Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
Biomater Adv ; 157: 213751, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219418

RESUMEN

In vascular tissue engineering, formation of stable endothelial cell-cell and cell-substrate adhesions is essential for maintaining long-term patency of the tissue-engineered vascular grafts (TEVGs). In this study, sheet-like aligned fibrous substrates of poly(l-lactide-co-caprolactone) (PLCL) were prepared by electrospinning to provide basement membrane-resembling structural support to endothelial cells (ECs). Cyclic stretching at physiological and pathological levels was then applied to human umbilical vein endothelial cells (HUVECs) cultured on chosen fibrous substrate using a force-loading device, from which effects of the cyclic stretching on cell-cell and cell-substrate adhesions were examined. It was found that applying uniaxial 1 Hz cyclic stretch at physiological levels (5 % and 10 % elongation) strengthened the cell-cell junctions, thus leading to improved structural integrity, functional expression and resistance to thrombin-induced damaging impacts in the formed endothelial layer. The cell-cell junctions were disrupted at pathological level (15 % elongation) cyclic stretching, which however facilitated the formation of focal adhesions (FAs) at cell-substrate interface. Mechanistically, the effects of cyclic stretching on endothelial cell-cell and cell-substrate adhesions were identified to be correlated with the RhoA/ROCK signaling pathway. Results from this study highlight the relevance between applying dynamic mechanical stimulation and maintaining the structural integrity of the formed endothelial layer, and implicate a necessity to implement appropriate dynamic mechanical training (i.e., preconditioning) to obtain tissue-engineered blood vessels with long-term patency post-implantation.


Asunto(s)
Adhesiones Focales , Uniones Intercelulares , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Adhesión Celular , Adhesiones Focales/fisiología , Fenómenos Mecánicos
2.
Nano Lett ; 23(7): 2467-2475, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36975035

RESUMEN

Mechanical signals establish two-way communication between mammalian cells and their environment. Cells contacting a surface exert forces via contractility and transmit them at the areas of focal adhesions. External stimuli, such as compressive and pulling forces, typically affect the adhesion-free cell surface. Here, we demonstrate the collaborative employment of Fluidic Force Microscopy and confocal Traction Force Microscopy supported by the Cellogram solver to enable a powerful integrated force probing approach, where controlled vertical forces are applied to the free surface of individual cells, while the concomitant deformations are used to map their transmission to the substrate. Force transmission across human cells is measured with unprecedented temporal and spatial resolution, enabling the investigation of the cellular mechanisms involved in the adaptation, or maladaptation, to external mechanical stimuli. Altogether, the system enables facile and precise force interrogation of individual cells, with the capacity to perform population-based analysis.


Asunto(s)
Adhesión Celular , Matriz Extracelular , Adhesiones Focales , Mecanotransducción Celular , Animales , Humanos , Adhesión Celular/fisiología , Membrana Celular/fisiología , Adhesiones Focales/metabolismo , Adhesiones Focales/fisiología , Mamíferos/anatomía & histología , Mamíferos/fisiología , Fenómenos Mecánicos , Mecanotransducción Celular/fisiología , Microscopía de Fuerza Atómica/métodos , Matriz Extracelular/fisiología
3.
ACS Appl Mater Interfaces ; 15(13): 16380-16393, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961871

RESUMEN

Groove patterns are widely used in material surface modifications. However, the independent role of ditches/ridges in regulating fibrosis of soft tissues is not well-understood, especially the lack of linkage evidence in vitro and in vivo. Herein, two kinds of combinational microgroove chips with the gradient ditch/ridge width were fabricated by photolithography technology, termed R and G groups, respectively. In group R, the ridge width was 1, 5, 10, and 30 µm, with a ditch width of 30 µm; in group G, the groove width was 5, 10, 20, and 30 µm, and the ridge width was 5 µm. The effect of microgrooves on the morphology, proliferation, and expression of fibrous markers of stem cells was systematically investigated in vitro. Moreover, thicknesses of fibrous capsules were evaluated after chips were implanted into the muscular pouches of rats for 5 months. The results show that microgrooves have almost no effect on cell proliferation but significantly modulate the morphology of cells and focal adhesions (FAs) in vitro, as well as fibrosis differentiation. In particular, the differentiation of stem cells is attenuated after the intracellular force caused by stress fibers and FAs is interfered by drugs, such as rotenone and blebbistatin. Histological analysis shows that patterns of high intracellular force can apparently stimulate soft tissue fibrosis in vivo. This study not only reveals the specific rules and mechanisms of ditch/ridge regulating stem cell behaviors but also offers insight into tailoring implant surface patterns to induce controlled soft tissue fibrosis.


