Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 34(4): 5144-5161, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32043676

RESUMEN

The development of the neuromuscular junction depends on signaling processes that involve protein phosphorylation. Motor neuron releases agrin to activate muscle protein Dok-7, a key tyrosine kinase essential for the formation of a mature and functional neuromuscular junction. However, the signaling cascade downstream of Dok-7 remains poorly understood. In this study, we combined the clustered regularly interspaced short palindromic repeats/Cas9 technique and quantitative phosphoproteomics analysis to study the tyrosine phosphorylation events triggered by agrin/Dok-7. We found tyrosine phosphorylation level of 36 proteins increased specifically by agrin stimulation. In Dok-7 mutant myotubes, however, 13 of the 36 proteins failed to be enhanced by agrin stimulation, suggesting that these 13 proteins are Dok-7-dependent tyrosine-phosphorylated proteins, could work as downstream molecules of agrin/Dok-7 signaling. We validated one of the proteins, Anxa3, by in vitro and in vivo assays. Knocking down of Anxa3 in the cultured myotubes inhibited agrin-induced AChR clustering, whereas reduction of Anxa3 in mouse muscles induced abnormal postsynaptic development. Collectively, our phosphoproteomics analysis provides novel insights into the complicated signaling network downstream of agrin/Dok-7.


Asunto(s)
Agrina/fisiología , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/fisiología , Músculo Esquelético/patología , Unión Neuromuscular/patología , Animales , Anexina A3/genética , Anexina A3/metabolismo , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Fosfoproteínas , Fosforilación , Transducción de Señal
2.
Nat Rev Dis Primers ; 5(1): 30, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048702

RESUMEN

Myasthenia gravis (MG) is an autoimmune disease caused by antibodies against the acetylcholine receptor (AChR), muscle-specific kinase (MuSK) or other AChR-related proteins in the postsynaptic muscle membrane. Localized or general muscle weakness is the predominant symptom and is induced by the antibodies. Patients are grouped according to the presence of antibodies, symptoms, age at onset and thymus pathology. Diagnosis is straightforward in most patients with typical symptoms and a positive antibody test, although a detailed clinical and neurophysiological examination is important in antibody-negative patients. MG therapy should be ambitious and aim for clinical remission or only mild symptoms with near-normal function and quality of life. Treatment should be based on MG subgroup and includes symptomatic treatment using acetylcholinesterase inhibitors, thymectomy and immunotherapy. Intravenous immunoglobulin and plasma exchange are fast-acting treatments used for disease exacerbations, and intensive care is necessary during exacerbations with respiratory failure. Comorbidity is frequent, particularly in elderly patients. Active physical training should be encouraged.


Asunto(s)
Miastenia Gravis/diagnóstico , Miastenia Gravis/terapia , Acetilcolinesterasa/genética , Acetilcolinesterasa/fisiología , Corticoesteroides/uso terapéutico , Agrina/genética , Agrina/fisiología , Antiinflamatorios no Esteroideos/uso terapéutico , Autoanticuerpos/análisis , Autoanticuerpos/sangre , Biomarcadores/análisis , Biomarcadores/sangre , Blefaroptosis/etiología , Colágeno/genética , Colágeno/fisiología , Cortactina/genética , Cortactina/fisiología , Electromiografía/métodos , Humanos , Canal de Potasio Kv1.4/genética , Canal de Potasio Kv1.4/fisiología , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/fisiología , Proteínas Musculares/genética , Proteínas Musculares/fisiología , Miastenia Gravis/fisiopatología , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores Colinérgicos/genética , Receptores Colinérgicos/fisiología , Receptores Nicotínicos/genética , Factores de Riesgo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/fisiología
3.
Ann Rheum Dis ; 75(6): 1228-35, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26290588

