Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 835
Filtrar
1.
Sci Rep ; 14(1): 9903, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688964

RESUMEN

The edible fungus industry is one of the pillar industries in the Yunnan-Guizhou Plateau, China. The expansion of the planting scale has led to the release of various mushroom residues, such as mushroom feet, and other wastes, which are not treated adequately, resulting in environmental pollution. This study investigated the ability of black soldier fly (Hermetia illucens L.) larvae (BSFL) to degrade mushroom waste. Moreover, this study analyzed changes in the intestinal bacterial community and gene expression of BSFL after feeding on mushroom waste. Under identical feeding conditions, the remaining amount of mushroom waste in Pleurotus ostreatus treatment group was reduced by 18.66%, whereas that in Flammulina velutipes treatment group was increased by 31.08%. Regarding gut microbial diversity, compared with wheat bran-treated control group, Dysgonomonas, Providencia, Enterococcus, Pseudochrobactrum, Actinomyces, Morganella, Ochrobactrum, Raoultella, and Ignatzschineria were the most abundant bacteria in the midgut of BSFL in F. velutipes treatment group. Furthermore, Dysgonomonas, Campylobacter, Providencia, Ignatzschineria, Actinomyces, Enterococcus, Morganella, Raoultella, and Pseudochrobactrum were the most abundant bacteria in the midgut of BSFL in P. ostreatus treatment group. Compared with wheat bran-treated control group, 501 upregulated and 285 downregulated genes were identified in F. velutipes treatment group, whereas 211 upregulated and 43 downregulated genes were identified in P. ostreatus treatment group. Using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses, we identified 14 differentially expressed genes (DEGs) related to amino sugar and nucleotide sugar metabolism in F. velutipes treatment group, followed by 12 DEGs related to protein digestion and absorption. Moreover, in P. ostreatus treatment group, two DEGs were detected for fructose and mannose metabolism, and two were noted for fatty acid metabolism. These results indicate that feeding on edible mushroom waste can alter the intestinal microbial community structure of BSFL; moreover, the larval intestine can generate a corresponding feedback. These changes contribute to the degradation of edible mushroom waste by BSFL and provide a reference for treating edible mushroom waste using BSFL.


Asunto(s)
Agaricales , Microbioma Gastrointestinal , Larva , Pleurotus , Animales , Larva/microbiología , Pleurotus/metabolismo , Agaricales/metabolismo , Agaricales/genética , Biodegradación Ambiental , Dípteros/microbiología , Dípteros/metabolismo , Flammulina/metabolismo , Flammulina/genética , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
2.
Int J Med Mushrooms ; 26(4): 63-72, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523450

RESUMEN

In the present study, wide diversity in the set and activity of lignin-modifying enzymes (LME) was revealed during submerged fermentation of mandarin peel with 15 strains of white rot Basidiomycetes. Among them, Trametes pubescens BCC153 was distinguished by the simultaneous production of laccase, manganese peroxidase (MnP), and lignin peroxidase (LiP). Supplementation of CuSO4 at a concentration of 1 mM in the media for the cultivation of four Trametes species manifold increased the production of laccase. The diverse effects of chemically different lignocellulosic growth substrates and nitrogen sources on the production of individual LME have been established. The maximum laccase activity of T. pubescens was observed when the fungus was cultivated on media containing mandarin peel and wheat bran, whereas the highest MnP and LiP activities were detected in the submerged fermentation of tobacco residue. Peptone and casein hydrolysate appeared to be the best sources of nitrogen to produce laccase and both peroxidases by T. pubescens BCC153 whereas KNO3 was the worst nitrogen-containing compound for the production of all enzymes.


