Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
Biomolecules ; 14(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062531

RESUMEN

DZNep (3-deazaneplanocin A) is commonly used to reduce lysine methylation. DZNep inhibits S-adenosyl-l-homocysteine hydrolase (AHCY), preventing the conversion of S-adenosyl-l-homocysteine (SAH) into L-homocysteine. As a result, the SAM-to-SAH ratio decreases, an indicator of the methylation potential within a cell. Many studies have characterized the impact of DZNep on histone lysine methylation or in specific cell or disease contexts, but there has yet to be a study looking at the potential downstream impact of DZNep treatment on proteins other than histones. Recently, protein thermal stability has provided a new dimension for studying the mechanism of action of small-molecule inhibitors. In addition to ligand binding, post-translational modifications and protein-protein interactions impact thermal stability. Here, we sought to characterize the protein thermal stability changes induced by DZNep treatment in HEK293T cells using the Protein Integral Solubility Alteration (PISA) assay. DZNep treatment altered the thermal stability of 135 proteins, with over half previously reported to be methylated at lysine residues. In addition to thermal stability, we identify changes in transcript and protein abundance after DZNep treatment to distinguish between direct and indirect impacts on thermal stability. Nearly one-third of the proteins with altered thermal stability had no changes at the transcript or protein level. Of these thermally altered proteins, CDK6 had a stabilized methylated peptide, while its unmethylated counterpart was unaltered. Multiple methyltransferases were among the proteins with thermal stability alteration, including DNMT1, potentially due to changes in the SAM/SAH levels. This study systematically evaluates DZNep's impact on the transcriptome, the proteome, and the thermal stability of proteins.


Asunto(s)
Adenosina , Estabilidad Proteica , Humanos , Células HEK293 , Adenosina/análogos & derivados , Adenosina/farmacología , Adenosina/química , Estabilidad Proteica/efectos de los fármacos , Metilación , Adenosilhomocisteinasa/antagonistas & inhibidores , Adenosilhomocisteinasa/metabolismo , Temperatura
2.
PeerJ ; 12: e17466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827284

RESUMEN

Background: Tomato (Solanum lycopersicum) is an annual or perennial herb that occupies an important position in daily agricultural production. It is an essential food crop for humans and its ripening process is regulated by a number of genes. S-adenosyl-l-homocysteine hydrolase (AdoHcyase, EC 3.3.1.1) is widespread in organisms and plays an important role in regulating biological methylation reactions. Previous studies have revealed that transgenic tomato that over-express SlSAHH2 ripen earlier than the wild-type (WT). However, the differences in metabolites and the mechanisms driving how these differences affect the ripening cycle are unclear. Objective: To investigate the effects of SlSAHH2 on metabolites in over-expressed tomato and WT tomato. Methods: SlSAHH2 over-expressed tomato fruit (OE-5# and OE-6#) and WT tomato fruit at the breaker stage (Br) were selected for non-targeted metabolome analysis. Results: A total of 733 metabolites were identified by mass spectrometry using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the Human Metabolome database (HMDB). The metabolites were divided into 12 categories based on the superclass results and a comparison with the HMDB. The differences between the two databases were analyzed by PLS-DA. Based on a variable important in projection value >1 and P < 0.05, 103 differential metabolites were found between tomato variety OE-5# and WT and 63 differential metabolites were found between OE-6# and WT. These included dehydrotomatine, L-serine, and gallic acid amongst others. Many metabolites are associated with fruit ripening and eight common metabolites were found between the OE-5# vs. WT and OE-6# vs. WT comparison groups. The low L-tryptophan expression in OE-5# and OE-6# is consistent with previous reports that its content decreases with fruit ripening. A KEGG pathway enrichment analysis of the significantly different metabolites revealed that in the OE-5# and WT groups, up-regulated metabolites were enriched in 23 metabolic pathways and down-regulated metabolites were enriched in 11 metabolic pathways. In the OE-6# and WT groups, up-regulated metabolites were enriched in 29 pathways and down-regulated metabolites were enriched in six metabolic pathways. In addition, the differential metabolite changes in the L-serine to flavonoid transformation metabolic pathway also provide evidence that there is a phenotypic explanation for the changes in transgenic tomato. Discussion: The metabolomic mechanism controlling SlSAHH2 promotion of tomato fruit ripening has been further elucidated.