RESUMEN

OBJECTIVES: Osteoarthritis (OA) is a leading cause of disability for which there is no cure. The identification of molecules supporting cartilage homeostasis and regeneration is therefore a major pursuit in musculoskeletal medicine. Agrin is a heparan sulfate proteoglycan which, through binding to low-density lipoprotein receptor-related protein 4 (LRP4), is required for neuromuscular synapse formation. In other tissues, it connects the cytoskeleton to the basement membrane through binding to α-dystroglycan. Prompted by an unexpected expression pattern, we investigated the role and receptor usage of agrin in cartilage. METHODS: Agrin expression pattern was investigated in human osteoarthritic cartilage and following destabilisation of the medial meniscus in mice. Extracellular matrix (ECM) formation and chondrocyte differentiation was studied in gain and loss of function experiments in vitro in three-dimensional cultures and gain of function in vivo, using an ectopic cartilage formation assay in nude mice. Receptor usage was investigated by disrupting LRP4 and α-dystroglycan by siRNA and blocking antibodies respectively. RESULTS: Agrin was detected in normal cartilage but was progressively lost in OA. In vitro, agrin knockdown resulted in reduced glycosaminoglycan content, downregulation of the cartilage transcription factor SOX9 and other cartilage-specific ECM molecules. Conversely, exogenous agrin supported cartilage differentiation in vitro and ectopic cartilage formation in vivo. In the context of cartilage differentiation, agrin used an unusual receptor repertoire requiring both LRP4 and α-dystroglycan. CONCLUSIONS: We have discovered that agrin strongly promotes chondrocyte differentiation and cartilage formation in vivo. Our results identify agrin as a novel potent anabolic growth factor with strong therapeutic potential in cartilage regeneration.


Asunto(s)
Agrina/fisiología , Artritis Experimental/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Distroglicanos/fisiología , Osteoartritis/metabolismo , Receptores de LDL/fisiología , Agrina/biosíntesis , Agrina/genética , Agrina/farmacología , Animales , Artritis Experimental/genética , Artritis Experimental/patología , Cartílago Articular/patología , Células Cultivadas , Condrogénesis/efectos de los fármacos , Regulación hacia Abajo/fisiología , Técnicas de Silenciamiento del Gen , Homeostasis/fisiología , Humanos , Proteínas Relacionadas con Receptor de LDL/fisiología , Masculino , Ratones Endogámicos DBA , Ratones Noqueados , Osteoartritis/genética , Osteoartritis/patología , Osteogénesis/fisiología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Factor de Transcripción SOX9/biosíntesis , Factor de Transcripción SOX9/genética , Regulación hacia Arriba/fisiología
4.
Urology ; 85(6): 1284-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25770729

RESUMEN

OBJECTIVE: To investigate the voiding function in a rat model of lumbar canal stenosis (LCS) using pharmacologic and molecular approaches. METHODS: Sixty-one female Sprague-Dawley rats were broadly split into a sham and an LCS group. A hole was surgically drilled in the L5-L6 epidural space and filled with a rectangular piece of silicone rubber. Metabolic cage study at week 2 and continuous cystometry (CMG) under urethane anesthesia at weeks 2 and 4 were performed. During CMG, prostaglandin E2 or sulprostone, an prostaglandin E receptor 1 and prostaglandin E receptor 3 agonist was administered locally and intravenously, respectively, and the bladder was then harvested for histology and Western blot. RESULTS: Compared with sham, the LCS group showed dribbling urination and progressive increase in bladder size. CMG under urethane anesthesia in the LCS group was marked by overflow incontinence and acontractile bladder. Administration of intravesical prostaglandin E2 (200 µM) or intravenous sulprostone (0.1 mg/kg) in the sham group induced bladder overactivity, but decreased the compliance and failed to restore the bladder emptying function in the LCS group. The LCS group showed edematous changes and muscle thinning at week 2, which were partially restored by week 4. Histologic changes were accompanied by downregulation of agrin protein (64.0%) at week 2 and upregulation of M2 receptor (65.4%) at week 4. Expression of M3, protein gene product 9.5, and nerve growth factor did not differ between groups. CONCLUSION: LCS-induced underactive bladder is associated with altered expression of agrin and M2 receptor. The underactive bladder model is clinically relevant, and the findings indicate potential molecular targets for new therapies.