Asunto(s)
Señales (Psicología) , Adhesiones Focales , Ratas , Animales , Adhesiones Focales/fisiología , Células Madre , Propiedades de Superficie
4.
Adv Sci (Weinh) ; 9(25): e2203011, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35863910

RESUMEN

Cytoskeleton-mediated force transmission regulates nucleus morphology. How nuclei shaping occurs in fibrous in vivo environments remains poorly understood. Here suspended nanofiber networks of precisely tunable (nm-µm) diameters are used to quantify nucleus plasticity in fibrous environments mimicking the natural extracellular matrix. Contrary to the apical cap over the nucleus in cells on 2-dimensional surfaces, the cytoskeleton of cells on fibers displays a uniform actin network caging the nucleus. The role of contractility-driven caging in sculpting nuclear shapes is investigated as cells spread on aligned single fibers, doublets, and multiple fibers of varying diameters. Cell contractility increases with fiber diameter due to increased focal adhesion clustering and density of actin stress fibers, which correlates with increased mechanosensitive transcription factor Yes-associated protein (YAP) translocation to the nucleus. Unexpectedly, large- and small-diameter fiber combinations lead to teardrop-shaped nuclei due to stress fiber anisotropy across the cell. As cells spread on fibers, diameter-dependent nuclear envelope invaginations that run the nucleus's length are formed at fiber contact sites. The sharpest invaginations enriched with heterochromatin clustering and sites of DNA repair are insufficient to trigger nucleus rupture. Overall, the authors quantitate the previously unknown sculpting and adaptability of nuclei to fibrous environments with pathophysiological implications.


Asunto(s)
Actinas , Adhesiones Focales , Actinas/metabolismo , Núcleo Celular/fisiología , Citoesqueleto/metabolismo , Adhesiones Focales/fisiología , Fibras de Estrés/fisiología
5.
Biophys J ; 121(9): 1777-1786, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35306023

RESUMEN

Tissue stiffness (Young's modulus) is a key control parameter in cell behavior and bioengineered gels where defined mechanical properties have become an essential part of the toolkit for interrogating mechanotransduction. Here, we show using a mechanical cell model that the effective substrate stiffness experienced by a cell depends, not just on the engineered mechanical properties of the substrate but critically also on the particular arrangement of adhesions between cell and substrate. In particular, we find that cells with different adhesion patterns can experience two different gel stiffnesses as equivalent and will generate the same mean cell deformations. In considering small patches of adhesion, which mimic focal adhesion complexes, we show how the experimentally observed focal adhesion growth and elongation on stiff substrates can be explained by energy considerations. Relatedly, energy arguments also provide a reason why nascent adhesions do not establish into focal adhesions on soft substrates, as has been commonly observed. Fewer and larger adhesions are predicted to be preferred over more and smaller, an effect enhanced by random spot placing with the simulations predicting qualitatively realistic cell shapes in this case.


