Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.132
Filtrar
1.
Int J Med Sci ; 21(6): 1037-1048, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774758

RESUMEN

Background: Inflammatory responses, apoptosis, and oxidative stress, are key factors that contribute to hepatic ischemia/reperfusion (I/R) injury, which may lead to the failure of liver surgeries, such as hepatectomy and liver transplantation. The N6-methyladenosine (m6A) modification has been implicated in multiple biological processes, and its specific role and mechanism in hepatic I/R injury require further investigation. Methods: Dot blotting analysis was used to profile m6A levels in liver tissues at different reperfusion time points in hepatic I/R mouse models. Hepatocyte-specific METTL3 knockdown (HKD) mice were used to determine the function of METTL3 during hepatic I/R. RNA sequencing and western blotting were performed to assess the potential signaling pathways involved with the deficiency of METTL3. Finally, AAV8-TBG-METTL3 was injected through the tail vein to further elucidate the role of METTL3 in hepatic I/R injury. Results: The m6A modification levels and the expression of METTL3 were upregulated in mouse livers during hepatic I/R injury. METTL3 deficiency led to an exacerbated inflammatory response and increased cell death during hepatic I/R, whereas overexpression of METTL3 reduced the extent of liver injury. Bioinformatic analysis revealed that the MAPK pathway was significantly enriched in the livers of METTL3-deficient mice. METTL3 protected the liver from I/R injury, possibly by inhibiting the phosphorylation of JNK and ERK, but not P38. Conclusions: METTL3 deficiency aggravates hepatic I/R injury in mice by activating the MAPK signaling pathway. METTL3 may be a potential therapeutic target in hepatic I/R injury.


Asunto(s)
Hígado , Sistema de Señalización de MAP Quinasas , Metiltransferasas , Daño por Reperfusión , Animales , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Ratones , Metiltransferasas/genética , Metiltransferasas/metabolismo , Hígado/patología , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Modelos Animales de Enfermedad , Masculino , Apoptosis/genética , Ratones Noqueados , Humanos , Adenosina/metabolismo , Adenosina/análogos & derivados , Hepatocitos/metabolismo , Hepatocitos/patología , Ratones Endogámicos C57BL
2.
Mol Med ; 30(1): 65, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773376

RESUMEN

OBJECTIVE: Catalpol (CAT) has various pharmacological activities and plays a protective role in cerebral ischemia. It has been reported that CAT played a protective role in cerebral ischemia by upregulaing NRF1 expression. Bioinformatics analysis reveals that NRF1 can be used as a transcription factor to bind to the histone acetyltransferase KAT2A. However, the role of KAT2A in cerebral ischemia remains to be studied. Therefore, we aimed to investigate the role of CAT in cerebral ischemia and its related mechanism. METHODS: In vitro, a cell model of oxygen and glucose deprivation/reperfusion (OGD/R) was constructed, followed by evaluation of neuronal injury and the expression of METTL3, Beclin-1, NRF1, and KAT2A. In vivo, a MCAO rat model was prepared by means of focal cerebral ischemia, followed by assessment of neurological deficit and brain injury in MCAO rats. Neuronal autophagy was evaluated by observation of autophagosomes in neurons or brain tissues by TEM and detection of the expression of LC3 and p62. RESULTS: In vivo, CAT reduced the neurological function deficit and infarct volume, inhibited neuronal apoptosis in the cerebral cortex, and significantly improved neuronal injury and excessive autophagy in MCAO rats. In vitro, CAT restored OGD/R-inhibited cell viability, inhibited cell apoptosis, LDH release, and neuronal autophagy. Mechanistically, CAT upregulated NRF1, NRF1 activated METTL3 via KAT2A transcription, and METTL3 inhibited Beclin-1 via m6A modification. CONCLUSION: CAT activated the NRF1/KAT2A/METTL3 axis and downregulated Beclin-1 expression, thus relieving neuronal injury and excessive autophagy after cerebral ischemia.