Asunto(s)
Agrina/fisiología , Regulación hacia Abajo , Vértebras Lumbares , Receptor Muscarínico M2/fisiología , Estenosis Espinal/complicaciones , Enfermedades de la Vejiga Urinaria/etiología , Vejiga Urinaria/efectos de los fármacos , Animales , Femenino , Ratas , Ratas Sprague-Dawley
5.
PLoS One ; 9(12): e115004, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25506919

RESUMEN

Oral squamous cell carcinoma is the most common type of cancer in the oral cavity, representing more than 90% of all oral cancers. The characterization of altered molecules in oral cancer is essential to understand molecular mechanisms underlying tumor progression as well as to contribute to cancer biomarker and therapeutic target discovery. Proteoglycans are key molecular effectors of cell surface and pericellular microenvironments, performing multiple functions in cancer. Two of the major basement membrane proteoglycans, agrin and perlecan, were investigated in this study regarding their role in oral cancer. Using real time quantitative PCR (qRT-PCR), we showed that agrin and perlecan are highly expressed in oral squamous cell carcinoma. Interestingly, cell lines originated from distinct sites showed different expression of agrin and perlecan. Enzymatically targeting chondroitin sulfate modification by chondroitinase, oral squamous carcinoma cell line had a reduced ability to adhere to extracellular matrix proteins and increased sensibility to cisplatin. Additionally, knockdown of agrin and perlecan promoted a decrease on cell migration and adhesion, and on resistance of cells to cisplatin. Our study showed, for the first time, a negative regulation on oral cancer-associated events by either targeting chondroitin sulfate content or agrin and perlecan levels.


Asunto(s)
Agrina/fisiología , Carcinoma de Células Escamosas/fisiopatología , Proteoglicanos de Heparán Sulfato/fisiología , Neoplasias de la Boca/fisiopatología , Agrina/genética , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/genética , Adhesión Celular/genética , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/fisiología , Expresión Génica , Técnicas de Silenciamiento del Gen , Proteoglicanos de Heparán Sulfato/genética , Humanos , Neoplasias de la Boca/genética
6.
Proc Natl Acad Sci U S A ; 111(46): 16556-61, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25368159

RESUMEN

The motoneural control of skeletal muscle contraction requires the neuromuscular junction (NMJ), a midmuscle synapse between the motor nerve and myotube. The formation and maintenance of NMJs are orchestrated by the muscle-specific receptor tyrosine kinase (MuSK). Motor neuron-derived agrin activates MuSK via binding to MuSK's coreceptor Lrp4, and genetic defects in agrin underlie a congenital myasthenic syndrome (an NMJ disorder). However, MuSK-dependent postsynaptic differentiation of NMJs occurs in the absence of a motor neuron, indicating a need for nerve/agrin-independent MuSK activation. We previously identified the muscle protein Dok-7 as an essential activator of MuSK. Although NMJ formation requires agrin under physiological conditions, it is dispensable for NMJ formation experimentally in the absence of the neurotransmitter acetylcholine, which inhibits postsynaptic specialization. Thus, it was hypothesized that MuSK needs agrin together with Lrp4 and Dok-7 to achieve sufficient activation to surmount inhibition by acetylcholine. Here, we show that forced expression of Dok-7 in muscle enhanced MuSK activation in mice lacking agrin or Lrp4 and restored midmuscle NMJ formation in agrin-deficient mice, but not in Lrp4-deficient mice, probably due to the loss of Lrp4-dependent presynaptic differentiation. However, these NMJs in agrin-deficient mice rapidly disappeared after birth, and postsynaptic specializations emerged ectopically throughout myotubes whereas exogenous Dok-7-mediated MuSK activation was maintained. These findings demonstrate that the MuSK activator agrin plays another role essential for the postnatal maintenance, but not for embryonic formation, of NMJs and also for the postnatal, but not prenatal, midmuscle localization of postsynaptic specializations, providing physiological and pathophysiological insight into NMJ homeostasis.


Asunto(s)
Agrina/fisiología , Unión Neuromuscular/enzimología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Agrina/deficiencia , Agrina/genética , Empalme Alternativo , Animales , Diafragma/embriología , Diafragma/crecimiento & desarrollo , Activación Enzimática , Femenino , Proteínas Relacionadas con Receptor de LDL , Longevidad/genética , Masculino , Ratones , Ratones Transgénicos , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/fisiología , Proteínas Musculares/deficiencia , Proteínas Musculares/fisiología , Unión Neuromuscular/embriología , Unión Neuromuscular/crecimiento & desarrollo , Enfermedades de la Unión Neuromuscular/enzimología , Enfermedades de la Unión Neuromuscular/genética , Enfermedades de la Unión Neuromuscular/fisiopatología , Fosforilación , Densidad Postsináptica/fisiología , Procesamiento Proteico-Postraduccional , Receptores Colinérgicos/fisiología , Receptores de LDL/deficiencia , Receptores de LDL/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante
7.
J Biol Chem ; 289(44): 30857-30867, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25231989