Asunto(s)
Adhesiones Focales , Mecanotransducción Celular , Adhesión Celular/fisiología , Forma de la Célula , Módulo de Elasticidad , Adhesiones Focales/fisiología , Mecanotransducción Celular/fisiología
6.
Biol Pharm Bull ; 45(2): 207-212, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35110508

RESUMEN

Octa-arginine (R8) has been extensively studied as a cell-penetrating peptide. R8 binds to diverse transmembrane heparan sulfate proteoglycans (HSPGs), including syndecans, and is internalized by cells. R8 is also reported to bind to integrin ß1. In this study, we evaluated the biological activities of R8 and octa-lysine (K8), a peptide similar to R8, with a focus on cell adhesion. R8 and K8 were immobilized on aldehyde-agarose matrices via covalent conjugation, and the effect of these peptides on cell attachment, spreading, and proliferation was examined using human dermal fibroblasts. The results indicated that R8- and K8-matrices mediate cell adhesion mainly via HSPGs. Moreover, R8- and K8-matrices interacted with integrin ß1 and promote cell spreading and proliferation. These results are useful for further understanding of the R8-membrane interactions and the cellular uptake mechanisms. In addition, the R8- and K8-matrices may potentially be used as a multi-functional biomaterial to promote cell adhesion, spreading, and proliferation.


Asunto(s)
Fibroblastos/efectos de los fármacos , Proteoglicanos de Heparán Sulfato/metabolismo , Integrinas/metabolismo , Lisina/química , Lisina/farmacología , Oligopéptidos/farmacología , Actinas/fisiología , Adhesión Celular/efectos de los fármacos , Proliferación Celular , Ácido Edético/farmacología , Fibroblastos/fisiología , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/fisiología , Heparina/farmacología , Humanos
7.
STAR Protoc ; 2(4): 100954, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34917973

RESUMEN

Primary astrocytes have gained attention as an important model for in vitro biological and biochemical research in the last decades. In this protocol, we describe a fast and cost-effective technique for isolating, culturing, and maintaining primary mouse astrocytes at ∼ 80% purity levels, which can be used in in vitro studies for migration and focal adhesion dynamics. In addition, we present an optimized transfection and manual quantification approach for focal adhesion analysis in fixed and living cells. For complete details on the use and execution of this protocol, please refer to Kusuluri et al. (2021).


Asunto(s)
Astrocitos , Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Adhesiones Focales/fisiología , Animales , Astrocitos/citología , Astrocitos/fisiología , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Ratones
8.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768998

RESUMEN

Mechanical cues are crucial for survival, adaptation, and normal homeostasis in virtually every cell type. The transduction of mechanical messages into intracellular biochemical messages is termed mechanotransduction. While significant advances in biochemical signaling have been made in the last few decades, the role of mechanotransduction in physiological and pathological processes has been largely overlooked until recently. In this review, the role of interactions between the cytoskeleton and cell-cell/cell-matrix adhesions in transducing mechanical signals is discussed. In addition, mechanosensors that reside in the cell membrane and the transduction of mechanical signals to the nucleus are discussed. Finally, we describe two examples in which mechanotransduction plays a significant role in normal physiology and disease development. The first example is the role of mechanotransduction in the proliferation and metastasis of cancerous cells. In this system, the role of mechanotransduction in cellular processes, including proliferation, differentiation, and motility, is described. In the second example, the role of mechanotransduction in a mechanically active organ, the gastrointestinal tract, is described. In the gut, mechanotransduction contributes to normal physiology and the development of motility disorders.


Asunto(s)
Membrana Celular/fisiología , Citoesqueleto/fisiología , Mecanotransducción Celular/fisiología , Animales , Núcleo Celular/fisiología , Adhesiones Focales/fisiología , Humanos
9.
Mol Biol Cell ; 32(21): ar28, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34524873