Asunto(s)
Frutas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Frutas/metabolismo , Frutas/genética , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adenosilhomocisteinasa/metabolismo , Adenosilhomocisteinasa/genética , Metaboloma , Metabolómica
3.
Int J Biol Macromol ; 270(Pt 1): 132289, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735607

RESUMEN

S-Adenosyl-l-homocysteine hydrolase (SAHH) is a crucial enzyme that governs S-adenosyl methionine (SAM)-dependent methylation reactions within cells and regulates the intracellular concentration of SAH. Legionella pneumophila, the causative pathogen of Legionnaires' disease, encodes Lpg2021, which is the first identified dimeric SAHH in bacteria and is a promising target for drug development. Here, we report the structure of Lpg2021 in its ligand-free state and in complexes with adenine (ADE), adenosine (ADO), and 3-Deazaneplanocin A (DZNep). X-ray crystallography, isothermal titration calorimetry (ITC), and molecular docking were used to elucidate the binding mechanisms of Lpg2021 to its substrates and inhibitors. Virtual screening was performed to identify potential Lpg2021 inhibitors. This study contributes a novel perspective to the understanding of SAHH evolution and establishes a structural framework for designing specific inhibitors targeting pathogenic Legionella pneumophila SAHH.


Asunto(s)
Adenosilhomocisteinasa , Legionella pneumophila , Simulación del Acoplamiento Molecular , Legionella pneumophila/enzimología , Especificidad por Sustrato , Adenosilhomocisteinasa/metabolismo , Adenosilhomocisteinasa/antagonistas & inhibidores , Adenosilhomocisteinasa/química , Cristalografía por Rayos X , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/química , Adenina/química , Adenina/metabolismo , Adenina/análogos & derivados , Unión Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , N-Glicosil Hidrolasas
4.
Mol Cancer Res ; 22(4): 386-401, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38294692

RESUMEN

Calcium homeostasis is critical for cell proliferation, and emerging evidence shows that cancer cells exhibit altered calcium signals to fulfill their need for proliferation. However, it remains unclear whether there are oncogene-specific calcium homeostasis regulations that can expose novel therapeutic targets. Here, from RNAi screen, we report that adenosylhomocysteinase like protein 1 (AHCYL1), a suppressor of the endoplasmic reticulum (ER) calcium channel protein inositol trisphosphate receptor (IP3R), is selectively upregulated and critical for cell proliferation and tumor growth potential of human NRAS-mutated melanoma, but not for melanoma expressing BRAF V600E. Mechanistically, AHCYL1 deficiency results in decreased ER calcium levels, activates the unfolded protein response (UPR), and triggers downstream apoptosis. In addition, we show that AHCYL1 transcription is regulated by activating transcription factor 2 (ATF2) in NRAS-mutated melanoma. Our work provides evidence for oncogene-specific calcium regulations and suggests AHCYL1 as a novel therapeutic target for RAS mutant-expressing human cancers, including melanoma. IMPLICATIONS: Our findings suggest that targeting the AHCYL1-IP3R axis presents a novel therapeutic approach for NRAS-mutated melanomas, with potential applicability to all cancers harboring RAS mutations, such as KRAS-mutated human colorectal cancers.


Asunto(s)
Adenosilhomocisteinasa , Retículo Endoplásmico , Melanoma , Humanos , Adenosilhomocisteinasa/metabolismo , Calcio , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/genética , Homeostasis , Melanoma/metabolismo , Melanoma/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
5.
Adipocyte ; 13(1): 2290218, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38064408

RESUMEN

S-adenosyl-homocysteine-hydrolase (AHCY) plays an important role in the methionine cycle regulating cellular methylation levels. AHCY has been reported to influence proliferation and differentiation processes in different cell types, e.g. in cancer cells and mouse embryonic stem cells. In the development of adipose tissue, both the proliferation and differentiation of adipocyte progenitor cells (APCs) are important processes, which in the context of obesity are often dysregulated. To assess whether AHCY might also be involved in cell proliferation and differentiation of APCs, we investigated the effect of reduced AHCY activity on human and mouse APCs in vitro. We show that the inhibition of AHCY using adenosine dialdehyde (AdOx) and the knockdown of AHCY using gene-specific siRNAs reduced APC proliferation and number. Inhibition of AHCY further reduced APC differentiation into mature adipocytes and the expression of adipogenic differentiation markers. Global DNA methylation profiling in human APCs revealed that inhibition of AHCY is associated with alterations in CpG methylation levels of genes involved in fat cell differentiation and pathways related to cellular growth. Our findings suggest that AHCY is necessary for the maintenance of APC proliferation and differentiation and inhibition of AHCY alters DNA methylation processes leading to a dysregulation of the expression of genes involved in the regulation of these processes.