Asunto(s)
Autofagia , Beclina-1 , Isquemia Encefálica , Glucósidos Iridoides , Neuronas , Animales , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Beclina-1/genética , Ratas , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Masculino , Glucósidos Iridoides/farmacología , Glucósidos Iridoides/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacos , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Adenosina/análogos & derivados
3.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731610

RESUMEN

Many liqueurs, including spirits infused with botanicals, are crafted not only for their taste and flavor but also for potential medicinal benefits. However, the scientific evidence supporting their medicinal effects remains limited. This study aims to verify in vitro anticancer activity and bioactive compounds in shochu spirits infused with Cordyceps militaris, a Chinese medicine. The results revealed that a bioactive fraction was eluted from the spirit extract with 40% ethanol. The infusion time impacted the inhibitory effect of the spirit extract on the proliferation of colon cancer-derived cell line HCT-116 cells, and a 21-day infusion showed the strongest inhibitory effect. Furthermore, the spirit extract was separated into four fractions, A-D, by high-performance liquid chromatography (HPLC), and Fractions B, C, and D, but not A, exerted the effects of proliferation inhibition and apoptotic induction of HCT-116 cells and HL-60 cells. Furthermore, Fractions B, C, and D were, respectively, identified as adenosine, cordycepin, and N6-(2-hydroxyethyl)-adenosine (HEA) by comprehensive chemical analyses, including proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FT-IR), and electrospray ionization mass spectrometry (ESI-MS). To better understand the bioactivity mechanisms of cordycepin and HEA, the agonist and antagonist tests of the A3 adenosine receptor (A3AR) were performed. Cell viability was suppressed by cordycepin, and HEA was restored by the A3AR antagonist MR1523, suggesting that cordycepin and HEA possibly acted as agonists to activate A3ARs to inhibit cell proliferation. Molecular docking simulations revealed that both adenosine and cordycepin bound to the same pocket site of A3ARs, while HEA exhibited a different binding pattern, supporting a possible explanation for the difference in their bioactivity. Taken together, the present study demonstrated that cordycepin and HEA were major bioactive ingredients in Cordyceps militaries-infused sweet potato shochu spirits, which contributed to the in vitro anticancer activity.


Asunto(s)
Apoptosis , Proliferación Celular , Cordyceps , Humanos , Cordyceps/química , Proliferación Celular/efectos de los fármacos , Células HCT116 , Apoptosis/efectos de los fármacos , Adenosina/farmacología , Adenosina/análogos & derivados , Adenosina/química , Desoxiadenosinas/farmacología , Desoxiadenosinas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Simulación del Acoplamiento Molecular , Células HL-60 , Cromatografía Líquida de Alta Presión , Extractos Vegetales/farmacología , Extractos Vegetales/química , Línea Celular Tumoral
4.
Int J Biol Sci ; 20(7): 2491-2506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725850

RESUMEN

Colon inflammation is characterized by disturbances in the intestinal microbiota and inflammation. Melatonin (Mel) can improve colon inflammation. However, the underlying mechanism remains unclear. Recent studies suggest that m6A methylation modification may play an important role in inflammatory responses. This study aimed to explore the effects of melatonin and LPS-mediated m6A methylation on colon inflammation. Our study found that melatonin inhibits M1 macrophages, activates M2 macrophages, inhibit the secretion of pro-inflammatory factors, maintain colon homeostasis and improves colon inflammation through MTNR1B. In addition, the increased methylation level of m6A is associated with the occurrence of colon inflammation, and melatonin can also reduce the level of colon methylation to improve colon inflammation. Among them, the main methylated protein METTL3 can be inhibited by melatonin through MTNR1B. In a word, melatonin regulates m6A methylation by improving abnormal METTL3 protein level to reshape the microflora and activate macrophages to improve colon inflammation, mainly through MTNR1B.