RESUMEN

The Rho family of GTPases are inactivated in a cell context-dependent manner by Rho-GTPase-activating proteins (Rho-GAPs), but their signaling mechanisms are poorly understood. Here we demonstrate that ARHGAP4, one of the Rho-GAPs, forms a complex with SEPT2 and SEPT9 via its Rho-GAP domain and SH3 domain to enable both up- and down-modulation of integrin-mediated focal adhesions (FAs). We show that silencing ARHGAP4 and overexpressing its two mutually independent upstream regulators, SEPT2 and SEPT9, all induce reorganization of FAs to newly express Integrin Beta 1 and also enhance both cell migration and invasion. Interestingly, even if these cell migration/invasion-associated phenotypic changes are induced upon perturbations to the complex, it does not necessarily cause enhanced clustering of FAs. Instead, its extent depends on whether the microenvironment contains ligands suitable for the up-regulated Integrin Beta 1. These results provide novel insights into cell migration, invasion, and microenvironment-dependent phenotypic changes regulated by the newly identified complex.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Septinas/metabolismo , Adhesión Celular/genética , Movimiento Celular/genética , Movimiento Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Adhesiones Focales/genética , Adhesiones Focales/fisiología , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Humanos , Integrinas/metabolismo , Invasividad Neoplásica/genética , Septinas/genética , Transducción de Señal/genética , Proteína de Unión al GTP rhoA/metabolismo
10.
Open Biol ; 11(8): 210166, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34375550

RESUMEN

Epidermal growth factor receptor (EGFR) plays a critical role in the promotion of epithelial cell proliferation and migration. Previous studies have suggested a cooperative role between EGFR and integrin signalling pathways that enable efficient adhesion and migration but the mechanisms controlling this remain poorly defined. Here, we show that EGFR forms a complex with focal adhesion kinase in epithelial cells. Surprisingly, this complex enhances local Src activity at focal adhesions to promote phosphorylation of the cytoskeletal adaptor protein ezrin at Y478, leading to actomyosin contractility, suppression of focal adhesion dynamics and slower migration. We further demonstrate this regulation of Src is due to the suppression of PTP1B activity. Our data provide new insight into EGF-independent cooperation between EGFR and integrins and suggest transient interactions between these kinases at the leading edge of cells act to spatially control signalling to permit efficient motility.


Asunto(s)
Movimiento Celular , Proteínas del Citoesqueleto/metabolismo , Células Epiteliales/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/fisiología , Queratinocitos/fisiología , Adhesión Celular , Proteínas del Citoesqueleto/genética , Citoesqueleto , Células Epiteliales/citología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Células HEK293 , Humanos , Queratinocitos/citología , Fosforilación , Transducción de Señal
11.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205295

RESUMEN

Mesenchymal stem cells (MSCs) maintain the musculoskeletal system by differentiating into multiple lineages, including osteoblasts and adipocytes. Mechanical signals, including strain and low-intensity vibration (LIV), are important regulators of MSC differentiation via control exerted through the cell structure. Lamin A/C is a protein vital to the nuclear architecture that supports chromatin organization and differentiation and contributes to the mechanical integrity of the nucleus. We investigated whether lamin A/C and mechanoresponsiveness are functionally coupled during adipogenesis in MSCs. siRNA depletion of lamin A/C increased the nuclear area, height, and volume and decreased the circularity and stiffness. Lamin A/C depletion significantly decreased markers of adipogenesis (adiponectin, cellular lipid content) as did LIV treatment despite depletion of lamin A/C. Phosphorylation of focal adhesions in response to mechanical challenge was also preserved during loss of lamin A/C. RNA-seq showed no major adipogenic transcriptome changes resulting from LIV treatment, suggesting that LIV regulation of adipogenesis may not occur at the transcriptional level. We observed that during both lamin A/C depletion and LIV, interferon signaling was downregulated, suggesting potentially shared regulatory mechanism elements that could regulate protein translation. We conclude that the mechanoregulation of adipogenesis and the mechanical activation of focal adhesions function independently from those of lamin A/C.


Asunto(s)
Adipogénesis , Adhesiones Focales/fisiología , Lamina Tipo A/fisiología , Células Madre Mesenquimatosas/fisiología , Animales , Módulo de Elasticidad , Interferones/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Transducción de Señal , Proteínas de Unión a Telómeros/metabolismo , Vibración
12.
Front Immunol ; 12: 667213, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084168