RESUMEN

The postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2. How CLASP2 phosphorylation regulates MT capture at the NMJ and how this controls the size of AChR clusters are not yet understood. To examine this, we used myotubes cultured on agrin patches that induce AChR clustering in a two-dimensional manner. We show that expression of a CLASP2 mutant, in which the nine GSK3 target serines are mutated to alanine (CLASP2-9XS/9XA) and are resistant to GSK3ß-dependent phosphorylation, promotes MT capture at clusters and increases AChR cluster size, compared with myotubes that express similar levels of wild type CLASP2 or that are noninfected. Conversely, myotubes expressing a phosphomimetic form of CLASP2 (CLASP2-8XS/D) show enrichment of immobile mutant CLASP2 in clusters, but MT capture and AChR cluster size are reduced. Taken together, our data suggest that both GSK3ß-dependent phosphorylation and the level of CLASP2 play a role in the maintenance of AChR cluster size through the regulated capture and release of MT plus-ends.


Asunto(s)
Glucógeno Sintasa Quinasa 3/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Receptores Colinérgicos/metabolismo , Agrina/fisiología , Animales , Células COS , Chlorocebus aethiops , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Microtúbulos/ultraestructura , Fibras Musculares Esqueléticas/metabolismo , Fosforilación , Cultivo Primario de Células , Transporte de Proteínas
8.
Exp Neurol ; 261: 646-53, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25151458

RESUMEN

Agrin, a heparan sulfate proteoglycan functioning as a neuro-muscular junction inducer, has been shown to inhibit neuropathic pain in sciatic nerve injury rat models, via phosphorylation of N-Methyl-d-aspartate receptor NR1 subunits in gamma-aminobutyric acid neurons. However, its effects on spinal cord injury-induced neuropathic pain, a debilitating syndrome frequently encountered after various spine traumas, are unknown. In the present investigation, we studied the 50kDa agrin isoform effects in a quisqualic acid dorsal horn injection rat model mimicking spinal cord injury-induced neuropathic pain. Our results indicate that 50kDa agrin decreased only in the dorsal horn of neuropathic animals and increased 50kDa agrin expression in the dorsal horn, via intra-spinal injection of adeno-associated virus serum type two, suppressed spinal cord injury-induced neuropathic pain. Also, the reason why 50kDa agrin only activates the N-Methyl-d-aspartate receptor NR1 subunits in the GABA neurons, but not in sensory neurons, is unknown. Using immunoprecipitation and Western-blot analysis, two dimensional gel separation, and mass spectrometry, we identified several specific proteins in the reaction protein complex, such as neurofilament 200 and mitofusin 2, that are required for the activation of the NR1 subunits of gamma-aminobutyric acid inhibitory neurons by 50kDa agrin. These findings indicate that 50kDa agrin is a promising agent for neuropathic pain treatment.


Asunto(s)
Agrina/fisiología , Neuralgia/metabolismo , Neuralgia/terapia , Ácido gamma-Aminobutírico/metabolismo , Adenoviridae/genética , Agrina/administración & dosificación , Agrina/biosíntesis , Animales , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Hiperalgesia/fisiopatología , Inyecciones Espinales , Masculino , Peso Molecular , Neuralgia/etiología , Neuralgia/patología , Dimensión del Dolor , Umbral del Dolor/fisiología , Ácido Quiscuálico/toxicidad , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/inducido químicamente , Traumatismos de la Médula Espinal/complicaciones , Factores de Tiempo
9.
Dev Cell ; 28(6): 670-84, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24631402