Asunto(s)
Adenosilhomocisteinasa , Adipocitos , Tejido Adiposo , Animales , Humanos , Ratones , Adipocitos/metabolismo , Adipogénesis/genética , Diferenciación Celular/genética , Proliferación Celular , Células Madre , Adenosilhomocisteinasa/genética , Adenosilhomocisteinasa/metabolismo
6.
Front Cell Infect Microbiol ; 13: 1333773, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38268790

RESUMEN

Introduction: Pseudomonas aeruginosa (P. aeruginosa) is a common pathogen associated with biofilm infections, which can lead to persistent infections. Therefore, there is an urgent need to develop new anti-biofilm drugs. DZ2002 is a reversible inhibitor that targets S-adenosylhomocysteine hydrolase and possesses anti-inflammatory and immune-regulatory activities. However, its anti-biofilm activity has not been reported yet. Methods and results: Therefore, we investigated the effect of DZ2002 on P. aeruginosa PAO1 biofilm formation by crystal violet staining (CV), real-time quantitative polymerase chain reaction (RT-qPCR) and confocal laser scanning microscopy (CLSM). The results indicated that although DZ2002 didn't affect the growth of planktonic PAO1, it could significantly inhibit the formation of mature biofilms. During the inhibition of biofilm formation by DZ2002, there was a parallel decrease in the synthesis of alginate and the expression level of alginate genes, along with a weakening of swarming motility. However, these results were unrelated to the expression of lasI, lasR, rhII, rhIR. Additionally, we also found that after treatment with DZ2002, the biofilms and extracellular DNA content of PAO1 were significantly reduced. Molecular docking results further confirmed that DZ2002 had a strong binding affinity with the active site of S-adenosylhomocysteine hydrolase (SahH) of PAO1. Discussion: In summary, our results indicated that DZ2002 may interact with SahH in PAO1, inhibiting the formation of mature biofilms by downregulating alginate synthesis, extracellular DNA production and swarming motility. These findings demonstrate the potential value of DZ2002 in treating biofilm infections associated with P. aeruginosa.


Asunto(s)
Adenina/análogos & derivados , Butiratos , ADN , Pseudomonas aeruginosa , Adenosilhomocisteinasa , Simulación del Acoplamiento Molecular , Alginatos , Biopelículas
7.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-728352

RESUMEN

3-Deazaadenosine (DZA), a potent inhibitor of S-adenosylhomocysteine hydrolase, was previously proposed to induce intrinsic apoptosis in human leukemic cells. In the present study, we analyzed the mechanism underlying the DZA-induced intrinsic apoptotic pathway. DZA activated typical caspase-dependent apoptosis in HL-60 cells, as demonstrated by an accumulation of hypo-diploidic cells, the processing of multiple procaspases and an inhibitory effect of z-VAD-Fmk on this cell death. During DZA-induced apoptosis, cytochrome c (cyt c) was released into the cytosol. This was neither prevented by z-VAD-Fmk and nor was it associated with the dissipation of mitochondrial membrane potential (DeltaPsim). Prior to the release of cyt c, BAX was translocated from the cytosol to mitochondria and underwent oligomerization. Finally, the overexpression of BCL-XL protected HL-60 cells from apoptosis by blocking both the cyt c release and BAX oligomerization. Collectively, these findings suggest that DZA may activate intrinsic apoptosis by stimulating BAX activation and thereby the release of cyt c.


Asunto(s)
Humanos , Adenosilhomocisteinasa , Clorometilcetonas de Aminoácidos , Apoptosis , Proteína X Asociada a bcl-2 , Proteína bcl-X , Muerte Celular , Citocromos c , Citosol , Células HL-60 , Potencial de la Membrana Mitocondrial , Mitocondrias , Tubercidina
8.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-355126

RESUMEN

<p><b>BACKGROUND</b>To establish a SAH hydrolase antiviral screening in vitro model for screening of broad spectrum antiviral agents.</p><p><b>METHODS</b>SAH hydrolase was purified from rat livers by (NH4) 2SO4 fractionation, DEAE52,hydroxyapatite and Sephadex G-100 chromatography successively. The activity of SAH hydrolase was estimated by radio labeled substrate in synthesis direction by TLC.</p><p><b>RESULTS</b>Purified SAH hydrolase showed a single band in SDS-PAGE electrophoresis with silver nitrate staining, the apparent molecular weight is 45 000. The Km for adenosine is (6.32 +- 0.17) micromol/L. The IC50 of S-DNPA, a known inhibitor of SAH hydrolase, was 7.6 micromol/L estimated in our system. The structure and activity relationships shown by racemic and regiosomer analogs of S-DHPA indicated that the structural specificity of SAH hydrolase was high. 42 compounds had been screened in the system and no compound showed more inhibitory activity against SAH hydrolase than S-DNPA.</p><p><b>CONCLUSIONS</b>An in vitro antiviral screening model has been established using SAH hydrolase. It can also be used to study kinetics of enzyme inhibition.</p>


Asunto(s)
Animales , Femenino , Ratas , Adenina , Química , Farmacología , Adenosilhomocisteinasa , Antivirales , Química , Farmacología , Evaluación Preclínica de Medicamentos , Hidrolasas , Metabolismo , Técnicas In Vitro , Hígado , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA