Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 132(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34813507

RESUMEN

Various populations of cells are recruited to the heart after cardiac injury, but little is known about whether cardiomyocytes directly regulate heart repair. Using a murine model of ischemic cardiac injury, we demonstrate that cardiomyocytes play a pivotal role in heart repair by regulating nucleotide metabolism and fates of nonmyocytes. Cardiac injury induced the expression of the ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which hydrolyzes extracellular ATP to form AMP. In response to AMP, cardiomyocytes released adenine and specific ribonucleosides that disrupted pyrimidine biosynthesis at the orotidine monophosphate (OMP) synthesis step and induced genotoxic stress and p53-mediated cell death of cycling nonmyocytes. As nonmyocytes are critical for heart repair, we showed that rescue of pyrimidine biosynthesis by administration of uridine or by genetic targeting of the ENPP1/AMP pathway enhanced repair after cardiac injury. We identified ENPP1 inhibitors using small molecule screening and showed that systemic administration of an ENPP1 inhibitor after heart injury rescued pyrimidine biosynthesis in nonmyocyte cells and augmented cardiac repair and postinfarct heart function. These observations demonstrate that the cardiac muscle cell regulates pyrimidine metabolism in nonmuscle cells by releasing adenine and specific nucleosides after heart injury and provide insight into how intercellular regulation of pyrimidine biosynthesis can be targeted and monitored for augmenting tissue repair.


Asunto(s)
Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Pirimidinas/biosíntesis , Pirofosfatasas/metabolismo , Regeneración , Transducción de Señal , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Lesiones Cardíacas/genética , Lesiones Cardíacas/metabolismo , Ratones , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/genética
2.
Biochemistry ; 60(24): 1869-1875, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34110129

RESUMEN

Remdesivir is an antiviral drug initially designed against the Ebola virus. The results obtained with it both in biochemical studies in vitro and in cell line assays in vivo were very promising, but it proved to be ineffective in clinical trials. Remdesivir exhibited far better efficacy when repurposed against SARS-CoV-2. The chemistry that accounts for this difference is the subject of this study. Here, we examine the hypothesis that remdesivir monophosphate (RMP)-containing RNA functions as a template at the polymerase site for the second run of RNA synthesis, and as mRNA at the decoding center for protein synthesis. Our hypothesis is supported by the observation that RMP can be incorporated into RNA by the RNA-dependent RNA polymerases (RdRps) of both viruses, although some of the incorporated RMPs are subsequently removed by exoribonucleases. Furthermore, our hypothesis is consistent with the fact that RdRp of SARS-CoV-2 selects RMP for incorporation over AMP by 3-fold in vitro, and that RMP-added RNA can be rapidly extended, even though primer extension is often paused when the added RMP is translocated at the i + 3 position (with i the nascent base pair at an initial insertion site of RMP) or when the concentrations of the subsequent nucleoside triphosphates (NTPs) are below their physiological concentrations. These observations have led to the hypothesis that remdesivir might be a delayed chain terminator. However, that hypothesis is challenged under physiological concentrations of NTPs by the observation that approximately three-quarters of RNA products efficiently overrun the pause.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Ebolavirus/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Alanina/genética , Alanina/metabolismo , Antivirales/metabolismo , Emparejamiento Base , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Inhibidores Enzimáticos/metabolismo , Modelos Moleculares , Biosíntesis de Proteínas/efectos de los fármacos , ARN/genética , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
3.
Oncogene ; 40(12): 2285-2295, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33649533

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is aggressive cancer characterized by rapid progression, metastatic recurrence, and highly resistant to treatment. PDA cells exhibit aerobic glycolysis, or the Warburg effect, which reduces the flux of pyruvate into mitochondria. As a result, more glycolytic metabolites are shunted to pathways for the production of building blocks (e.g., ribose) and reducing agents (e.g., NADPH) for biosynthesis that are necessary for cell proliferation. In addition, PDA cells are highly addicted to glutamine for both maintaining biosynthetic pathways and achieving redox balance. Mitochondrial uncoupling facilitates proton influx across the mitochondrial inner membrane without generating ATP, leading to a futile cycle that consumes glucose metabolites and glutamine. We synthesized a new mitochondrial uncoupler MB1-47 and tested its effect on cancer cell metabolism and the anticancer activity in pancreatic cancer cell models and murine tumor transplantation models. MB1-47 uncouples mitochondria in the pancreatic cancer cells, resulting in: (1) the acceleration of pyruvate oxidation and TCA turnover; (2) increases in AMP/ATP and ADP/AMP ratios; and (3) a decrease in the synthesis rate of nucleotides and sugar nucleotides. Moreover, MB1-47 arrests cell cycle at G0-G1 phase, reduces clonogenicity, and inhibits cell growth of murine and human pancreatic cancer cells. In vivo studies showed that MB1-47 inhibits tumor growth in murine tumor transplantation models, and inhibits the hepatic metastasis when tumor cells were transplanted intrasplenically. Our results provide proof of concept for a potentially new strategy of treating PDA, and a novel prototype experimental drug for future studies and development.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Ciclo del Ácido Cítrico/genética , Neoplasias Hepáticas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenosina Difosfato/genética , Adenosina Monofosfato/genética , Adenosina Trifosfato/genética , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , Glucosa/metabolismo , Glucólisis/genética , Xenoinjertos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo
4.
Nucleic Acids Res ; 48(22): 12746-12750, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33264406

RESUMEN

As nucleotidyl transferases, formation of a covalent enzyme-adenylate intermediate is a common first step of all DNA ligases. While it has been shown that eukaryotic DNA ligases utilize ATP as the adenylation donor, it was recently reported that human DNA ligase IV can also utilize NAD+ and, to a lesser extent ADP-ribose, as the source of the adenylate group and that NAD+, unlike ATP, enhances ligation by supporting multiple catalytic cycles. Since this unexpected finding has significant implications for our understanding of the mechanisms and regulation of DNA double strand break repair, we attempted to confirm that NAD+ and ADP-ribose can be used as co-factors by human DNA ligase IV. Here, we provide evidence that NAD+ does not enhance ligation by pre-adenylated DNA ligase IV, indicating that this co-factor is not utilized for re-adenylation and subsequent cycles of ligation. Moreover, we find that ligation by de-adenylated DNA ligase IV is dependent upon ATP not NAD+ or ADP-ribose. Thus, we conclude that human DNA ligase IV cannot use either NAD+ or ADP-ribose as adenylation donor for ligation.


Asunto(s)
Adenosina Difosfato Ribosa/genética , ADN Ligasa (ATP)/genética , ADN/genética , NAD/genética , Adenosina Monofosfato/genética , Adenosina Trifosfato/genética , Secuencia de Aminoácidos/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Humanos
5.
Mol Cell ; 80(6): 955-970.e7, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33290744

RESUMEN

Prokaryotic toxin-antitoxin (TA) systems are composed of a toxin capable of interfering with key cellular processes and its neutralizing antidote, the antitoxin. Here, we focus on the HEPN-MNT TA system encoded in the vicinity of a subtype I-D CRISPR-Cas system in the cyanobacterium Aphanizomenon flos-aquae. We show that HEPN acts as a toxic RNase, which cleaves off 4 nt from the 3' end in a subset of tRNAs, thereby interfering with translation. Surprisingly, we find that the MNT (minimal nucleotidyltransferase) antitoxin inhibits HEPN RNase through covalent di-AMPylation (diadenylylation) of a conserved tyrosine residue, Y109, in the active site loop. Furthermore, we present crystallographic snapshots of the di-AMPylation reaction at different stages that explain the mechanism of HEPN RNase inactivation. Finally, we propose that the HEPN-MNT system functions as a cellular ATP sensor that monitors ATP homeostasis and, at low ATP levels, releases active HEPN toxin.