RESUMEN

An inflammatory response requires leukocytes to migrate from the circulation across the vascular lining into the tissue to clear the invading pathogen. Whereas a lot of attention is focused on how leukocytes make their way through the endothelial monolayer, it is less clear how leukocytes migrate underneath the endothelium before they enter the tissue. Upon finalization of the diapedesis step, leukocytes reside in the subendothelial space and encounter endothelial focal adhesions. Using TIRF microscopy, we show that neutrophils navigate around these focal adhesions. Neutrophils recognize focal adhesions as physical obstacles and deform to get around them. Increasing the number of focal adhesions by silencing the small GTPase RhoJ slows down basolateral crawling of neutrophils. However, apical crawling and diapedesis itself are not affected by RhoJ depletion. Increasing the number of focal adhesions drastically by expressing the Rac1 GEF Tiam1 make neutrophils to avoid migrating underneath these Tiam1-expressing endothelial cells. Together, our results show that focal adhesions mark the basolateral migration path of neutrophils.


Asunto(s)
Células Endoteliales/fisiología , Adhesiones Focales/fisiología , Neutrófilos/fisiología , Migración Transendotelial y Transepitelial/fisiología , Línea Celular , Humanos , Leucocitos/fisiología , Cordón Umbilical/patología
13.
Mol Biol Cell ; 32(18): 1654-1663, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34191529

RESUMEN

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex is a structure consisting of nesprin, SUN, and lamin proteins. A principal function of the LINC complex is anchoring the nucleus to the actin, microtubule, and intermediate filament cytoskeletons. The LINC complex is present in nearly all cell types, including endothelial cells. Endothelial cells line the innermost surfaces of blood vessels and are critical for blood vessel barrier function. In addition, endothelial cells have specialized functions, including adaptation to the mechanical forces of blood flow. Previous studies have shown that depletion of individual nesprin isoforms results in impaired endothelial cell function. To further investigate the role of the LINC complex in endothelial cells we utilized dominant negative KASH (DN-KASH), a dominant negative protein that displaces endogenous nesprins from the nuclear envelope and disrupts nuclear-cytoskeletal connections. Endothelial cells expressing DN-KASH had altered cell-cell adhesion and barrier function, as well as altered cell-matrix adhesion and focal adhesion dynamics. In addition, cells expressing DN-KASH failed to properly adapt to shear stress or cyclic stretch. DN-KASH-expressing cells exhibited impaired collective cell migration in wound healing and angiogenesis assays. Our results demonstrate the importance of an intact LINC complex in endothelial cell function and homeostasis.


Asunto(s)
Adhesión Celular/fisiología , Complejos Multiproteicos/metabolismo , Adaptación Fisiológica , Fenómenos Biomecánicos , Movimiento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Adhesiones Focales/genética , Adhesiones Focales/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microtúbulos/metabolismo , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Estrés Mecánico , Imagen de Lapso de Tiempo , Cicatrización de Heridas , Proteína Fluorescente Roja
14.
Mol Biol Cell ; 32(18): 1758-1771, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34038160

RESUMEN

The actin cytoskeleton is a key regulator of mechanical processes in cells. The family of LIM domain proteins have recently emerged as important mechanoresponsive cytoskeletal elements capable of sensing strain in the actin cytoskeleton. The mechanisms regulating this mechanosensitive behavior, however, remain poorly understood. Here we show that the LIM domain protein testin is peculiar in that despite the full-length protein primarily appearing diffuse in the cytoplasm, the C-terminal LIM domains alone recognize focal adhesions and strained actin, while the N-terminal domains alone recognize stress fibers. Phosphorylation mutations in the dimerization regions of testin, however, reveal its mechanosensitivity and cause it to relocate to focal adhesions and sites of strain in the actin cytoskeleton. Finally, we demonstrate that activated RhoA causes testin to adorn stress fibers and become mechanosensitive. Together, our data show that testin's mechanoresponse is regulated in cells and provide new insights into LIM domain protein recognition of the actin cytoskeleton's mechanical state.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ARN/metabolismo , Fibras de Estrés/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Actinas/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Adhesiones Focales/fisiología , Humanos , Proteínas con Dominio LIM/metabolismo , Mecanotransducción Celular/fisiología , Dominios Proteicos , Proteínas de Unión al ARN/genética , Tracción , Tirosina/genética
15.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33999996