Asunto(s)
Adenosina , Lipopolisacáridos , Macrófagos , Melatonina , Melatonina/farmacología , Melatonina/metabolismo , Animales , Ratones , Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Metilación/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Metiltransferasas/metabolismo , Metiltransferasas/genética , Inflamación/metabolismo , Colon/metabolismo , Colon/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/metabolismo , Receptor de Melatonina MT2/metabolismo , Receptor de Melatonina MT2/genética , Células RAW 264.7
5.
BMC Musculoskelet Disord ; 25(1): 359, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711079

RESUMEN

BACKGROUND: With the increasing incidence of steroid-induced necrosis of the femoral head (SNFH), numerous scholars have investigated its pathogenesis. Current evidence suggests that the imbalance between lipogenesis and osteoblast differentiation in bone marrow mesenchymal stem cells (BMSCs) is a key pathological feature of SNFH. MicroRNAs (miRNAs) have strong gene regulatory effects and can influence the direction of cell differentiation. N6-methyladenosine (m6A) is a prevalent epigenetic modification involved in diverse pathophysiological processes. However, knowledge of how miRNAs regulate m6A-related factors that affect BMSC differentiation is limited. OBJECTIVE: We aimed to investigate the role of miR27a in regulating the expression of YTHDF2 in BMSCs. METHODS: We compared miR27a, YTHDF2, and total m6A mRNA levels in SNFH-affected and control BMSCs. CCK-8 and TUNEL assays were used to assess BMSC proliferation and apoptosis. Western blotting and qRT‒PCR were used to measure the expression of osteogenic (ALP, RUNX2, and OCN) and lipogenic (PPARγ and C/EBPα) markers. Alizarin Red and Oil Red O staining were used to quantify osteogenic and lipogenic differentiation, respectively. miR27a was knocked down or overexpressed to evaluate its impact on BMSC differentiation and its relationship with YTHDF2. Bioinformatics analyses identified YTHDF2 as a differentially expressed gene in SNFH (ROC analysis) and revealed potential signaling pathways through GSEA. The effects of YTHDF2 silencing on the lipogenic and osteogenic functions of BMSCs were assessed. RESULTS: miR27a downregulation and YTHDF2 upregulation were observed in the SNFH BMSCs. miR27a knockdown/overexpression modulated YTHDF2 expression, impacting BMSC differentiation. miR27a silencing decreased m6A methylation and promoted osteogenic differentiation, while YTHDF2 silencing exerted similar effects. GSEA suggested potential signaling pathways associated with YTHDF2 in SNFH. CONCLUSION: miR27a regulates BMSC differentiation through YTHDF2, affecting m6A methylation and promoting osteogenesis. This finding suggests a potential therapeutic target for SNFH.


Asunto(s)
Adenosina/análogos & derivados , Diferenciación Celular , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Proteínas de Unión al ARN , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Osteogénesis/genética , Humanos , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/inducido químicamente , Células Cultivadas , Apoptosis , Adenosina/metabolismo , Animales , Masculino , Metilación , Proliferación Celular , Lipogénesis/genética
6.
J Hematol Oncol ; 17(1): 30, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711100

RESUMEN

As the most common form of epigenetic regulation by RNA, N6 methyladenosine (m6A) modification is closely involved in physiological processes, such as growth and development, stem cell renewal and differentiation, and DNA damage response. Meanwhile, its aberrant expression in cancer tissues promotes the development of malignant tumors, as well as plays important roles in proliferation, metastasis, drug resistance, immunity and prognosis. This close association between m6A and cancers has garnered substantial attention in recent years. An increasing number of small molecules have emerged as potential agents to target m6A regulators for cancer treatment. These molecules target the epigenetic level, enabling precise intervention in RNA modifications and efficiently disrupting the survival mechanisms of tumor cells, thus paving the way for novel approaches in cancer treatment. However, there is currently a lack of a comprehensive review on small molecules targeting m6A regulators for anti-tumor. Here, we have comprehensively summarized the classification and functions of m6A regulators, elucidating their interactions with the proliferation, metastasis, drug resistance, and immune responses in common cancers. Furthermore, we have provided a comprehensive overview on the development, mode of action, pharmacology and structure-activity relationships of small molecules targeting m6A regulators. Our aim is to offer insights for subsequent drug design and optimization, while also providing an outlook on future prospects for small molecule development targeting m6A.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , Neoplasias , Bibliotecas de Moléculas Pequeñas , Humanos , Neoplasias/tratamiento farmacológico , Adenosina/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Epigénesis Genética/efectos de los fármacos , Animales
7.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732535

