Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Genom ; 10(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814176

RESUMEN

Aeromonas caviae is an emerging human enteric pathogen. However, the genomic features and virulence genes of A. caviae strains from human gastroenteritis and other sources have not been fully elucidated. Here, we conducted a genomic analysis of 565 global A. caviae strains isolated from different sources, including 261 strains isolated from faecal samples of gastroenteritis patients, of which 18 genomes were sequenced in this study. The presence of bacterial virulence genes and secretion systems in A. caviae strains from different sources was compared, and the phylogenetic relationship of A. caviae strains was assessed based on the core genome. The complete genome of A. caviae strain A20-9 isolated from a gastroenteritis patient was obtained in this study, from which 300 putative virulence factors and a T4SS-encoding plasmid, pAC, were identified. Genes encoding T4SS were also identified in a novel genomic island, ACI-1, from other T4SS-positive strains. The prevalence of T4SS was significantly lower in A. caviae strains from gastroenteritis patients than in environmental strains (3 %, P<0.0001 vs 14 %, P<0.01). Conversely, the prevalence of T6SS was significantly higher in A. caviae strains isolated from gastroenteritis patients than in environmental strains (25 %, P<0.05 vs 13  %, P<0.01). Four phylogenetic clusters were formed based on the core genome of 565 A. caviae strains, and strains carrying T6SS often showed close phylogenetic relationships. T3SS, aerolysin and thermostable cytotonic enterotoxin were absent in all 565 A. caviae strains. Our findings provide novel information on the genomic features of A. caviae and suggest that T6SS may play a role in A. caviae-induced human gastroenteritis.


Asunto(s)
Aeromonas caviae , Gastroenteritis , Genoma Bacteriano , Filogenia , Factores de Virulencia , Gastroenteritis/microbiología , Humanos , Aeromonas caviae/genética , Aeromonas caviae/clasificación , Factores de Virulencia/genética , Sistemas de Secreción Tipo VI/genética , Heces/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Islas Genómicas , Plásmidos/genética
2.
Microbiol Spectr ; 12(5): e0368523, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511954

RESUMEN

Hospital sewage serves as a crucial reservoir for antibiotic resistance genes. As colistin and carbapenems are the last-resort antibiotics, the emergence of their resistance genes has become a significant concern in clinical settings. In this study, we found that two novel mcr alleles (mcr-3.43 and mcr-7.2) with two carbapenemase genes (blaNDM-1 and blaKPC-2) were encoded in a single Aeromonas caviae strain isolated from hospital sewage. Our phylogenetic analysis revealed that the mcr-3.43 gene clustered with mcr-3.17 (with 95.55% amino acid identity), while the mcr-7.2 gene clustered with mcr-7.1 (with 68.68% amino acid identity). BLAST search against GenBank showed that mcr-7.2 was exclusively detected in Aeromonas spp. Mobile genetic elements were not found in the genetic context of mcr-7.2, suggesting that the dissemination of mcr-7.2 in Aeromonas spp. may be dependent on vertical transfer or recombination. The blaNDM-1 was adjacent to a recombinase gene and flanked by two IS91 elements, indicating a potential mobilization mechanism mediated by recombination and/or ISs. The blaKPC-2 gene was located on an IncU plasmid and adjacent to an ISKpn6. In summary, our study provides evidence for Aeromonas spp. as one of the potential reservoirs of colistin and carbapenem resistance genes.IMPORTANCEThe study discovered two novel mcr genes (mcr-3.43 and mcr-7.2) and two carbapenemase genes (blaNDM-1 and blaKPC-2) in a single Aeromonas caviae strain retrieved from hospital sewage. Using phylogenetic analysis and comparative data evaluation, the study revealed the genetic relatedness and dissemination potential of the detected resistance genes. With the exclusive discovery that mcr-7.2 is only present in Aeromonas spp. and the lack of mobile genetic elements in its genetic context, there is a strong indication of limited dissemination. The identification of these four resistance genes in a single strain of Aeromonas provided valuable insights into their potential presence in this genus. This study revealed that hospital sewage functions as a significant reservoir for antibiotic resistance genes, including colistin and carbapenem resistance genes.