RESUMEN

Movement of epithelial cells in a tissue occurs through neighbor exchange and drives tissue shape changes. It requires intercellular junction remodeling, a process typically powered by the contractile actomyosin cytoskeleton. This has been investigated mainly in homogeneous epithelia, where intercalation takes minutes. However, in some tissues, intercalation involves different cell types and can take hours. Whether slow and fast intercalation share the same mechanisms remains to be examined. To address this issue, we used the fly eye, where the cone cells exchange neighbors over ∼10 h to shape the lens. We uncovered three pathways regulating this slow mode of cell intercalation. First, we found a limited requirement for MyosinII. In this case, mathematical modeling predicts an adhesion-dominant intercalation mechanism. Genetic experiments support this prediction, revealing a role for adhesion through the Nephrin proteins Roughest and Hibris. Second, we found that cone cell intercalation is regulated by the Notch pathway. Third, we show that endocytosis is required for membrane removal and Notch activation. Taken together, our work indicates that adhesion, endocytosis and Notch can direct slow cell intercalation during tissue morphogenesis.


Asunto(s)
Adhesión Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Endocitosis/fisiología , Receptores Notch/metabolismo , Retina/embriología , Células Fotorreceptoras Retinianas Conos/metabolismo , Actomiosina/metabolismo , Uniones Adherentes/fisiología , Animales , Tipificación del Cuerpo/fisiología , Moléculas de Adhesión Celular Neuronal/metabolismo , Comunicación Celular , Proteínas de Drosophila/genética , Células Epiteliales/citología , Proteínas del Ojo/metabolismo , Adhesiones Focales/fisiología , Proteínas de la Membrana/metabolismo , Miosina Tipo II/metabolismo , Receptores Notch/genética , Transducción de Señal/fisiología
16.
J Biol Chem ; 296: 100481, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33647313

RESUMEN

The extracellular matrix (ECM) plays an important role in maintaining tissue homeostasis and poses a significant physical barrier to in vivo cell migration. Accordingly, as a means of enhancing tissue invasion, tumor cells use matrix metalloproteinases to degrade ECM proteins. However, the in vivo ECM is comprised not only of proteins but also of a variety of nonprotein components. Hyaluronan (HA), one of the most abundant nonprotein components of the interstitial ECM, forms a gel-like antiadhesive barrier that is impenetrable to particulate matter and cells. Mechanisms by which tumor cells penetrate the HA barrier have not been addressed. Here, we demonstrate that transmembrane protein 2 (TMEM2), the only known transmembrane hyaluronidase, is the predominant mediator of contact-dependent HA degradation and subsequent integrin-mediated cell-substrate adhesion. We show that a variety of tumor cells are able to eliminate substrate-bound HA in a tightly localized pattern corresponding to the distribution of focal adhesions (FAs) and stress fibers. This FA-targeted HA degradation is mediated by TMEM2, which itself is localized at site of FAs. TMEM2 depletion inhibits the ability of tumor cells to attach and migrate in an HA-rich environment. Importantly, TMEM2 directly binds at least two integrins via interaction between extracellular domains. Our findings demonstrate a critical role for TMEM2-mediated HA degradation in the adhesion and migration of cells on HA-rich ECM substrates and provide novel insight into the early phase of FA formation.


Asunto(s)
Ácido Hialurónico/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Adhesión Celular/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular/fisiología , Matriz Extracelular/metabolismo , Adhesiones Focales/metabolismo , Adhesiones Focales/fisiología , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/fisiología , Hialuronoglucosaminidasa/metabolismo , Integrinas/metabolismo , Proteínas de la Membrana/fisiología , Ratones
17.
Nanotechnology ; 32(21)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33596559

RESUMEN

The procedure commonly adopted to characterize cell materials using atomic force microscopy neglects the stress state induced in the cell by the adhesion structures that anchor it to the substrate. In several studies, the cell is considered as made from a single material and no specific information is provided regarding the mechanical properties of subcellular components. Here we present an optimization algorithm to determine separately the material properties of subcellular components of mesenchymal stem cells subjected to nanoindentation measurements. We assess how these properties change if the adhesion structures at the cell-substrate interface are considered or not in the algorithm. In particular, among the adhesion structures, the focal adhesions and the stress fibers were simulated. We found that neglecting the adhesion structures leads to underestimate the cell mechanical properties thus making errors up to 15%. This result leads us to conclude that the action of adhesion structures should be taken into account in nanoindentation measurements especially for cells that include a large number of adhesions to the substrate.