RESUMEN

The abnormality in N6-methyladenosine (m6A) methylation is involved in the course of Alzheimer's disease (AD), while the intervention of 27-Hydroxycholesterol (27-OHC) can affect the m6A methylation modification in the brain cortex. Disordered gut microbiota is a key link in 27-OHC leading to cognitive impairment, and further studies have found that the abundance of Roseburia intestinalis in the gut is significantly reduced under the intervention of 27-OHC. This study aims to investigate the association of 27-OHC, Roseburia intestinalis in the gut, and brain m6A modification in the learning and memory ability injury. In this study, 9-month-old male C57BL/6J mice were treated with antibiotic cocktails for 6 weeks to sweep the intestinal flora, followed by 27-OHC or normal saline subcutaneous injection, and then Roseburia intestinalis or normal saline gavage were applied to the mouse. The 27-OHC level in the brain, the gut barrier function, the m6A modification in the brain, and the memory ability were measured. From the results, we observed that 27-OHC impairs the gut barrier function, causing a disturbance in the expression of m6A methylation-related enzymes and reducing the m6A methylation modification level in the brain cortex, and finally leads to learning and memory impairment. However, Roseburia intestinalis supplementation could reverse the negative effects mentioned above. This study suggests that 27-OHC-induced learning and memory impairment might be linked to brain m6A methylation modification disturbance, while Roseburia intestinalis, as a probiotic with great potential, could reverse the damage caused by 27-OHC. This research could help reveal the mechanism of 27-OHC-induced neural damage and provide important scientific evidence for the future use of Roseburia intestinalis in neuroprotection.


Asunto(s)
Microbioma Gastrointestinal , Trastornos de la Memoria , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Metilación , Hidroxicolesteroles , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Memoria/efectos de los fármacos , Suplementos Dietéticos , Aprendizaje/efectos de los fármacos , Modelos Animales de Enfermedad
8.
Nat Commun ; 15(1): 3899, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724548

RESUMEN

The epitranscriptome embodies many new and largely unexplored functions of RNA. A significant roadblock hindering progress in epitranscriptomics is the identification of more than one modification in individual transcript molecules. We address this with CHEUI (CH3 (methylation) Estimation Using Ionic current). CHEUI predicts N6-methyladenosine (m6A) and 5-methylcytosine (m5C) in individual molecules from the same sample, the stoichiometry at transcript reference sites, and differential methylation between any two conditions. CHEUI processes observed and expected nanopore direct RNA sequencing signals to achieve high single-molecule, transcript-site, and stoichiometry accuracies in multiple tests using synthetic RNA standards and cell line data. CHEUI's capability to identify two modification types in the same sample reveals a co-occurrence of m6A and m5C in individual mRNAs in cell line and tissue transcriptomes. CHEUI provides new avenues to discover and study the function of the epitranscriptome.


Asunto(s)
5-Metilcitosina , Adenosina , Análisis de Secuencia de ARN , Transcriptoma , Adenosina/análogos & derivados , Adenosina/metabolismo , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Humanos , Metilación , Análisis de Secuencia de ARN/métodos , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN/metabolismo , ARN/genética
9.
Int J Oral Sci ; 16(1): 36, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730256