Asunto(s)
Agaricales , Agaricales/metabolismo , Lacasa/metabolismo , Fermentación , Trametes , Lignina/metabolismo , Nitrógeno
3.
Mycologia ; 116(3): 464-474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38489159

RESUMEN

Tremella fuciformis Berk. (TF), or the white jelly mushroom, is well known for its myriad of pharmacological properties, such as immunomodulatory, anti-inflammatory, antidiabetic, antitumor, and antioxidant activities, and hypocholesterolemic and hepatoprotective effects that boost human health. Most of the studies of TF are concentrated on its polysaccharide (glucuronoxylomannan) composition, which is responsible for its pharmacological as well as rheological properties. It is well established that mushrooms are a great source of dietary vitamin D due to the presence of ergosterol in their cell membrane. There is a lack of published data on TF as a source of vitamin D2. Therefore, this study aimed to evaluate the vitamin D2 composition of the fruiting bodies of TF using triple quadrupole liquid chromatography-mass spectrometry (LC-MS/QQQ). The results showed highest vitamin D2 content (292.02 µg/g dry weight) in the sample irradiated with ultraviolet B (UVB; 310 nm) for 180 min as compared with the control group (52.47 µg/g dry weight) (P ≤ 0.001). The results showed higher accumulation potential of vitamin D2 in TF as compared with published data available for other extensively studied culinary mushrooms, such as Agaricus bisporus, Lentinula edodes, Pleurotus ostreatus, Cordiceps militaris, and Calocybe indica. Moreover, the impact of UV treatment on antioxidant capacities and total polyphenol content of TF was also studied. The accumulation potential of vitamin D in TF reveals a novel commercial source for this nutrient.


Asunto(s)
Antioxidantes , Ergocalciferoles , Polifenoles , Ergocalciferoles/metabolismo , Ergocalciferoles/análisis , Polifenoles/metabolismo , Polifenoles/análisis , Antioxidantes/metabolismo , Antioxidantes/análisis , Cromatografía Liquida , Basidiomycota/metabolismo , Basidiomycota/química , Cuerpos Fructíferos de los Hongos/química , Cuerpos Fructíferos de los Hongos/metabolismo , Agaricales/química , Agaricales/metabolismo , Espectrometría de Masas , Espectrometría de Masas en Tándem , Cromatografía Líquida con Espectrometría de Masas
4.
Int J Med Mushrooms ; 26(3): 55-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505903

RESUMEN

Leukemia can be a result of genetic changes associated with protein tyrosine kinase activity such as in MPL W515L and BCR/ABL genes. However, the current conventional treatment of leukemia produces severe side effects that urge the approach to use natural products. A medicinal mushroom, Lignosus rhinocerus shows potential as an anti-cancer treatment. To investigate the efficacy and mechanism of action of the L. rhinocerus cultivar (TM02®) extract on leukemogenic tyrosine kinase cell lines, a cold-water extract (CWE) was produced by using TM02® sclerotia powder at 4°C. The carbohydrate and protein contents were found to be 77.24% and 1.75% respectively. In comparison to the normal Ba/F3 cell, the CWE TM02® shows significant effects on exhibiting proliferation of Ba/F3 expressed MPL W515L and BCR/ABL, possibly due to the presence of phenolic compounds and antioxidant properties of TM02®, which contribute to act on various signaling pathways, and the reported apoptotic activity of CWE TM02®. In contrast, CWE TM02® significantly exhibited high scavenging activity of both Ba/F3 expressed MPL W515L and BCR/ABL. At concentrations of 125 µg/mL and 500 µg/mL of CWE TM02® decreased 49.5% and 67.5% of cell migration activity of Ba/F3 expressed MPL W515L and BCR/ABL respectively. Therefore, we postulate that CWE TM02® has the capability to mediate the migration route of the leukemogenic tyrosine kinase cell lines.


Asunto(s)
Agaricales , Leucemia , Polyporaceae , Humanos , Proteínas Tirosina Quinasas , Agaricales/metabolismo , Línea Celular
5.
Int J Med Mushrooms ; 26(3): 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505899

RESUMEN

Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.