RESUMEN

During the development of vertebrate neuromuscular junction (NMJ), agrin stabilizes, whereas acetylcholine (ACh) destabilizes AChR clusters, leading to the refinement of synaptic connections. The intracellular mechanism underlying this counteractive interaction remains elusive. Here, we show that caspase-3, the effector protease involved in apoptosis, mediates elimination of AChR clusters. We found that caspase-3 was activated by cholinergic stimulation of cultured muscle cells without inducing cell apoptosis and that this activation was prevented by agrin. Interestingly, inhibition of caspase-3 attenuated ACh agonist-induced dispersion of AChR clusters. Furthermore, we identified Dishevelled1 (Dvl1), a Wnt signaling protein involved in AChR clustering, as the substrate of caspase-3. Blocking Dvl1 cleavage prevented induced dispersion of AChR clusters. Finally, inhibition or genetic ablation of caspase-3 or expression of a caspase-3-resistant form of Dvl1 caused stabilization of aneural AChR clusters. Thus, caspase-3 plays an important role in the elimination of postsynaptic structures during the development of NMJs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Caspasa 3/metabolismo , Músculo Esquelético/metabolismo , Unión Neuromuscular/fisiología , Fosfoproteínas/metabolismo , Potenciales Sinápticos/fisiología , Transmisión Sináptica , Acetilcolina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Agrina/fisiología , Animales , Células Cultivadas , Proteínas Dishevelled , Electrofisiología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Procesamiento de Imagen Asistido por Computador , Técnicas para Inmunoenzimas , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Músculo Esquelético/citología , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Receptores Colinérgicos/metabolismo , Transducción de Señal
10.
Cold Spring Harb Perspect Biol ; 5(5): a009167, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23637281

RESUMEN

Muscle-specific kinase (MuSK) is essential for each step in neuromuscular synapse formation. Before innervation, MuSK initiates postsynaptic differentiation, priming the muscle for synapse formation. Approaching motor axons recognize the primed, or prepatterned, region of muscle, causing motor axons to stop growing and differentiate into specialized nerve terminals. MuSK controls presynaptic differentiation by causing the clustering of Lrp4, which functions as a direct retrograde signal for presynaptic differentiation. Developing synapses are stabilized by neuronal Agrin, which is released by motor nerve terminals and binds to Lrp4, a member of the low-density lipoprotein receptor family, stimulating further association between Lrp4 and MuSK and increasing MuSK kinase activity. In addition, MuSK phosphorylation is stimulated by an inside-out ligand, docking protein-7 (Dok-7), which is recruited to tyrosine-phosphorylated MuSK and increases MuSK kinase activity. Mutations in MuSK and in genes that function in the MuSK signaling pathway, including Dok-7, cause congenital myasthenia, and autoantibodies to MuSK, Lrp4, and acetylcholine receptors are responsible for myasthenia gravis.


Asunto(s)
Miastenia Gravis/genética , Síndromes Miasténicos Congénitos/genética , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores Colinérgicos/fisiología , Sinapsis/metabolismo , Agrina/metabolismo , Agrina/fisiología , Diferenciación Celular , Humanos , Proteínas Relacionadas con Receptor de LDL/química , Proteínas Relacionadas con Receptor de LDL/inmunología , Proteínas Relacionadas con Receptor de LDL/fisiología , Modelos Biológicos , Músculos/citología , Músculos/inervación , Músculos/patología , Miastenia Gravis/patología , Síndromes Miasténicos Congénitos/patología , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores Colinérgicos/química , Receptores Colinérgicos/inmunología
11.
Dev Neurobiol ; 73(5): 399-410, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23325468

RESUMEN

At the neuromuscular junction (NMJ), the postsynaptic localization of muscle acetylcholine receptor (AChR) is regulated by neural signals and occurs via several processes including metabolic stabilization of the receptor. However, the molecular mechanisms that influence receptor stability remain poorly defined. Here, we show that neural agrin and the tyrosine phosphatase inhibitor, pervanadate slow the degradation of surface receptor in cultured muscle cells. Their action is mediated by tyrosine phosphorylation of the AChR ß subunit, as agrin and pervandate had no effect on receptor half-life in AChR-ß(3F/3F) muscle cells, which have targeted mutations of the ß subunit cytoplasmic tyrosines. Moreover, in wild type AChR-ß(3Y) muscle cells, we found a linear relationship between average receptor half-life and the percentage of AChR with phosphorylated ß subunit, with half-lives of 12.7 and 23 h for nonphosphorylated and phosphorylated receptor, respectively. Surprisingly, pervanadate increased receptor half-life in AChR-ß(3Y) myotubes in the absence of clustering, and agrin failed to increase receptor half-life in AChR-ß(3F/3F) myotubes even in the presence of clustering. The metabolic stabilization of the AChR was mediated specifically by phosphorylation of ßY390 as mutation of this residue abolished ß subunit phosphorylation but did not affect δ subunit phosphorylation. Receptor stabilization also led to higher receptor levels, as agrin increased surface AChR by 30% in AChR-ß(3Y) but not AChR-ß(3F/3F) myotubes. Together, these findings identify an unexpected role for agrin-induced phosphorylation of ß(Y390) in downregulating AChR turnover. This likely stabilizes AChR at developing synapses, and contributes to the extended half-life of AChR at adult NMJs.