RESUMEN

N1-methyladenosine (m1A) RNA methylation is critical for regulating mRNA translation; however, its role in the development, progression, and immunotherapy response of head and neck squamous cell carcinoma (HNSCC) remains largely unknown. Using Tgfbr1 and Pten conditional knockout (2cKO) mice, we found the neoplastic transformation of oral mucosa was accompanied by increased m1A modification levels. Analysis of m1A-associated genes identified TRMT61A as a key m1A writer linked to cancer progression and poor prognosis. Mechanistically, TRMT61A-mediated tRNA-m1A modification promotes MYC protein synthesis, upregulating programmed death-ligand 1 (PD-L1) expression. Moreover, m1A modification levels were also elevated in tumors treated with oncolytic herpes simplex virus (oHSV), contributing to reactive PD-L1 upregulation. Therapeutic m1A inhibition sustained oHSV-induced antitumor immunity and reduced tumor growth, representing a promising strategy to alleviate resistance. These findings indicate that m1A inhibition can prevent immune escape after oHSV therapy by reducing PD-L1 expression, providing a mutually reinforcing combination immunotherapy approach.


Asunto(s)
Antígeno B7-H1 , Virus Oncolíticos , Proteínas Proto-Oncogénicas c-myc , Transducción de Señal , Animales , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Humanos , Adenosina/análogos & derivados , Regulación hacia Abajo , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Viroterapia Oncolítica/métodos , Fosfohidrolasa PTEN , Ratones Noqueados , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/terapia , Simplexvirus , Línea Celular Tumoral
10.
Clin Exp Med ; 24(1): 92, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693353

RESUMEN

The role of RNA N6-methyladenosine (m6A) modification in immunity is being elucidated. This study aimed to explore the potential association between m6A regulators and the immune microenvironment in IgA nephropathy (IgAN). The expression profiles of 24 m6A regulators in 107 IgAN patients were obtained from the Gene Expression Omnibus (GEO) database. The least absolute shrinkage and selection operator (LASSO) regression and logistic regression analysis were utilized to construct a model for distinguishing IgAN from control samples. Based on the expression levels of m6A regulators, unsupervised clustering was used to identify m6A-induced molecular clusters in IgAN. Gene set enrichment analysis (GSEA) and immunocyte infiltration among different clusters were examined. The gene modules with the highest correlation for each of the three clusters were identified by weighted gene co-expression network analysis (WGCNA). A model containing 10 m6A regulators was developed using LASSO and logistic regression analyses. Three molecular clusters were determined using consensus clustering of 24 m6A regulators. A decrease in the expression level of YTHDF2 in IgAN samples was significantly negatively correlated with an increase in resting natural killer (NK) cell infiltration and was positively correlated with the abundance of M2 macrophage infiltration. The risk scores calculated by the nomogram were significantly higher for cluster-3, and the expression levels of m6A regulators in this cluster were generally low. Immunocyte infiltration and pathway enrichment results for cluster-3 differed significantly from those for the other two clusters. Finally, the expression of YTHDF2 was significantly decreased in IgAN based on immunohistochemical staining. This study demonstrated that m6A methylation regulators play a significant role in the regulation of the immune microenvironment in IgAN. Based on m6A regulator expression patterns, IgAN can be classified into multiple subtypes, which might provide additional insights into novel therapeutic methods for IgAN.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , Glomerulonefritis por IGA , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/inmunología , Glomerulonefritis por IGA/patología , Humanos , Adenosina/metabolismo , Metilación , Perfilación de la Expresión Génica , Femenino , Redes Reguladoras de Genes , Masculino , Regulación de la Expresión Génica , Adulto , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Proteínas de Unión al ARN/genética , Metilación de ARN
11.
Mol Cell ; 84(9): 1631-1632, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701738

RESUMEN

In this issue of Molecular Cell, Hao et al.1 demonstrate that the RNA helicase DDX21 recruits the m6A methyltransferase complex to R-loops, ensuring proper transcription termination and genome stability.