Asunto(s)
Células Madre Mesenquimatosas/fisiología , Microscopía de Fuerza Atómica/métodos , Modelos Biológicos , Algoritmos , Fenómenos Biomecánicos , Adhesión Celular , Análisis de Elementos Finitos , Adhesiones Focales/fisiología , Humanos , Fibras de Estrés/fisiología
19.
Sci Rep ; 11(1): 2315, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504939

RESUMEN

Focal adhesions (FAs) are flat elongated structures that mediate cell migration and link the cytoskeleton to the extracellular matrix. Along the vertical axis FAs were shown to be composed of three layers. We used structured illumination microscopy to examine the longitudinal distribution of four hallmark FA proteins, which we also used as markers for these layers. At the FA ends pointing towards the adherent membrane edge (heads), bottom layer protein paxillin protruded, while at the opposite ends (tails) intermediate layer protein vinculin and top layer proteins zyxin and VASP extended further. At the tail tips, only intermediate layer protein vinculin protruded. Importantly, head and tail compositions were altered during HGF-induced scattering with paxillin heads being shorter and zyxin tails longer. Additionally, FAs at protruding or retracting membrane edges had longer paxillin heads than FAs at static edges. These data suggest that redistribution of FA-proteins with respect to each other along FAs is involved in cell movement.


Asunto(s)
Citoesqueleto/metabolismo , Adhesiones Focales/fisiología , Paxillin/metabolismo , Animales , Movimiento Celular/inmunología , Movimiento Celular/fisiología , Citoesqueleto/genética , Adhesiones Focales/genética , Inmunidad Celular/genética , Inmunidad Celular/fisiología , Paxillin/genética , Vinculina/genética , Vinculina/metabolismo , Zixina/genética , Zixina/metabolismo
20.
PLoS Pathog ; 17(1): e1009065, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33508039

RESUMEN

Bartonella T4SS effector BepC was reported to mediate internalization of big Bartonella aggregates into host cells by modulating F-actin polymerization. After that, BepC was indicated to induce host cell fragmentation, an interesting cell phenotype that is characterized by failure of rear-end retraction during cell migration, and subsequent dragging and fragmentation of cells. Here, we found that expression of BepC resulted in significant stress fiber formation and contractile cell morphology, which depended on combination of the N-terminus FIC (filamentation induced by c-AMP) domain and C-terminus BID (Bartonella intracellular delivery) domain of BepC. The FIC domain played a key role in BepC-induced stress fiber formation and cell fragmentation because deletion of FIC signature motif or mutation of two conserved amino acid residues abolished BepC-induced cell fragmentation. Immunoprecipitation confirmed the interaction of BepC with GEF-H1 (a microtubule-associated RhoA guanosine exchange factor), and siRNA-mediated depletion of GEF-H1 prevented BepC-induced stress fiber formation. Interaction with BepC caused the dissociation of GEF-H1 from microtubules and activation of RhoA to induce formation of stress fibers. The ROCK (Rho-associated protein kinase) inhibitor Y27632 completely blocked BepC effects on stress fiber formation and cell contractility. Moreover, stress fiber formation by BepC increased the stability of focal adhesions, which consequently impeded rear-edge detachment. Overall, our study revealed that BepC-induced stress fiber formation was achieved through the GEF-H1/RhoA/ROCK pathway.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Bartonella/metabolismo , Membrana Celular/metabolismo , Adhesiones Focales/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Fibras de Estrés/fisiología , Sistemas de Secreción Tipo IV/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Movimiento Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Microtúbulos/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Sistemas de Secreción Tipo IV/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...