Asunto(s)
Aeromonas caviae , Antibacterianos , Proteínas Bacterianas , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Filogenia , Aguas del Alcantarillado , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Aeromonas caviae/genética , Aeromonas caviae/efectos de los fármacos , Aeromonas caviae/enzimología , Aeromonas caviae/aislamiento & purificación , Aguas del Alcantarillado/microbiología , Colistina/farmacología , Carbapenémicos/farmacología , Humanos , Plásmidos/genética
4.
Antimicrob Agents Chemother ; 67(11): e0070723, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37889006

RESUMEN

Vibrio cholerae carbapenemase (VCC-1) is a chromosomal encoded class A carbapenemase thus far reported in environmental Vibrio cholerae isolates. Here, we report the first isolation of a blaVCC-1 -carrying Aeromonas caviae from a clinical sample in Israel. The isolate was resistant to all ß-lactam agents, including carbapenems. The blaVCC-1 was located on a large plasmid. GC content suggests that the origin of the blaVCC-1 gene is neither Aeromonas nor Vibrio spp. but an unknown progenitor.


Asunto(s)
Aeromonas caviae , Aeromonas , Vibrio cholerae , Aeromonas caviae/genética , Antibacterianos/farmacología , Vibrio cholerae/genética , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética , Plásmidos/genética , Aeromonas/genética
5.
Microbiol Spectr ; 11(6): e0218823, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37811969

RESUMEN

IMPORTANCE: The emergence and spread of carbapenemase-producing organisms (CPOs) represent a global health threat because they are associated with limited treatment options and poor clinical outcomes. Wastewater is considered a hotspot for the evolution and dissemination of antimicrobial resistance. Thus, analyses of municipal wastewater are critical for understanding the circulation of these CPOs and carbapenemase genes in local communities, which remains scarcely known in Japan. This study resulted in several key observations: (i) the vast majority of bla GES genes, including six new bla GES variants, and less frequent bla IMP genes were carbapenemase genes encountered exclusively in wastewater influent; (ii) the most dominant CPO species were Aeromonas spp., in which a remarkable diversity of new sequence types was observed; and (iii) CPOs were detected from combined sewer wastewater, but not from separate sewer wastewater, suggesting that the load of CPOs from unrecognized environmental sources could greatly contribute to their detection in influent wastewater.


Asunto(s)
Aeromonas caviae , Aeromonas caviae/genética , Aguas Residuales , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
6.
Braz J Microbiol ; 54(3): 1533-1545, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37610567

RESUMEN

N-Acetyl-glucosaminidases (GlcNAcases) are exoenzymes found in a wide range of living organisms, which have gained great attention in the treatment of disorders related to diabetes, Alzheimer's, Tay-Sachs', and Sandhoff's diseases; the control of phytopathogens; and the synthesis of bioactive GlcNAc-containing products. Aiming at future industrial applications, in this study, GlcNAcase production by marine Aeromonas caviae CHZ306 was enhanced first in shake flasks in terms of medium composition and then in bench-scale stirred-tank bioreactor in terms of physicochemical conditions. Stoichiometric balance between the bioavailability of carbon and nitrogen in the formulated culture medium, as well as the use of additional carbon and nitrogen sources, played a central role in improving the bioprocess, considerably increasing the enzyme productivity. The optimal cultivation medium was composed of colloidal α-chitin, corn steep liquor, peptone A, and mineral salts, in a 5.2 C:N ratio. Optimization of pH, temperature, colloidal α-chitin concentration, and kLa conditions further increased GlcNAcase productivity. Under optimized conditions in bioreactor (i.e., 34 °C, pH 8 and kLa 55.2 h-1), GlcNAcase activity achieved 173.4 U.L-1 after 12 h of cultivation, and productivity no less than 14.45 U.L-1.h-1 corresponding to a 370-fold enhancement compared to basal conditions.


Asunto(s)
Aeromonas caviae , Aeromonas caviae/genética , Reactores Biológicos , Carbono , Quitina , Hexosaminidasas , Nitrógeno
7.
BMC Microbiol ; 22(1): 272, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36368971