Asunto(s)
Antitoxinas/genética , Toxinas Bacterianas/genética , Ribonucleasas/genética , Sistemas Toxina-Antitoxina/genética , Adenosina Monofosfato/genética , Antídotos/química , Antitoxinas/metabolismo , Aphanizomenon/química , Aphanizomenon/genética , Sistemas CRISPR-Cas/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Ribonucleasas/metabolismo , Tirosina/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-33122171

RESUMEN

Nucleotide analogs targeting viral RNA polymerase have been proved to be an effective strategy for antiviral treatment and are promising antiviral drugs to combat the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. In this study, we developed a robust in vitro nonradioactive primer extension assay to quantitatively evaluate the efficiency of incorporation of nucleotide analogs by SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Our results show that many nucleotide analogs can be incorporated into RNA by SARS-CoV-2 RdRp and that the incorporation of some of them leads to chain termination. The discrimination values of nucleotide analogs over those of natural nucleotides were measured to evaluate the incorporation efficiency of nucleotide analog by SARS-CoV-2 RdRp. In agreement with the data published in the literature, we found that the incorporation efficiency of remdesivir-TP is higher than that of ATP and incorporation of remdesivir-TP caused delayed chain termination, which can be overcome by higher concentrations of the next nucleotide to be incorporated. Our data also showed that the delayed chain termination pattern caused by remdesivir-TP incorporation is different for different template sequences. Multiple incorporations of remdesivir-TP caused chain termination under our assay conditions. Incorporation of sofosbuvir-TP is very low, suggesting that sofosbuvir may not be very effective in treating SARS-CoV-2 infection. As a comparison, 2'-C-methyl-GTP can be incorporated into RNA efficiently, and the derivative of 2'-C-methyl-GTP may have therapeutic application in treating SARS-CoV-2 infection. This report provides a simple screening method that should be useful for evaluating nucleotide-based drugs targeting SARS-CoV-2 RdRp and for studying the mechanism of action of selected nucleotide analogs.


Asunto(s)
Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Evaluación Preclínica de Medicamentos/métodos , Nucleótidos/farmacología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/genética , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/química , Alanina/genética , Alanina/farmacología , Antivirales/química , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Nucleótidos/química , ARN , ARN Viral/biosíntesis , Proteínas no Estructurales Virales
7.
Mutagenesis ; 35(5): 391-404, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32914844

RESUMEN

DNA ligase I (LIG1) joins DNA strand breaks during DNA replication and repair transactions and contributes to genome integrity. The mutations (P529L, E566K, R641L and R771W) in LIG1 gene are described in patients with LIG1-deficiency syndrome that exhibit immunodeficiency. LIG1 senses 3'-DNA ends with a mismatch or oxidative DNA base inserted by a repair DNA polymerase. However, the ligation efficiency of the LIG1 variants for DNA polymerase-promoted mutagenesis products with 3'-DNA mismatches or 8-oxo-2'-deoxyguanosine (8-oxodG) remains undefined. Here, we report that R641L and R771W fail in the ligation of nicked DNA with 3'-8-oxodG, leading to an accumulation of 5'-AMP-DNA intermediates in vitro. Moreover, we found that the presence of all possible 12 non-canonical base pairs variously impacts the ligation efficiency by P529L and R771W depending on the architecture at the DNA end, whereas E566K exhibits no activity against all substrates tested. Our results contribute to the understanding of the substrate specificity and mismatch discrimination of LIG1 for mutagenic repair intermediates and the effect of non-synonymous mutations on ligase fidelity.


Asunto(s)
ADN Ligasa (ATP)/genética , Reparación de la Incompatibilidad de ADN/genética , Mutagénesis/genética , 8-Hidroxi-2'-Desoxicoguanosina/genética , Adenosina Monofosfato/genética , Roturas del ADN de Cadena Simple/efectos de los fármacos , Daño del ADN/genética , Replicación del ADN/genética , Genoma/efectos de los fármacos , Humanos , Mutación/genética , Estrés Oxidativo/efectos de los fármacos
8.
RNA ; 26(9): 1094-1103, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32385138