Asunto(s)
ARN Helicasas DEAD-box , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Estructuras R-Loop , Metiltransferasas/metabolismo , Metiltransferasas/genética , Inestabilidad Genómica , Adenosina/metabolismo , Adenosina/análogos & derivados , Terminación de la Transcripción Genética
12.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38690769

RESUMEN

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Asunto(s)
Adenosina/análogos & derivados , Antivirales , Catepsina A , Pulmón , Profármacos , Profármacos/química , Profármacos/metabolismo , Profármacos/farmacocinética , Profármacos/farmacología , Animales , Ratones , Antivirales/farmacocinética , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , Humanos , Catepsina A/metabolismo , Pulmón/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Alanina/metabolismo , Alanina/farmacología , Permeabilidad , ProTides
13.
Cell Mol Biol Lett ; 29(1): 69, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741032

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a progressive disease characterized by pulmonary vascular remodeling. Increasing evidence indicates that endothelial-to-mesenchymal transition (EndMT) in pulmonary artery endothelial cells (PAECs) is a pivotal trigger initiating this remodeling. However, the regulatory mechanisms underlying EndMT in PH are still not fully understood. METHODS: Cytokine-induced hPAECs were assessed using RNA methylation quantification, qRT-PCR, and western blotting to determine the involvement of N6-methyladenosine (m6A) methylation in EndMT. Lentivirus-mediated silencing, overexpression, tube formation, and wound healing assays were utilized to investigate the function of METTL3 in EndMT. Endothelial-specific gene knockout, hemodynamic measurement, and immunostaining were performed to explore the roles of METTL3 in pulmonary vascular remodeling and PH. RNA-seq, RNA Immunoprecipitation-based qPCR, mRNA stability assay, m6A mutation, and dual-luciferase assays were employed to elucidate the mechanisms of RNA methylation in EndMT. RESULTS: The global levels of m6A and METTL3 expression were found to decrease in TNF-α- and TGF-ß1-induced EndMT in human PAECs (hPAECs). METTL3 inhibition led to reduced endothelial markers (CD31 and VE-cadherin) and increased mesenchymal markers (SM22 and N-cadherin) as well as EndMT-related transcription factors (Snail, Zeb1, Zeb2, and Slug). The endothelial-specific knockout of Mettl3 promoted EndMT and exacerbated pulmonary vascular remodeling and hypoxia-induced PH (HPH) in mice. Mechanistically, METTL3-mediated m6A modification of kruppel-like factor 2 (KLF2) plays a crucial role in the EndMT process. KLF2 overexpression increased CD31 and VE-cadherin levels while decreasing SM22, N-cadherin, and EndMT-related transcription factors, thereby mitigating EndMT in PH. Mutations in the m6A site of KLF2 mRNA compromise KLF2 expression, subsequently diminishing its protective effect against EndMT. Furthermore, KLF2 modulates SM22 expression through direct binding to its promoter. CONCLUSIONS: Our findings unveil a novel METTL3/KLF2 pathway critical for protecting hPAECs against EndMT, highlighting a promising avenue for therapeutic investigation in PH.


Asunto(s)
Adenosina , Células Endoteliales , Transición Epitelial-Mesenquimal , Hipertensión Pulmonar , Factores de Transcripción de Tipo Kruppel , Metiltransferasas , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Humanos , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Metilación , Ratones Endogámicos C57BL , Cadherinas/metabolismo , Cadherinas/genética , Masculino , Remodelación Vascular/genética , Células Cultivadas
14.
Biochem Biophys Res Commun ; 716: 150039, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701556

RESUMEN

The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.


Asunto(s)
Adenosina , Metiltransferasas , Neoplasias del Cuello Uterino , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Humanos , Femenino , Metiltransferasas/metabolismo , Metiltransferasas/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Metilación , Línea Celular Tumoral , Proliferación Celular/genética , Animales , Sistema de Transporte de Aminoácidos A/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Ratones , Pronóstico , Supervivencia Celular/genética
15.
Epigenetics ; 19(1): 2348840, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38716769

RESUMEN

To explore the role of lncRNA m6A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m6A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m6A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m6A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m6A peaks, with statistically significant differences (| Fold Change (FC) |≥2, p < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- ß signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m6A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m6A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m6A methylation.


Asunto(s)
Adenosina , Síndrome de Exfoliación , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Femenino , Síndrome de Exfoliación/genética , Síndrome de Exfoliación/metabolismo , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Anciano , Humor Acuoso/metabolismo , Redes Reguladoras de Genes , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metilación de ADN , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo
16.
Nat Commun ; 15(1): 4284, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769304

RESUMEN

Hypomyelinating leukodystrophy (HLD) is an autosomal recessive disorder characterized by defective central nervous system myelination. Exome sequencing of two siblings with severe cognitive and motor impairment and progressive hypomyelination characteristic of HLD revealed homozygosity for a missense single-nucleotide variant (SNV) in EPRS1 (c.4444 C > A; p.Pro1482Thr), encoding glutamyl-prolyl-tRNA synthetase, consistent with HLD15. Patient lymphoblastoid cell lines express markedly reduced EPRS1 protein due to dual defects in nuclear export and cytoplasmic translation of variant EPRS1 mRNA. Variant mRNA exhibits reduced METTL3 methyltransferase-mediated writing of N6-methyladenosine (m6A) and reduced reading by YTHDC1 and YTHDF1/3 required for efficient mRNA nuclear export and translation, respectively. In contrast to current models, the variant does not alter the sequence of m6A target sites, but instead reduces their accessibility for modification. The defect was rescued by antisense morpholinos predicted to expose m6A sites on target EPRS1 mRNA, or by m6A modification of the mRNA by METTL3-dCas13b, a targeted RNA methylation editor. Our bioinformatic analysis predicts widespread occurrence of SNVs associated with human health and disease that similarly alter accessibility of distal mRNA m6A sites. These results reveal a new RNA-dependent etiologic mechanism by which SNVs can influence gene expression and disease, consequently generating opportunities for personalized, RNA-based therapeutics targeting these disorders.


Asunto(s)
Adenosina , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Homocigoto , Metiltransferasas , Mutación Missense , ARN Mensajero , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Masculino , Femenino , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Empalme de ARN , Proteínas del Tejido Nervioso
17.
Nat Commun ; 15(1): 4347, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773146

RESUMEN

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Astrocitos , Trastorno Depresivo Mayor , Ratones Noqueados , Animales , Astrocitos/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Ratones , Humanos , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/patología , Masculino , Femenino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neuronas/metabolismo , Estrés Psicológico/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Conducta Animal , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Depresión/metabolismo , Depresión/genética , Adulto , Transmisión Sináptica , Persona de Mediana Edad
18.
Cancer Control ; 31: 10732748241256819, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38755968

RESUMEN

Ovarian cancer (OC) is the most lethal gynecological tumor, characterized by its insidious and frequently recurring metastatic progression. Owing to limited early screening methods, over 70% of OC cases are diagnosed at advanced stages, typically stage III or IV. Recently, N6-methyladenosine (m6A) modification has emerged as a hotspot of epigenetic research, representing a significant endogenous RNA modification in higher eukaryotes. Numerous studies have reported that m6A-related regulatory factors play pivotal roles in tumor development through diverse mechanisms. Moreover, recent studies have indicated the aberrant expression of multiple regulatory factors in OC. Therefore, this paper comprehensively reviews research advancements concerning m6A in OC, aiming to elucidate the regulatory mechanism of m6A-associated regulators on pivotal aspects, such as proliferation, invasion, metastasis, and drug resistance, in OC. Furthermore, it discusses the potential of m6A-associated regulators as early diagnostic markers and therapeutic targets, thus contributing to the diagnosis and treatment of OC.