RESUMEN

BACKGROUND: Pasteurella multocida is an opportunistic pathogen causing porcine respiratory diseases by co-infections with other bacterial and viral pathogens. Various bacterial genera isolated from porcine respiratory tracts were shown to inhibit the growth of the porcine isolates of P. multocida. However, molecular mechanisms during the interaction between P. multocida and these commensal bacteria had not been examined.  METHODS: This study aimed to investigate the interaction between two porcine isolates of P. multocida (PM2 for type D and PM7 for type A) with Aeromonas caviae selected from the previously published work by co-culturing P. multocida in the conditioned media prepared from A. caviae growth and examining transcriptomic changes using RNA sequencing and bioinformatics analysis.  RESULTS: In total, 629 differentially expressed genes were observed in the isolate with capsular type D, while 110 genes were significantly shown in type A. High expression of genes required for energy metabolisms, nutrient uptakes, and quorum sensing were keys to the growth and adaptation to the conditioned media, together with the decreased expression of those in the unurgent pathways, including translation and antibacterial resistance. CONCLUSION: This transcriptomic analysis also displayed the distinct capability of the two isolates of P. multocida and the preference of the capsular type A isolate in response to the tough environment of the A. caviae conditioned media. Therefore, controlling the environmental sensing and nutrient acquisition mechanisms of P. multocida would possibly prevent the overpopulation of these bacteria and reduce the chance of becoming opportunistic pathogens.


Asunto(s)
Aeromonas caviae , Infecciones por Pasteurella , Pasteurella multocida , Enfermedades de los Porcinos , Porcinos , Animales , Pasteurella multocida/genética , Infecciones por Pasteurella/microbiología , Aeromonas caviae/genética , Medios de Cultivo Condicionados/farmacología , Transcriptoma , Enfermedades de los Porcinos/microbiología
8.
Microb Pathog ; 169: 105662, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35781004

RESUMEN

Aeromonas spp. is a pathogenic bacteria that potentially cause infection in farmed fish, including Catfishes. In the present study, dominant bacteria were isolated from diseased Clarias magur and tentatively named BLBM-05. Based on morphological, physiological, and biochemical features as well as 16S rRNA gene sequence and gyrB gene sequences (Gen Bank accession number: MT973994.1 and MZ398017.1), the bacteria in the isolate was found to be Aeromonas caviae. Further, the isolate was screened for five known virulence genes, namely ß-hemolysin, lafA, exu, ompA1 and ascV. Among them, three virulence genes related to pathogenicity, including aerolysin (aer), outer membrane protein (ompA1), lateral flagella (lafA), were identified in the A. caviae isolate. The median lethal dosage (LD50) of the BLBM-05 isolate for magur was determined as 1.53x106 CFU/mL. The histopathological analysis showed that the BLBM-05 isolate induced considerable histological lesions in the magur fish, including necrosis, hemolysis of erythrocytes, myolysis, hemorrhage, and desquamation in the intestinal tissue, tissue loosening, and infiltration of inflammatory cells. Drug sensitivity test showed that the isolate was susceptible to Gentamicin, Ceftazidine, Ceftrioxone, Amikacin, Tetracycline, Meropener and Oxytetracycline. The present results provide a scientific basis to identify A. caviae further, a line of treatment for magur infected by this pathogen.


Asunto(s)
Aeromonas caviae , Aeromonas , Infecciones por Bacterias Gramnegativas , Aeromonas caviae/genética , Animales , Antibacterianos/farmacología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , ARN Ribosómico 16S/genética , Virulencia/genética
10.
Protein Expr Purif ; 180: 105819, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33418059

RESUMEN

Lipase producer bacterium isolated from Erzurum was identified as Aeromonas caviae LipT51 (GenBank ID: MN818567.1) by 16S rDNA sequencing and conventional methods. Extracellular lipase was purified by ammonium sulphate precipitation, centrifugal filtration, and anion-exchange chromatography resulting in 6.1-fold purification with 28% final yield. Molecular weight was 31.6 kDa on SDS-PAGE. Lipase was stable over a broad range of pH (6-11) and temperature (25-70 °C), and showed optimum activity at pH 9 and 60 °C. Km and Vmax for pNPP hydrolysis were 0.88 mM and 34.2 U/mg protein, respectively. Ba2+, Ca2+, Co2+, Cu2+, Fe3+, and Mg2+ increased activity, while Mn2+, Mo2+, Ni2+, Zn2+, and other additives partially decreased. Activity and stability increased with laundry detergent and slightly decreased with handwash and dishwashing detergents. Alkaline and thermostable lipase from newly isolated A. caviae has been shown for the first time to be remarkably compatible with laundry detergent and improve washing performance by enhanced oil-stain removal.


Asunto(s)
Aeromonas caviae/genética , Proteínas Bacterianas , Lipasa , Aeromonas caviae/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Industria Química , Detergentes , Estabilidad de Enzimas , Lipasa/química , Lipasa/genética , Lipasa/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
11.
Microb Drug Resist ; 27(2): 179-189, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32552456

RESUMEN

The study provides data on antibiotic resistance as well as the virulence characteristics of Aeromonas caviae isolated from raw and treated wastewater. The isolates were identified as A. caviae by 16S rRNA gene sequencing. In the analyzed strains, high frequency for the following genes was observed: aac(6')-Ib-cr, qnrB, and qnrD. The presence of qnrA and ogxB genes was not found in any strain. The higher frequency of the investigated genes was observed in strains from raw wastewater (RW). The strains of A. caviae showed multiple antibiotic resistance evaluated by the disk diffusion method. Multiple antibiotic resistance indices ranged from 0.36 to 0.69. Susceptibility to six heavy metals (Cd+2, Zn+2, Cu+2, Co+2, Mn+2, and Ni+2) was recorded for all the isolates. The order of metal resistance of A. caviae was Co > Cu > Zn > Cd > Ni > Mn. All the strains of A. caviae showed ß-hemolytic activity. Enzymes of amylase, cellulase, and lipase were produced by all isolates. Only the strains from RW had the ability to form biofilms and showed motility. The obtained results indicate that wastewater is a potential source and/or reservoir of virulent and multidrug-resistant A. caviae as "high-risk isolates."


Asunto(s)
Aeromonas caviae/genética , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Fluoroquinolonas/farmacología , Virulencia/genética , Aguas Residuales/microbiología , Amilasas/genética , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Celulasa/genética , Genes Bacterianos/genética , Lipasa/genética , Metales Pesados/farmacología , Pruebas de Sensibilidad Microbiana/métodos , ARN Ribosómico 16S/genética
12.
FEMS Microbiol Lett ; 366(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31804685

RESUMEN

Aeromonads are mainly opportunistic pathogens; however, many species are emerging as important human pathogens. Therefore, monitoring these bacteria and their accurate characterization of its species is highly important. Aeromonas Aer593 strain was recovered from a diarrhoea outbreak and did not group with any previously described Aeromonas species by housekeeping gene sequencing. To clarify the taxonomic position of Aer593, its genome was sequenced and analysed by multilocus phylogenetic analysis (MLPA), in silico DNA-DNA hybridization (isDDH), average nucleotide identity (ANI) and core genome-based phylogenetic analyzes. The MLPA with the housekeeping genes gyrB, rpoD, recA, dnaJ, gyrA and dnaX ranked the Aer593 isolate into an independent branch suggesting that it could represent a new species. However, the identity percentages of Aer593 to A. caviae strains using robust genomic analysis by isDDH and ANI were at least 81.3% and 97.8%, respectively, defining Aer593 as A. caviae. Multilocus sequence typing (MLST) presented an exact match against only a single allele (groL96) and the novel ST648 was assigned for this strain. The core genome-based phylogenetic analyses with a total of 863 orthologous genes also grouped the Aer593 isolate with A. caviae reference strains. These findings warn about the possibility of misidentification of some Aeromonas strains by MLPA and show that high-resolution genome-wide analysis is essential for the correct identification of ambiguous Aeromonas strains.


Asunto(s)
Aeromonas caviae/clasificación , Aeromonas caviae/genética , Diarrea/microbiología , Genoma Bacteriano , Infecciones por Bacterias Gramnegativas/microbiología , Aeromonas caviae/aislamiento & purificación , Brasil , Diarrea/epidemiología , Brotes de Enfermedades , Infecciones por Bacterias Gramnegativas/epidemiología , Humanos , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , Filogenia , Análisis de Secuencia de ADN , Microbiología del Agua , Secuenciación Completa del Genoma
13.
Biotechnol J ; 14(12): e1900201, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31703147

RESUMEN

The biodegradable polyester 3-hydroxybutyrate (3HB) polymer [P(3HB)] is intracellularly synthesized and accumulated in recombinant Escherichia coli. In this study, native polyhydroxyalkanoate (PHA) synthases are used to attempt to microbially secrete 3HB homo-oligomers (3HBOs), which are widely distributed in nature as physiologically active substances. High secretory production is observed, especially for the two PHA synthases from Aeromonas caviae and Bacillus cereus YB4. Surprisingly, an ethyl ester at the carboxy terminus (ethyl ester form) of 3HBOs is identified for most of the PHA synthases tested. Next, 3HBOs with a functional carboxyl group (carboxyl form of 3HBO) are obtained by using the alcohol dehydrogenase gene (adhE)-deficient mutant strain, suggesting that the endogenous ethanol produced in E. coli acts as a chain transfer (CT) agent in the generation of 3HBOs. Furthermore, an in vitro polymerization assay reveals that CT agents such as ethanol and free 3HB are involved in the generation of ethyl ester and carboxyl form of 3HBO, respectively. The microbial platform established herein allows the secretion of 3HBOs with desirable end structures by supplementation with various CT agents. The obtained 3HBOs and their end-capped forms may be used as physiologically active substances and building blocks for polymeric materials.


Asunto(s)
Ácido 3-Hidroxibutírico/biosíntesis , Ácido 3-Hidroxibutírico/química , Aciltransferasas/metabolismo , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/química , Ácido 3-Hidroxibutírico/aislamiento & purificación , Aciltransferasas/genética , Aeromonas caviae/enzimología , Aeromonas caviae/genética , Alcohol Deshidrogenasa/genética , Bacillus cereus/enzimología , Bacillus cereus/genética , Biodegradación Ambiental , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Hidroxibutiratos/química , Peso Molecular , Poliésteres/química , Polimerizacion , Proteínas Recombinantes , Recombinación Genética , Factores de Tiempo
15.
Environ Microbiol Rep ; 11(4): 589-597, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31106978

RESUMEN

Aeromonas hydrophila and Aeromonas caviae adapt to saline water environments and are the most predominant Aeromonas species isolated from estuaries. Here, we isolated antimicrobial-resistant (AMR) Aeromonas strains (A. hydrophila GSH8-2 and A. caviae GSH8M-1) carrying the carabapenemase blaKPC-2 gene from a wastewater treatment plant (WWTP) effluent in Tokyo Bay (Japan) and determined their complete genome sequences. GSH8-2 and GSH8M-1 were classified as newly assigned sequence types ST558 and ST13, suggesting no supportive evidence of clonal dissemination. The strains appear to have acquired blaKPC-2 -positive IncP-6-relative plasmids (pGSH8-2 and pGSH8M-1-2) that share a common backbone with plasmids in Aeromonas sp. ASNIH3 isolated from hospital wastewater in the United States, A. hydrophila WCHAH045096 isolated from sewage in China, other clinical isolates (Klebsiella, Enterobacter and Escherichia coli), and wastewater isolates (Citrobacter, Pseudomonas and other Aeromonas spp.). In addition to blaKPC-2 , pGSH8M-1-2 carries an IS26-mediated composite transposon including a macrolide resistance gene, mph(A). Although Aeromonas species are opportunistic pathogens, they could serve as potential environmental reservoir bacteria for carbapenemase and AMR genes. AMR monitoring from WWTP effluents will contribute to the detection of ongoing AMR dissemination in the environment and might provide an early warning of potential dissemination in clinical settings and communities.


Asunto(s)
Aeromonas caviae/enzimología , Aeromonas hydrophila/enzimología , Proteínas Bacterianas/genética , Aguas Residuales/microbiología , Microbiología del Agua , beta-Lactamasas/genética , Aeromonas/genética , Aeromonas caviae/efectos de los fármacos , Aeromonas caviae/genética , Aeromonas caviae/aislamiento & purificación , Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/genética , Aeromonas hydrophila/aislamiento & purificación , Antibacterianos/farmacología , Ciudades , Elementos Transponibles de ADN/genética , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano/genética , Japón , Pruebas de Sensibilidad Microbiana , Plásmidos/genética
16.
J Environ Sci (China) ; 76: 259-266, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30528016

RESUMEN

Recently, the rarely reported tet(31) tetracycline resistance determinant was commonly found in Aeromonas salmonicida, Gallibacterium anatis, and Oblitimonas alkaliphila isolated from farming animals and related environment. However, its distribution in other bacteria and potential molecular dissemination mechanism in environment are still unknown. The purpose of this study was to investigate the potential mechanism underlying dissemination of tet(31) by analysing the tet(31)-carrying fragments in A. caviae strains isolated from an aerobic biofilm reactor treating oxytetracycline bearing wastewater. Twenty-three A. caviae strains were screened for the tet(31) gene by polymerase chain reaction (PCR). Three strains (two harbouring tet(31), one not) were subjected to whole genome sequencing using the PacBio RSII platform. Seventeen A. caviae strains carried the tet(31) gene and exhibited high resistance levels to oxytetracycline with minimum inhibitory concentrations (MICs) ranging from 256 to 512 mg/L. tet(31) was comprised of the transposon Tn6432 on the chromosome of A. caviae, and Tn6432 was also found in 15 additional tet(31)-positive A. caviae isolates by PCR. More important, Tn6432 was located on an integrative conjugative element (ICE)-like element, which could mediate the dissemination of the tet(31)-carrying transposon Tn6432 between bacteria. Comparative analysis demonstrated that Tn6432 homologs with the structure ISCR2-∆phzF-tetR(31)-tet(31)-∆glmM-sul2 were also carried by A. salmonicida, G. anatis, and O. alkaliphila, suggesting that this transposon can be transferred between species and even genera. This work provides the first report on the identification of the tet(31) gene in A. caviae, and will be helpful in exploring the dissemination mechanisms of tet(31) in water environment.


Asunto(s)
Aeromonas caviae/efectos de los fármacos , Aeromonas caviae/genética , Genes Bacterianos/genética , Oxitetraciclina/farmacología , Aguas Residuales/microbiología , Aeromonas caviae/fisiología , Biopelículas , Genotipo , Fenotipo , Resistencia a la Tetraciclina/genética , Secuenciación Completa del Genoma
17.
Appl Microbiol Biotechnol ; 103(3): 1131-1141, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30511262

RESUMEN

Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by a wide range of bacteria, which serve as a promising candidate in replacing some conventional petrochemical-based plastics. PHA synthase (PhaC) is the key enzyme in the polymerization of PHA, and the crystal structures were successfully determined using the catalytic domain of PhaC from Cupriavidus necator (PhaCCn-CAT) and Chromobacterium sp. USM2 (PhaCCs-CAT). Here, we review the beneficial mutations discovered in PhaCs from a structural perspective. The structural comparison of the residues involved in beneficial mutation reveals that the residues are near to the catalytic triad, but not inside the catalytic pocket. For instance, Ala510 of PhaCCn is near catalytic His508 and may be involved in the open-close regulation, which presumably play an important role in substrate specificity and activity. In the class II PhaC1 from Pseudomonas sp. 61-3 (PhaC1Ps), Ser325 stabilizes the catalytic cysteine through hydrogen bonding. Another residue, Gln508 of PhaC1Ps is located in a conserved hydrophobic pocket which is next to the catalytic Asp and His. A class I, II-conserved Phe420 of PhaCCn is one of the residues involved in dimerization and its mutation to serine greatly reduced the lag phase. The current structural analysis shows that the Phe362 and Phe518 of PhaC from Aeromonas caviae (PhaCAc) are assisting the dimer formation and maintaining the integrity of the core beta-sheet, respectively. The structure-function relationship of PhaCs discussed in this review will serve as valuable reference for future protein engineering works to enhance the performance of PhaCs and to produce novel biopolymers.


Asunto(s)
Aciltransferasas/metabolismo , Aeromonas caviae/enzimología , Chromobacterium/enzimología , Cupriavidus necator/enzimología , Polihidroxialcanoatos/metabolismo , Pseudomonas/enzimología , Aciltransferasas/genética , Aeromonas caviae/genética , Aeromonas caviae/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico/genética , Chromobacterium/genética , Chromobacterium/metabolismo , Cristalografía por Rayos X , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Pseudomonas/genética , Pseudomonas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
18.
Microbiol Immunol ; 62(11): 720-728, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30357893

RESUMEN

Tetrahymena can facilitate plasmid transfer among Escherichia coli or from E. coli to Salmonella Enteritidis via vesicle accumulation. In this study, whether ciliates promote the interactive transfer of plasmids encoding blaIMP-1 between fecal E. coli and environmental Aeromonas caviae was investigated. Both bacteria were mixed with or without ciliates and incubated overnight at 30°C. The frequency of plasmid-acquired bacteria was estimated by colony counts using an agar plate containing ceftazidim (CAZ) followed by determination of the minimum inhibitory concentration (MIC). Cultures containing ciliates interactively transferred the plasmid between E. coli and Aeromonas with a frequency of 10-4 to 10-5 . All plasmid-acquired bacteria showed a MIC against CAZ of >128 µg/mL and the plasmid transfer was confirmed by PCR amplification of the blaIMP-1 gene. Fluorescent observation showed that both bacteria accumulated in the same vesicle and that transwell sequestering significantly decreased the transfer frequency. Although ciliates preferentially ingested E. coli rather than A. caviae, both bacteria were co-localized into the same vesicles of ciliates, indicating that their meeting is associated with the gene transfer. Thus, ciliates interactively promote plasmid transfer between E. coli and A. caviae. The results of this study will facilitate control of the spread of multiple-antibiotic resistant bacteria.


