RESUMEN
The proteasome is a multicatalytic protease that is responsible for the degradation of the majority of intracellular proteins. Its role is correlated with several major regulatory pathways that are involved in cell cycle control, signaling, and antigen presentation, as well as in the removal of oxidatively damaged proteins. Although several proteasomal catalytic inhibitors have been described, very few activators have been reported to date. Some reports in the literature highlight the cellular protective effects of proteasome activation against oxidative stress and its effect on increased life span. In this work, we describe a peptide named proteasome-activating peptide 1 (PAP1), which increases the chymotrypsin-like proteasomal catalytic activity and, consequently, proteolytic rates both in vitro and in culture. PAP1 proteasomal activation is mediated by the opening of the proteasomal catalytic chamber. We also demonstrate that the observed proteasomal activation protected cells from oxidative stress; further, PAP1 prevented protein aggregation in a cellular model of amyotrophic lateral sclerosis. The role of 20SPT gate opening underlying protection against oxidative stress was also explored in yeast cells. The present data indicate the importance of proteasomal activators as potential drugs for the treatment of pathologies associated with the impaired removal of damaged proteins, which is observed in many neurodegenerative diseases.
Asunto(s)
Activadores de Enzimas/farmacología , Neuronas/efectos de los fármacos , Péptidos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregación Patológica de Proteínas/prevención & control , Saccharomyces cerevisiae/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/síntesis química , Humanos , Datos de Secuencia Molecular , Neuronas/química , Neuronas/enzimología , Oxidación-Reducción , Estrés Oxidativo , Proteínas Asociadas a Pancreatitis , Péptidos/síntesis química , Complejo de la Endopetidasa Proteasomal/química , Agregado de Proteínas , Proteolisis , Conejos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Aspergillus parasiticus microbial type culture collection (MTCC)-2796, a new source of a-galactosidase is an efficient producer of enzyme in basic medium under submerged fermentation conditions. Maximum a-galactosidase production (156.25 Uml-1) was obtained when the basic medium is supplemented with galactose (0.5 percent w/v) and raffinose (0.5 percent w/v) as carbon source and yeast extract as nitrogen source. Enzyme production was also enhanced considerably in the presence of wheat bran (1.0 percent w/v). Enzyme secretion was strongly inhibited by the presence of Hg2+, Cu2+, and Co2+ in the medium and to some extent by Zn2+ and Ni2+, while marginal increase in the enzyme production was observed when Mg2+ and Mn2+ were added in the medium. Among amino acids checked (aparagine, cysteine, glutamine, leucine and proline), glutamine (1 mM) was found to be an enhancer for the enzyme production. The temperature and pH range for the production of enzyme were 25ºC to 35ºC and 6.5 to 7.5, respectively with maximum activity (50 Uml-1) at 30ºC and pH 6.5 under static fermentation condition.