RESUMEN

N6-threonylcarbamoyl adenosine (t6A) is a nucleoside modification found in all kingdoms of life at position 37 of tRNAs decoding ANN codons, which functions in part to restrict translation initiation to AUG and suppress frameshifting at tandem ANN codons. In Bacteria the proteins TsaB, TsaC (or C2), TsaD, and TsaE, comprise the biosynthetic apparatus responsible for t6A formation. TsaC(C2) and TsaD harbor the relevant active sites, with TsaC(C2) catalyzing the formation of the intermediate threonylcarbamoyladenosine monophosphate (TC-AMP) from ATP, threonine, and CO2, and TsaD catalyzing the transfer of the threonylcarbamoyl moiety from TC-AMP to A37 of substrate tRNAs. Several related modified nucleosides, including hydroxynorvalylcarbamoyl adenosine (hn6A), have been identified in select organisms, but nothing is known about their biosynthesis. To better understand the mechanism and structural constraints on t6A formation, and to determine if related modified nucleosides are formed via parallel biosynthetic pathways or the t6A pathway, we carried out biochemical and biophysical investigations of the t6A systems from E. coli and T. maritima to address these questions. Using kinetic assays of TsaC(C2), tRNA modification assays, and NMR, our data demonstrate that TsaC(C2) exhibit relaxed substrate specificity, producing a variety of TC-AMP analogs that can differ in both the identity of the amino acid and nucleotide component, whereas TsaD displays more stringent specificity, but efficiently produces hn6A in E. coli and T. maritima tRNA. Thus, in organisms that contain modifications such as hn6A in their tRNA, we conclude that their origin is due to formation via the t6A pathway.


Asunto(s)
Adenosina/análogos & derivados , Vías Biosintéticas/genética , Nucleósidos/genética , ARN de Transferencia/genética , Adenosina/genética , Adenosina Monofosfato/genética , Adenosina Trifosfato/genética , Aminoácidos/genética , Dominio Catalítico/genética , Escherichia coli/genética , Conformación Proteica , Especificidad por Sustrato/genética , Thermotoga maritima/genética , Treonina/genética
9.
EMBO J ; 39(11): e101573, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32323871

RESUMEN

High expression of 2',5'-oligoadenylate synthetase 1 (OAS1), which adds AMP residues in 2',5' linkage to a variety of substrates, is observed in many cancers as a part of the interferon-related DNA damage resistance signature (IRDS). Poly(ADP-ribose) (PAR) is rapidly synthesized from NAD+ at sites of DNA damage to facilitate repair, but excessive PAR synthesis due to extensive DNA damage results in cell death by energy depletion and/or activation of PAR-dependent programmed cell death pathways. We find that OAS1 adds AMP residues in 2',5' linkage to PAR, inhibiting its synthesis in vitro and reducing its accumulation in cells. Increased OAS1 expression substantially improves cell viability following DNA-damaging treatments that stimulate PAR synthesis during DNA repair. We conclude that high expression of OAS1 in cancer cells promotes their ability to survive DNA damage by attenuating PAR synthesis and thus preventing cell death.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/biosíntesis , Daño del ADN , Regulación Enzimológica de la Expresión Génica , Poli ADP Ribosilación , 2',5'-Oligoadenilato Sintetasa/genética , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Muerte Celular , Línea Celular Transformada , Humanos
10.
J Biol Chem ; 294(33): 12313-12327, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31097541

RESUMEN

Mitochondrial lipid overload in skeletal muscle contributes to insulin resistance, and strategies limiting this lipid pressure improve glucose homeostasis; however, comprehensive cellular adaptations that occur in response to such an intervention have not been reported. Herein, mice with skeletal muscle-specific deletion of carnitine palmitoyltransferase 1b (Cpt1bM-/-), which limits mitochondrial lipid entry, were fed a moderate fat (25%) diet, and samples were subjected to a multimodal analysis merging transcriptomics, proteomics, and nontargeted metabolomics to characterize the coordinated multilevel cellular responses that occur when mitochondrial lipid burden is mitigated. Limiting mitochondrial fat entry predictably improves glucose homeostasis; however, remodeling of glucose metabolism pathways pales compared with adaptations in amino acid and lipid metabolism pathways, shifts in nucleotide metabolites, and biogenesis of mitochondria and peroxisomes. Despite impaired fat utilization, Cpt1bM-/- mice have increased acetyl-CoA (14-fold) and NADH (2-fold), indicating metabolic shifts yield sufficient precursors to meet energy demand; however, this does not translate to enhance energy status as Cpt1bM-/- mice have low ATP and high AMP levels, signifying energy deficit. Comparative analysis of transcriptomic data with disease-associated gene-sets not only predicted reduced risk of glucose metabolism disorders but was also consistent with lower risk for hepatic steatosis, cardiac hypertrophy, and premature death. Collectively, these results suggest induction of metabolic inefficiency under conditions of energy surfeit likely contributes to improvements in metabolic health when mitochondrial lipid burden is mitigated. Moreover, the breadth of disease states to which mechanisms induced by muscle-specific Cpt1b inhibition may mediate health benefits could be more extensive than previously predicted.


Asunto(s)
Carnitina O-Palmitoiltransferasa/deficiencia , Metabolismo Energético , Metabolismo de los Lípidos , Mitocondrias Musculares/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Carnitina O-Palmitoiltransferasa/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Musculares/genética , NAD/genética , NAD/metabolismo
11.
Nucleic Acids Res ; 47(15): e85, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31114914

RESUMEN

Whole-genome bisulfite sequencing (WGBS) is the current gold standard of methylome analysis. Post-bisulfite adaptor tagging (PBAT) is an increasingly popular WGBS protocol because of high sensitivity and low bias. PBAT originally relied on two rounds of random priming for adaptor-tagging of single-stranded DNA (ssDNA) to attain high efficiency but at a cost of library insert length. To overcome this limitation, we developed terminal deoxyribonucleotidyl transferase (TdT)-assisted adenylate connector-mediated ssDNA (TACS) ligation as an alternative to random priming. In this method, TdT attaches adenylates to the 3'-end of input ssDNA, which are then utilized by RNA ligase as an efficient connector to the ssDNA adaptor. A protocol that uses TACS ligation instead of the second random priming step substantially increased the lengths of PBAT library fragments. Moreover, we devised a dual-library strategy that splits the input DNA to prepare two libraries with reciprocal adaptor polarity, combining them prior to sequencing. This strategy ensured an ideal base-color balance to eliminate the need for DNA spike-in for color compensation, further improving the throughput and quality of WGBS. Adopting the above strategies to the HiSeq X Ten and NovaSeq 6000 platforms, we established a cost-effective, high-quality WGBS, which should accelerate various methylome analyses.


Asunto(s)
Mapeo Cromosómico/métodos , ADN de Cadena Simple/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sulfitos/química , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Metilación de ADN , ADN Nucleotidilexotransferasa/genética , ADN Nucleotidilexotransferasa/metabolismo , ADN de Cadena Simple/metabolismo , Biblioteca Genómica , Humanos , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/metabolismo
12.
J Biotechnol ; 298: 1-4, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974118

RESUMEN

Adenosine, which is produced mainly by microbial fermentation, plays an important role in the therapy of cardiovascular disease and has been widely used as an antiarrhythmic agent. In this study, guanosine 5'-monophosphate (GMP) synthetase gene (guaA) was inactivated by gene-target manipulation to increase the metabolic flux from inosine 5'-monophosphate (IMP) to adenosine in B. subtilis A509. The resulted mutant M3-3 showed an increased adenosine production from 7.40 to 10.45 g/L, which was further enhanced to a maximum of 14.39 g/L by central composite design. As the synthesis of succinyladenosine monophosphate (sAMP) from IMP catalysed by adenylosuccinate synthetase (encoded by purA gene) is the rate-limiting step in adenosine synthesis, the up-regulated transcription level of purA was the potential underlying mechanism for the increased adenosine production. This work demonstrated a practical strategy for breeding B. subtilis strains for industrial nucleoside production.


Asunto(s)
Adenosina/genética , Adenilosuccinato Sintasa/genética , Bacillus subtilis/genética , Ligasas de Carbono-Nitrógeno/genética , Adenosina/biosíntesis , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/genética , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Fermentación , Marcación de Gen , Inosina/genética , Inosina/metabolismo , Inosina Monofosfato/genética , Mutagénesis Sitio-Dirigida , Mutación/genética
13.
Biochem Soc Trans ; 47(2): 733-741, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31000529

RESUMEN

The AMP (adenosine 5'-monophosphate)-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis that co-ordinates metabolic processes to ensure energy supply meets demand. At the cellular level, AMPK is activated by metabolic stresses that increase AMP or adenosine 5'-diphosphate (ADP) coupled with falling adenosine 5'-triphosphate (ATP) and acts to restore energy balance by choreographing a shift in metabolism in favour of energy-producing catabolic pathways while inhibiting non-essential anabolic processes. AMPK also regulates systemic energy balance and is activated by hormones and nutritional signals in the hypothalamus to control appetite and body weight. Failure to maintain energy balance plays an important role in chronic diseases such as obesity, type 2 diabetes and inflammatory disorders, which has prompted a major drive to develop pharmacological activators of AMPK. An array of small-molecule allosteric activators has now been developed, several of which can activate AMPK by direct allosteric activation, independently of Thr172 phosphorylation, which was previously regarded as indispensable for AMPK activity. In this review, we summarise the state-of-the-art regarding our understanding of the molecular mechanisms that govern direct allosteric activation of AMPK by adenylate nucleotides and small-molecule drugs.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica/genética , Regulación Alostérica/fisiología , Animales , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Humanos , Fosforilación
14.
Methods ; 155: 104-115, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30408609

RESUMEN

The half-life of an mRNA is an important parameter contributing to the steady-state level of the mRNA. Rapid changes in mRNA levels can result from decreasing the half-life of an mRNA. Establishing the detailed pathway of mRNA degradation for a particular class of mRNAs requires the ability to isolate mRNA degradation intermediates. High-throughput sequencing provides a method for detecting these intermediates. Here we describe a method for determining the intermediates in 3' to 5' degradation. Characterizing these intermediates requires not only determining the precise 3' end of the molecule to a single nucleotide resolution, but also the ability to detect and characterize any untemplated nucleotides present on the intermediates. We achieve this by ligating a known sequence to all the 3' termini in the cell, and then sequence the 3' termini and the ligated linker to identify any alterations to the genomic reference sequence. We have applied this method to characterize the intermediates in histone mRNA metabolism, allowing us to deduce the pathway of 3' to 5' degradation. This method can potentially be applied to any RNA, and we discuss possible strategies for extending the method to include simultaneous determination of the 3' and 5' end of the same RNA molecule.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histonas/genética , Oligorribonucleótidos/análisis , ARN Mensajero/genética , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Emparejamiento Base , Secuencia de Bases , Ciclo Celular/genética , Línea Celular , ADN Complementario/genética , ADN Complementario/metabolismo , Biblioteca de Genes , Semivida , Histonas/metabolismo , Humanos , Imidazoles/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Oligorribonucleótidos/genética , Oligorribonucleótidos/metabolismo , ARN/química , ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN/estadística & datos numéricos , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
15.
Mol Microbiol ; 109(5): 642-662, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29995988

RESUMEN

Biotin (vitamin B7), a sulfur-containing fatty acid derivative, is a nutritional virulence factor in certain mycobacterial species. Tight regulation of biotin biosynthesis is important because production of biotin is an energetically expensive process requiring 15-20 equivalents of ATP. The Escherichia coli bifunctional BirA is a prototypical biotin regulatory system. In contrast, mycobacterial BirA is an unusual biotin protein ligase without DNA-binding domain. Recently, we established a novel two-protein paradigm of BioQ-BirA. However, structural and molecular mechanism for BioQ is poorly understood. Here, we report crystal structure of the M. smegmatis BioQ at 1.9 Å resolution. Structure-guided functional mapping defined a seven residues-requiring motif for DNA-binding activity. Western blot and MALDI-TOF MS allowed us to unexpectedly discover that the K47 acetylation activates crosstalking of BioQ to its cognate DNA. More intriguingly, excess of biotin augments the acetylation status of BioQ in M. smegmatis. It seems likely that BioQ acetylation proceeds via a non-enzymatic mechanism. Mutation of this acetylation site K47 in BioQ significantly impairs its regulatory role in vivo. This explains in part (if not all) why BioQ has no detectable requirement of the presumable bio-5'-AMP effecter, which is a well-known ligand for the paradigm E. coli BirA regulator system. Unlike the scenario seen with E. coli carrying a single biotinylated protein, AccB, genome-wide search and Streptavidin blot revealed that no less than seven proteins require the rare post-translational modification, biotinylation in M. smegmatis, validating its physiological demand for biotin at relatively high level. Taken together, our finding defines a novel biotin regulatory machinery by BioQ, posing a possibility that development of new antibiotics targets biotin, the limited nutritional virulence factor in certain pathogenic mycobacterial species.


Asunto(s)
Proteínas Bacterianas/química , Biotina/biosíntesis , Mycobacterium smegmatis/enzimología , Factores de Transcripción/química , Acetilación , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Biotina/análogos & derivados , Biotina/química , Biotina/genética , Biotina/metabolismo , Biotinilación , Cristalografía por Rayos X , Modelos Moleculares , Mycobacterium smegmatis/genética , Plásmidos , Conformación Proteica , Factores de Transcripción/genética
16.
Sci Rep ; 8(1): 903, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343701

RESUMEN

The enzyme Pantothenate synthetase (PS) represents a potential drug target in Mycobacterium tuberculosis. Its X-ray crystallographic structure has demonstrated the significance and importance of conserved active site residues including His44, His47, Asn69, Gln72, Lys160 and Gln164 in substrate binding and formation of pantoyl adenylate intermediate. In the current study, molecular mechanism of decreased affinity of the enzyme for ATP caused by alanine mutations was investigated using molecular dynamics (MD) simulations and free energy calculations. A total of seven systems including wild-type + ATP, H44A + ATP, H47A + ATP, N69A + ATP, Q72A + ATP, K160A + ATP and Q164A + ATP were subjected to 50 ns MD simulations. Docking score, MM-GBSA and interaction profile analysis showed weak interactions between ATP (substrate) and PS (enzyme) in H47A and H160A mutants as compared to wild-type, leading to reduced protein catalytic activity. However, principal component analysis (PCA) and free energy landscape (FEL) analysis revealed that ATP was strongly bound to the catalytic core of the wild-type, limiting its movement to form a stable complex as compared to mutants. The study will give insight about ATP binding to the PS at the atomic level and will facilitate in designing of non-reactive analogue of pantoyl adenylate which will act as a specific inhibitor for PS.


Asunto(s)
Adenosina Trifosfato/metabolismo , Alanina/genética , Sitios de Unión/genética , Dominio Catalítico/genética , Mutación/genética , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Adenosina Monofosfato/genética , Adenosina Trifosfato/genética , Catálisis , Cristalografía por Rayos X/métodos , Cinética , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/genética , Unión Proteica/genética , Especificidad por Sustrato
17.
J Cell Physiol ; 233(5): 3945-3954, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28884830

RESUMEN

As a natural metabolite of limonoids from Dictamnus dasycarpus, fraxinellone has been reported to be neuroprotective and anti-inflammatory. However, its influence on cellular metabolism remains largely unknown. In the present study, we investigated the effect of fraxinellone on cellular senescence-induced by oxidative stress and the potential mechanism. We found that fraxinellone administration caused growth arrest and certainly repressed the activity of senescence associated ß-galactosidase as well as the expression of senescence-associated-genes. Interestingly, this effect of fraxinellone is closely correlated with the restoration of impaired autophagy and the activation of AMPK. Notably, fraxinellone reacts in an AMPK-dependent but mTORC1-independent manner. Together, our study demonstrates for the first time that fraxinellone has the effect on senescence inhibition and AMPK activation, and supports the notion that autophagic mechanism is important for aging prevention. These findings expanded the list of natural compounds and will be potentially utilized for aging decay and/or AMPK activation.


Asunto(s)
Envejecimiento/genética , Autofagia/genética , Senescencia Celular/genética , Proteínas Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina Monofosfato/genética , Animales , Benzofuranos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Células 3T3 NIH , Estrés Oxidativo/efectos de los fármacos , beta-Galactosidasa/genética
18.
Biochemistry ; 56(34): 4478-4488, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28718281

RESUMEN

Elucidation of the molecular details of allosteric communication between distant sites in a protein is key to understanding and manipulating many biological regulatory processes. Although protein disorder is acknowledged to play an important thermodynamic role in allostery, the molecular mechanisms by which this disorder is harnessed for long distance communication are known for a limited number of systems. Transcription repression by the Escherichia coli biotin repressor, BirA, is allosterically activated by binding of the small molecule effector biotinoyl-5'-AMP. The effector acts by promoting BirA dimerization, which is a prerequisite for sequence-specific binding to the biotin biosynthetic operon operator sequence. A 30 Å distance separates the effector binding and dimerization surfaces in BirA, and previous studies indicate that allostery is mediated, in part, by disorder-to-order transitions on the two coupled sites. In this work, combined experimental and computational methods have been applied to investigate the molecular basis of allosteric communication in BirA. Double-mutant cycle analysis coupled with thermodynamic measurements indicates functional coupling between residues in disordered loops on the two distant surfaces. All atom molecular dynamics simulations reveal that this coupling occurs through long distance reciprocal modulation of the structure and dynamics of disorder-to-order transitions on the two surfaces.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Biotina/análogos & derivados , Ligasas de Carbono-Nitrógeno/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Simulación de Dinámica Molecular , Proteínas Represoras/química , Adenosina Monofosfato/química , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Regulación Alostérica/fisiología , Sustitución de Aminoácidos , Biotina/química , Biotina/genética , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación Missense , Unión Proteica , Dominios Proteicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
19.
Biochemistry ; 56(32): 4219-4234, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28656748

RESUMEN

Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.


Asunto(s)
Adenosina Monofosfato/química , Antiportadores de Potasio-Hidrógeno/química , Pliegue de Proteína , Multimerización de Proteína , Shewanella/química , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Antiportadores de Potasio-Hidrógeno/genética , Antiportadores de Potasio-Hidrógeno/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Shewanella/genética , Shewanella/metabolismo
20.
Nucleic Acids Res ; 45(1): 206-214, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28069994

RESUMEN

The DEAH-box ATP-dependent RHAU helicases specifically unfold RNA and DNA G-quadruplexes (G4s). However, it remains unclear how the RHAU's G4 unfolding activity is coupled to different stages of the ATPase cycle. Here, using a single-molecule manipulation approach, we show that binding of Drosophila RHAU stabilizes an intramolecularly folded parallel DNA G4 against mechanical unfolding in its nucleotide-free and in its AMP-PNP or ADP bound states, while it destabilizes the G4 when coupled to ATP hydrolysis. Importantly, our results show that the ADP·AlF[Formula: see text]-bound RHAU does not stabilize the G4. We also found that both a single-stranded 3' DNA tail and the RSM domain of RHAU that binds specifically to the G4 structure, are dispensable for the stabilization of the G4, but both are required for G4 destabilization. Our study provides the first evidence that the unfolding kinetics of a G-quadruplex can be modulated by different nucleotide-bound states of the helicase.


Asunto(s)
ARN Helicasas DEAD-box/química , ADN/química , Proteínas de Drosophila/química , ARN/química , Adenosina Difosfato/química , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/química , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Clonación Molecular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN/genética , ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , G-Cuádruplex , Expresión Génica , Humanos , Hidrólisis , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Campos Magnéticos , Pinzas Ópticas , Unión Proteica , Dominios Proteicos , ARN/genética , ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagen Individual de Molécula , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...