Ovarian cancer (OC) presents a formidable challenge in the medical field, often detected at advanced stages, necessitating urgent exploration of diagnostic and therapeutic avenues. This review delves into the intricate role of N6-methyladenosine (m6A) RNA modification in OC, a dynamic epigenetic process increasingly recognized for its regulatory role in cancer biology. Highlighting recent advancements, the review sheds light on how m6A-related factors influence crucial aspects of OC progression, including tumor growth, metastasis, and resistance to treatment. Specifically, m6A methyltransferases, binding proteins, and demethylases exert multifaceted effects on OC progression, influencing the expression of pivotal oncogenes and tumor suppressors. While promising, translating these insights into effective therapies requires further investigation. By comprehensively understanding the influence of m6A on OC, there lies hope for developing improved diagnostic techniques and novel treatment strategies to combat this complex disease.


Asunto(s)
Adenosina , Neoplasias Ováricas , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética
19.
Oncol Rep ; 51(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38757383

RESUMEN

Prostate cancer (PCa) affects males of all racial and ethnic groups, and leads to higher rates of mortality in those belonging to a lower socioeconomic status due to the late detection of the disease. PCa affects middle­aged males between the ages of 45 and 60 years, and is the highest cause of cancer­associated mortality in Western countries. As the most abundant and common mRNA modification in higher eukaryotes, N6­methyladenosine (m6A) is widely distributed in mammalian cells and influences various aspects of mRNA metabolism. Recent studies have found that abnormal expression levels of various m6A regulators significantly affect the development and progression of various types of cancer, including PCa. The present review discusses the influence of m6A regulatory factors on the pathogenesis and progression of PCa through mRNA modification based on the current state of research on m6A methylation modification in PCa. It is considered that the treatment of PCa with micro­molecular drugs that target the epigenetics of the m6A regulator to correct abnormal m6A modifications is a direction for future research into current diagnostic and therapeutic approaches for PCa.


Asunto(s)
Adenosina , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/terapia , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Epigénesis Genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética
20.
Int J Nanomedicine ; 19: 4181-4197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766656

RESUMEN

Purpose: The committed differentiation fate regulation has been a difficult problem in the fields of stem cell research, evidence showed that nanomaterials could promote the differentiation of stem cells into specific cell types. Layered double hydroxide (LDH) nanoparticles possess the regulation function of stem cell fate, while the underlying mechanism needs to be investigated. In this study, the process of embryonic stem cells (ESCs) differentiate to neural progenitor cells (NPCs) by magnesium aluminum LDH (MgAl-LDH) was investigated. Methods: MgAl-LDH with diameters of 30, 50, and 100 nm were synthesized and characterized, and their effects on the cytotoxicity and differentiation of NPCs were detected in vitro. Dot blot and MeRIP-qPCR were performed to detect the level of m6A RNA methylation in nanoparticles-treated cells. Results: Our work displayed that LDH nanoparticles of three different sizes were biocompatible with NPCs, and the addition of MgAl-LDH could significantly promote the process of ESCs differentiate to NPCs. 100 nm LDH has a stronger effect on promoting NPCs differentiation compared to 30 nm and 50 nm LDH. In addition, dot blot results indicated that the enhanced NPCs differentiation by MgAl-LDH was closely related to m6A RNA methylation process, and the major modification enzyme in LDH controlled NPCs differentiation may be the m6A RNA methyltransferase METTL3. The upregulated METTL3 by LDH increased the m6A level of Sox1 mRNA, enhancing its stability. Conclusion: This work reveals that MgAl-LDH nanoparticles can regulate the differentiation of ESCs into NPCs by increasing m6A RNA methylation modification of Sox1.


Asunto(s)
Diferenciación Celular , Nanopartículas , Células-Madre Neurales , Diferenciación Celular/efectos de los fármacos , Animales , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Ratones , Nanopartículas/química , Metilación/efectos de los fármacos , Hidróxidos/química , Hidróxidos/farmacología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Tamaño de la Partícula , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/citología , Adenosina/farmacología , Adenosina/química , Adenosina/análogos & derivados , Hidróxido de Aluminio/química , Hidróxido de Aluminio/farmacología , Hidróxido de Magnesio/química , Hidróxido de Magnesio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...