente , Adulto , Animales , Línea Celular Tumoral , Estudios Cruzados , Dieta Alta en Grasa/efectos adversos , Canales de Potasio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Hiperglucemia/etiología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Adulto Joven
20.
J Cell Mol Med ; 25(20): 9685-9696, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34514691

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Its high metastasis rate is significantly correlated with poor patient prognosis. Elucidating the molecular mechanism underlying HCC metastasis is essential for HCC treatment. Owing to their high conductance, large-conductance calcium-activated potassium channels (BK channels) play a critical role in the control of membrane potential and have repeatedly been proposed as potential targets for cancer therapy. Emerging evidence suggests that BK channels are involved in the progression of cancer malignancies. The present study investigated the role of BK channels in mediating the hypoxia-stimulated migration of HCC cells both in vitro and in vivo in the absence and presence of various BK channels modulators. We found that BK channels were functionally expressed on the membranes of the SMMC-7721 and Huh7 HCC cell lines. Furthermore, blockage or activation of BK channels on the surface of HCC cells correspondingly inhibited or promoted HCC cell proliferation, migration and invasion in hypoxia conditions, with altered expression and distribution of cell-cell adhesion molecule E-cadherin and typical marker of mesenchymal cells, Vimentin, but not N-cadherin. Hypoxia conditions did not alter BK channels expression but increased its open probability. Moreover, BK channels blocker IbTX significantly inhibited HCC cell remote colonization in HCC cell xenografted mice. In conclusion, the results of this study suggest that blocking BK channels offers an attractive strategy for treating HCC.


Asunto(s)
Movimiento Celular/genética , Canales de Potasio Calcio-Activados/genética , Canales de Potasio Calcio-Activados/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Xenoinjertos , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Bloqueadores de los Canales de Potasio/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...