Asunto(s)
Agaricales , Agaricales/metabolismo , Suplementos Dietéticos , Fermentación , Fibras de la Dieta , Micelio
6.
Food Chem ; 443: 138554, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306912

RESUMEN

This study aimed to investigate the flavor changes in Huangshan floral mushroom by different enzyme treatments. Seven enzyme groups were used to hydrolyze its protein to obtain protein hydrolysates (FPHs). Flavourzyme composite with dispase hydrolysates (FDHs) were selected for ultrafiltration to obtain peptides (FPs) with different molecular weights (Mw). Changes in flavor were investigated using HPLC, LC-MS, GC-MS, amino acid analysis and sensory evaluation. Color parameters and DPPH-scavenging activity were also determined. The results revealed that flavor characteristics of FPHs obtained from different enzyme treatments varied. FDHs presented the highest degree of hydrolysis (DH) (58.61 ± 1.55) %, rich 5'-nucleotides (8.61 ± 0.43 mg/mL), volatile compounds (28.54 ± 0.11 µg/g) and free amino acids (FAAs) (7.73 ± 0.51 mg/g). Further tests suggested that FPs with small Mw (<1K, 1-3 K) were optimal for the development of novel flavors, thus providing application value for rational utilization of Huangshan floral mushroom.


Asunto(s)
Agaricales , Agaricales/metabolismo , Péptidos/química , Hidrólisis , Péptido Hidrolasas/metabolismo , Antioxidantes/química , Hidrolisados de Proteína/química
7.
Int J Med Mushrooms ; 26(1): 55-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38305262

RESUMEN

The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 µg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.


Asunto(s)
Agaricales , Ascomicetos , Hepatopatías Alcohólicas , Selenio , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Selenio/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/prevención & control , Ascomicetos/metabolismo , Polisacáridos/farmacología , Polisacáridos/metabolismo , Agaricales/metabolismo , Micelio/metabolismo
8.
Plant Physiol Biochem ; 207: 108332, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38224638

RESUMEN

Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.


Asunto(s)
Agaricales , Cacao , Selenio , Cacao/microbiología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Selenio/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Células Vegetales , Agaricales/metabolismo , Muerte Celular , Glutatión Peroxidasa/metabolismo , Enfermedades de las Plantas/microbiología
9.
Int J Biol Macromol ; 261(Pt 1): 129756, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286376

RESUMEN

Mushroom polysaccharides exhibit numerous health-enhancing attributes that are intricately linked to the breakdown, assimilation, and exploitation of polysaccharides within the organism. Naematelia aurantialba polysaccharides (NAPS-A), highly prized polysaccharides derived from mushrooms, remain shrouded in uncertainty regarding their characteristics pertaining to gastrointestinal digestion and gut microbial fermentation. The study aimed to understand the digestion and fecal fermentation patterns of NAPS-A. After simulated digestion, NAPS-A's physicochemical properties remained unchanged. However, during in vitro fecal fermentation, indigestible NAPS-A underwent significant changes in various properties, such as reducing sugar, chemical composition, constituent monosaccharides, Molecular weight, apparent viscosity, FT-IR spectra, and microscopic morphology. Notably, NAPS-A was effectively utilized by the gut microbiota, with unchanged properties after digestion but altered after fermentation. It influenced gut microbe composition by increasing beneficial bacteria (Lactobacillus, Faecalibacterium, and Roseburia), lowering pH, and producing short-chain fatty acids. NAPS-A fermentation enriches carbohydrate, fatty acid, and amino acid metabolic pathways through PICRUSt prediction analysis. Overall, these findings emphasize NAPS-A's role in regulating gut bacteria and their metabolic functions, despite its challenging digestibility.


Asunto(s)
Agaricales , Basidiomycota , Digestión , Fermentación , Espectroscopía Infrarroja por Transformada de Fourier , Ácidos Grasos Volátiles/metabolismo , Polisacáridos/metabolismo , Agaricales/metabolismo , Bacterias/metabolismo
10.
Environ Res ; 248: 118297, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38281560

RESUMEN

In this work, harvested mushroom substrate (HMS) has been explored for the first time through a comprehensive optimization study for the green synthesis of silver nanoparticles (AgNPs). A multiple response central composite design with three parameters: pH of the reaction mixture, temperature, and incubation period at three distinct levels was employed in the optimization study. The particle size of AgNPs, UV absorbance, and the percentage of Ag/Cl elemental ratio were considered as the response parameters. For each response variable examined the model used was found to be significant (P < 0.05). The ideal conditions were: pH 8.9, a temperature of 59.4 °C, and an incubation period of 48.5 h. The UV-visible spectra of AgNPs indicated that the absorption maxima for AgNP-3 were 414 nm, 420 for AgNPs-2, and 457 for AgNPs-1. The XRD analysis of AgNPs-3 and AgNPs-2 show a large diffraction peak at ∼38.2°, ∼44.2°, ∼64.4°, and ∼77.4°, respectively, which relate to the planes of polycrystalline face-centered cubic (fcc) silver. Additionally, the XRD result of AgNPs-1, reveals diffraction characteristics of AgCl planes (111, 200, 220, 311, 222, and 400). The TEM investigations indicated that the smallest particles were synthesized at pH 9 with average diameters of 35 ± 6 nm (AgNPs-3). The zeta potentials of the AgNPs are -36 (AgNPs-3), -28 (AgNPs-2), and -19 (AgNPs-1) mV, respectively. The distinct IR peak at 3400, 1634, and 1383 cm-1 indicated the typical vibration of phenols, proteins, and alkaloids, respectively. The AgNPs were further evaluated against gram (+) strain Bacillus subtilis (MTCC 736) and gram (-) strain Escherichia coli (MTCC 68). All of the NPs tested positive for antibacterial activity against both bacterial strains. The study makes a sustainable alternative to disposing of HMS to achieve the Sustainable Development Goals (SDGs).


Asunto(s)
Agaricales , Nanopartículas del Metal , Plata/química , Agaricales/metabolismo , Nanopartículas del Metal/química , Extractos Vegetales/química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
11.
Sci Rep ; 14(1): 1540, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233558

RESUMEN

A series of new analogs of 3,5-dihydroxybenzoyl-hydrazineylidene conjugated to different methoxyphenyl triazole (11a-n) synthesized using click reaction. The structures of all synthesized compounds were characterized by FTIR, 1H, 13C-NMR spectroscopy, and CHO analysis. The tyrosinase inhibitory potential of the synthesized compounds was studied. The newly synthesized scaffolds were found to illustrate the variable degree of the inhibitory profile, and the most potent analog of this series was that one bearing 4-methoxyphenyl moiety, and exhibited an IC50 value of 55.39 ± 4.93 µM. The kinetic study of the most potent derivative reveals a competitive mode of inhibition. Next, molecular docking studies were performed to understand the potent inhibitor's binding mode within the enzyme's binding site. Molecular dynamics simulations were accomplished to further investigate the orientation and binding interaction over time and the stability of the 11m-tyrosinase complex.


Asunto(s)
Agaricales , Monofenol Monooxigenasa , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Agaricales/metabolismo , Relación Dosis-Respuesta a Droga
12.
Brain Res ; 1824: 148693, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036238

RESUMEN

Oxidative stress can upset the antioxidant balance and cause accelerated aging including neurodegenerative diseases and decline in physiological function. Therefore, an antioxidant-rich diet plays a crucial role in healthy aging. This study aimed to identify and quantify mushrooms with the highest ergothioneine content through HPLC analysis and evaluate their anti-aging potential as a natural antioxidant and antisenescence in HT22 cells. Among the 14 evaluated mushroom species, Lentinula edodes (LE), shiitake mushroom contains the highest ergothioneine content and hence was used for the in-vitro studies. The cells were preincubated with ethanolic extract of ergothioneine-rich mushroom and the equimolar concentration of EGT on t-BHP-induced senescence HT22 cells. The extract was analyzed for its free radical scavenging properties using DPPH and ABTS methods. Then, the neuroprotective effect was conducted by measuring the cell viability using MTT. Senescence-associated markers and ROS staining were also analyzed. Our results revealed that a low dose of t-BHP reduces cell viability and induces senescence in HT22 cells as determined through ß-galactosidase staining and expressions of P16INK4a, P21CIPL which are the markers of cellular senescence. However, the pretreatment with ethanolic extract of LE for 8 h significantly improved the cell viability, reversed the t-BHP-induced cellular senescence in the neuronal cells, and reduced the reactive oxygen species visualized through DCFH-DA staining. These results suggest that ergothioneine-rich mushroom is a potential candidate for anti-aging exploration through the elimination of senescent cells.


Asunto(s)
Agaricales , Ergotioneína , Ergotioneína/farmacología , Ergotioneína/química , Antioxidantes/farmacología , Antioxidantes/metabolismo , Agaricales/química , Agaricales/metabolismo , Senescencia Celular
13.
Anal Bioanal Chem ; 416(11): 2761-2772, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37987766

RESUMEN

Mushrooms are considered a valuable food source due to their high protein and fibre and low fat content, among the other health benefits of their consumption. Selenium is an essential nutrient and is renowned for its chemo-preventative properties. In this study, batches of selenium-enriched Lingzhi mushrooms were prepared by growing mycelium and fruit in substrates containing various concentrations of sodium selenite. The mushroom fruit accumulated low levels of selenium with selenomethionine being the most abundant form in all enriched samples. Conversely, the mycelium showed significant selenium accumulation but relatively low proportions of selenomethionine. The red colour of the selenium-enriched mycelia indicated the probable presence of selenium nanoparticles, which was confirmed by single-particle inductively coupled plasma-mass spectrometry. Mean particle diameters of 90-120 nm were observed, with size distributions of 60-250 nm. Additional analysis with transmission electron microscopy confirmed this size distribution and showed that the biogenic selenium nanoparticles were roughly spherical in shape and contained elemental selenium.


Asunto(s)
Agaricales , Nanopartículas , Reishi , Selenio , Selenio/análisis , Selenometionina/análisis , Agaricales/metabolismo , Reishi/metabolismo , Nanopartículas/química
14.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37958943

RESUMEN

Hericium erinaceus is a valuable mushroom known for its strong bioactive properties. It shows promising potential as an excellent neuroprotective agent, capable of stimulating nerve growth factor release, regulating inflammatory processes, reducing oxidative stress, and safeguarding nerve cells from apoptosis. The active compounds in the mushroom, such as erinacines and hericenones, have been the subject of research, providing evidence of their neuroprotective effects. Further research and standardization processes for dietary supplements focused on H. erinaceus are essential to ensuring effectiveness and safety in protecting the nervous system. Advancements in isolation and characterization techniques, along with improved access to pure analytical standards, will play a critical role in achieving standardized, high-quality dietary supplements based on H. erinaceus. The aim of this study is to analyze the protective and nourishing effects of H. erinaceus on the nervous system and present the most up-to-date research findings related to this topic.


Asunto(s)
Agaricales , Fármacos Neuroprotectores , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Agaricales/metabolismo , Neuronas , Suplementos Dietéticos
15.
Angew Chem Int Ed Engl ; 62(49): e202313817, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37852936

RESUMEN

An epoxycyclohexenone (ECH) moiety occurs in natural products of both bacteria and ascomycete and basidiomycete fungi. While the enzymes for ECH formation in bacteria and ascomycetes have been identified and characterized, it remained obscure how this structure is biosynthesized in basidiomycetes. In this study, we i) identified a genetic locus responsible for panepoxydone biosynthesis in the basidiomycete mushroom Panus rudis and ii) biochemically characterized PanH, the cytochrome P450 enzyme catalyzing epoxide formation in this pathway. Using a PanH-producing yeast as a biocatalyst, we synthesized a small library of bioactive ECH compounds as a proof of concept. Furthermore, homology modeling, molecular dynamics simulation, and site directed mutation revealed the substrate specificity of PanH. Remarkably, PanH is unrelated to ECH-forming enzymes in bacteria and ascomycetes, suggesting that mushrooms evolved this biosynthetic capacity convergently and independently of other organisms.


Asunto(s)
Agaricales , Ascomicetos , Basidiomycota , Agaricales/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Biocatálisis , Basidiomycota/genética , Ascomicetos/metabolismo , Bacterias/metabolismo , Especificidad por Sustrato
16.
Toxins (Basel) ; 15(9)2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37756004

RESUMEN

Ageritin from poplar mushrooms is a specific endonuclease that hydrolyzes a single phosphodiester bond located in the sarcin-ricin loop (SRL) of the large rRNA, thereby blocking protein synthesis. Considering the possible biotechnological use of this enzyme, here we report its antifungal activity against virulent fungi affecting crops of economic interest. Our results show that ageritin (200 µg/plug; ~13.5 nmole) inhibits the growth of Botrytis cinerea (57%), Colletotrichum truncatum (42%), and Alternaria alternata (57%), when tested on potato dextrose agar plates. At the same time, no effect was observed against Trichoderma harzianum (a fungus promoting beneficial effects in plants). To verify whether the antifungal action of ageritin against B. cinerea and T. harzianum was due to ribosome damage, we tested ageritin in vitro on partially isolated B. cinerea and T. harzianum ribosomes. Interestingly, ageritin was able to release the Endo's fragment from both tested fungal ribosomes. We therefore decided to test the antifungal effect of ageritin on B. cinerea and T. harzianum using a different growth condition (liquid medium). Differently from the result in solid medium, ageritin can inhibit both B. cinerea and T. harzianum fungal growth in liquid medium in a concentration-dependent manner up to 35.7% and 38.7%, respectively, at the highest concentration tested (~200 µg/mL; 12 µM), and the analysis of RNA isolated from ageritin-treated cells revealed the presence of Endo's fragment, highlighting its ability to cross the fungal cell wall and reach the ribosomes. Overall, these data highlight that the efficacy of antifungal treatment to prevent or treat a potential fungal disease may depend not only on the fungal species but also on the conditions of toxin application.


Asunto(s)
Agaricales , Antifúngicos , Antifúngicos/farmacología , Agaricales/metabolismo , Ribonucleasas/metabolismo , Hongos/metabolismo
17.
Biotechnol Adv ; 69: 108247, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37659744

RESUMEN

Psychedelic mushrooms containing psilocybin and related tryptamines have long been used for ethnomycological purposes, but emerging evidence points to the potential therapeutic value of these mushrooms to address modern neurological, psychiatric health, and related disorders. As a result, psilocybin containing mushrooms represent a re-emerging frontier for mycological, biochemical, neuroscience, and pharmacology research. This work presents crucial information related to traditional use of psychedelic mushrooms, as well as research trends and knowledge gaps related to their diversity and distribution, technologies for quantification of tryptamines and other tryptophan-derived metabolites, as well as biosynthetic mechanisms for their production within mushrooms. In addition, we explore the current state of knowledge for how psilocybin and related tryptamines are metabolized in humans and their pharmacological effects, including beneficial and hazardous human health implications. Finally, we describe opportunities and challenges for investigating the production of psychedelic mushrooms and metabolic engineering approaches to alter secondary metabolite profiles using biotechnology integrated with machine learning. Ultimately, this critical review of all aspects related to psychedelic mushrooms represents a roadmap for future research efforts that will pave the way to new applications and refined protocols.


Asunto(s)
Agaricales , Alucinógenos , Humanos , Alucinógenos/uso terapéutico , Alucinógenos/farmacología , Psilocibina/farmacología , Psilocibina/uso terapéutico , Agaricales/metabolismo , Triptaminas/metabolismo , Biotecnología , Biología
18.
J Biosci Bioeng ; 136(4): 278-286, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37550133

RESUMEN

Pharmacological intervention of circadian rhythms is a potentially useful approach for ameliorating various health problems caused by disturbed circadian rhythms including sleep disorder and metabolic diseases. To find compounds that affect circadian rhythms, we screened mushroom extracts using mouse cells expressing the luciferase gene under the control of the mouse Bmal1 promoter. The culture filtrate extract from the basidiomycete Cyclocybe erebia enhanced the oscillation of bioluminescence caused by the expression of the luciferase gene and prolonged the period of bioluminescence. Bioassay-guided fractionation of the extract resulted in purification of compounds 1 and 2. Spectroscopic analyses along with single-crystal X-ray diffraction analysis, revealed that these compounds were diterpenoids with a unique skeleton and a fused ring system comprising 3-, 7-, and 5-membered rings. Compounds 1 and 2 were named cyclocircadins A and B, respectively. These findings suggested that natural diterpenoids could be a source of compounds with the activity affecting circadian rhythms.