Asunto(s)
Aeromonas caviae/genética , Proteínas Bacterianas/genética , Heces/microbiología , Transferencia de Gen Horizontal , Plásmidos/genética , Tetrahymena/microbiología , beta-Lactamasas/genética , Aeromonas caviae/efectos de los fármacos , Antibacterianos/farmacología , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Microbiología Ambiental , Escherichia coli/genética , Genes Bacterianos/genética , Pruebas de Sensibilidad Microbiana , Tetrahymena/fisiología
19.
Lett Appl Microbiol ; 67(6): 598-605, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30229985

RESUMEN

Aeromonas spp. are opportunistic pathogenic bacteria associated with a multitude of diseases in ornamental fish. In this study, virulence properties and antibiotic resistance patterns of 43 Aeromonas strains isolated from 46 zebrafish were investigated. The isolates were identified as Aeromonas veronii biovar veronii (n = 26), A. veronii biovar sobria (n = 3), Aeromonas hydrophila (n = 8), A. caviae (n = 3), Aeromonas enteropelogenes (n = 2) and Aeromonas dhakensis (n = 1) by gyrB gene sequencing. The sequence divergence within and between the species ranged from 0-5·80% and 4·90-8·00%. Each species formed a distinct group in a neighbour-joining phylogenetic tree. The lipase production, biofilm formation, DNase activity, gelatinase production, caseinase production and ß-hemolysis were phenotypically observed in 34 (79·07%), 33 (74·74%), 30 (69·77%), 25 (58·14%), 22 (51·18%) and 21 (48·84%) isolates. The virulence genes were detected by polymerase chain reaction (PCR) in following frequencies- aer (86·05%), hlyA (83·72%), gcaT (83·72%), lip (72·09%), act (67·44%), fla (65·12%), ascV (58·14%), ast (55·81%), ser (41·86%), ahyB (39·53%) and alt (25·58%). Every isolate was resistant to at least four antibiotics in disk diffusion test. The multiple antibiotic resistance (MAR) index values ranged from 0·22-0·50 among the isolates. Our study suggests that zebrafish can be a potential reservoir of virulent and multi-drug resistant Aeromonas spp. SIGNIFICANCE AND IMPACT OF THE STUDY: Aeromonas spp. are Gram-negative and facultative anaerobic bacteria which are ubiquitous in aquatic environments. Virulence properties and antibiotic resistance of ornamental fish-borne Aeromonas spp. are poorly understood. The virulence factors as well as multiple antibiotic resistance profiles of zebrafish-borne Aeromonas spp. were characterized for the first time in Korea. Most of the isolates were positive for phenotypic virulence traits and harboured several virulence genes revealing the virulence potential of zebrafish-borne Aeromonas spp. Additionally, the high multiple antibiotic resistance (MAR) index values displayed by the isolates highlight the necessity of responsible use of antibiotics in the ornamental fish industry.


Asunto(s)
Aeromonas caviae/patogenicidad , Aeromonas hydrophila/patogenicidad , Aeromonas veronii/patogenicidad , Reservorios de Enfermedades/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Bacterias Gramnegativas/veterinaria , Factores de Virulencia/genética , Pez Cebra/microbiología , Aciltransferasas/genética , Aeromonas caviae/genética , Aeromonas caviae/aislamiento & purificación , Aeromonas hydrophila/genética , Aeromonas hydrophila/aislamiento & purificación , Aeromonas veronii/genética , Aeromonas veronii/aislamiento & purificación , Animales , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , ADN Bacteriano/genética , Infecciones por Bacterias Gramnegativas/microbiología , Lipasa/genética , Pruebas de Sensibilidad Microbiana , Filogenia , Reacción en Cadena de la Polimerasa , República de Corea , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...