Asunto(s)
Factores de Transcripción ARNTL , Agaricales , Ratones , Animales , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Ritmo Circadiano/genética , Agaricales/genética , Agaricales/metabolismo , Luciferasas/metabolismo , Fibroblastos
19.
J Environ Manage ; 344: 118742, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37573696

RESUMEN

In Europe, rapeseed is a common oilseed crop, resulting in the production of 20 million tons of rapeseed press cake yearly. This press cake can be further upcycled and a protein fraction can be extracted for food purposes, leaving de-proteinized fiber-rich residues. This study examined the use of these residues in the production of oyster mushrooms (Pleurotus ostreatus) and of the spent substrate as feed, since mushroom cultivation may improve the feed properties of substrate. In terms of mushroom production, the addition of rapeseed press residues was beneficial, giving significantly higher biological efficiency (BE = 93.1 ± 11.0%) compared with the control, sugar beet pulp substrate (70.0 ± 6.6%). This increase in productivity can most likely be explained by higher energy content in the substrate supplemented with lipid-rich rapeseed residues. Despite differences in BE between the substrates, high similarity was observed in lipid composition of the fruiting bodies (lipid profile dominated by linoleic acid (18:2), palmitic acid (16:0), and oleic acid (18:1)), and in protein and moisture content. After mushroom harvest, approximately 70% of the initial dry weight of both substrates remained as a possible feed source. Both substrates had significantly lower levels of carbohydrates and unchanged neutral detergent fiber content after mushroom harvest, and both gave lower in vitro digestibility, total gas production, and methane production. However, protein concentration differed between the substrates, with the highest concentration (15.8% of dry weight) found in spent substrate containing rapeseed press residues. The result of the present study suggests that the de-proteinized rapeseed press residue is a resource well-suited for use in the production of mushrooms and feed.


Asunto(s)
Agaricales , Brassica napus , Brassica rapa , Pleurotus , Pleurotus/química , Pleurotus/metabolismo , Agaricales/química , Agaricales/metabolismo , Lípidos
20.
Int J Med Mushrooms ; 25(7): 13-23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37585313

RESUMEN

Macrocybe lobayensis owe popularity in several traditional cultures not only for delectable taste but also for its nutraceutical profile conveying great health benefits. Previous investigations have enumerated several bioactivities of the valuable mushroom such as antioxidant, anti-ageing, immune-modulation, and anti-tumor properties where polysaccharides played the key role. Macrofungi polymers are generally isolated by the conventional hot water process discarding the residue which still contains plenty of therapeutic components. The present study thus aimed to re-use such leftover of the edible macrofungus by immersing it in NaOH solution at high temperature supporting circular economy. Consequently a polysaccharide fraction, namely ML-HAP, was isolated that was found to be consisted of a homogenous heteropolysaccharide with molecular weight of ~ 128 kDa and ß-glucan as the chief ingredient as evident by spectroscopy, gel-permeation chromatography, high performance thin-layer chromatography, and Fourier transform infrared. Antioxidant activity assays revealed that the macromolecules possess good radical scavenging, metal ion binding and reducing power. Nevertheless, strong immune-potentiation was also recorded as the extract triggered murine macrophage cell viability, pinocytosis, nitric oxide production and morpho-dynamics within 24 h where the best effect was executed at the level of 100 µg/mL. Altogether, the polysaccharides extracted from M. lobayensis exhibited a potent application prospect in functional food, pharmaceutical, nutraceutical and health care industries that could raise economic value of the underexplored mushroom.


Asunto(s)
Agaricales , Basidiomycota , Animales , Ratones , Álcalis , Frutas/metabolismo , Agaricales/metabolismo , Polisacáridos/química , Antioxidantes/química , Basidiomycota/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...