Asunto(s)
Agrina/fisiología , Músculo Esquelético/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Membrana Celular/metabolismo , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Semivida , Ratones , Ratones Transgénicos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Mutagénesis Sitio-Dirigida , Unión Neuromuscular/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Subunidades de Proteína , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/metabolismo , Vanadatos/farmacología
12.
Chem Biol Interact ; 203(1): 297-301, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23117006

RESUMEN

Acetylcholinesterase (AChE) and agrin play unique functional roles in the neuromuscular junction (NMJ). AChE is a cholinergic and agrin a synaptogenetic component. In spite of their different functions, they share several common features: their targeting is determined by alternative splicing; unlike most other NMJ components they are expressed in both, muscle and motor neuron and both reside on the synaptic basal lamina of the NMJ. Also, both were reported to play various nonjunctional roles. However, while the origin of basal lamina bound agrin is undoubtedly neural, the neural origin of AChE, which is anchored to the basal lamina with collagenic tail ColQ, is elusive. Hypothesizing that motor neuron proteins targeted to the NMJ basal lamina share common temporal pattern of expression, which is coordinated with the formation of basal lamina, we compared expression of agrin isoforms with the expression of AChE-T and ColQ in the developing rat spinal cord at the stages before and after the formation of NMJ basal lamina. Cellular origin of AChE-T and agrin was determined by in situ hybridization and their quantitative levels by RT PCR. We found parallel increase in expression of the synaptogenetic (agrin 8) isoform of agrin and ColQ after the formation of basal lamina supporting the view that ColQ bound AChE and agrin 8 isoform are destined to the basal lamina. Catalytic AChE-T subunit and agrin isoforms 19 and 0 followed different expression patterns. In accordance with the reports of other authors, our investigations also revealed various alternative functions for AChE and agrin. We have already demonstrated participation of AChE in myoblast apoptosis; here we present the evidence that agrin promotes the maturation of heavy myosin chains and the excitation-contraction coupling. These results show that common features of AChE and agrin extend to their capacity to play multiple roles in muscle development.


Asunto(s)
Acetilcolinesterasa/genética , Acetilcolinesterasa/fisiología , Agrina/genética , Agrina/fisiología , Animales , Células Cultivadas , Acoplamiento Excitación-Contracción , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Neuronas Motoras/fisiología , Fibras Musculares Esqueléticas/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Unión Neuromuscular/fisiología , Embarazo , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo
13.
J Cell Biol ; 198(3): 421-37, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22851317

RESUMEN

Agrin is the major factor mediating the neuronal regulation of postsynaptic structures at the vertebrate neuromuscular junction, but the details of how it orchestrates this unique three-dimensional structure remain unknown. Here, we show that agrin induces the formation of the dense network of microtubules in the subsynaptic cytoplasm and that this, in turn, regulates acetylcholine receptor insertion into the postsynaptic membrane. Agrin acted in part by locally activating phosphatidylinositol 3-kinase and inactivating GSK3ß, which led to the local capturing of dynamic microtubules at agrin-induced acetylcholine receptor (AChR) clusters, mediated to a large extent by the microtubule plus-end tracking proteins CLASP2 and CLIP-170. Indeed, in the absence of CLASP2, microtubule plus ends at the subsynaptic muscle membrane, the density of synaptic AChRs, the size of AChR clusters, and the numbers of subsynaptic muscle nuclei with their selective gene expression programs were all reduced. Thus, the cascade linking agrin to CLASP2-mediated microtubule capturing at the synaptic membrane is essential for the maintenance of a normal neuromuscular phenotype.


Asunto(s)
Agrina/fisiología , Regulación de la Expresión Génica , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Unión Neuromuscular/metabolismo , Membranas Sinápticas/metabolismo , Agrina/química , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Eliminación de Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Receptores Colinérgicos/metabolismo
14.
J Neurosci ; 32(11): 3759-64, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22423096

RESUMEN

In the adult forebrain, new interneurons are continuously generated and integrated into the existing circuitry of the olfactory bulb (OB). In an attempt to identify signals that regulate this synaptic integration process, we found strong expression of agrin in adult generated neuronal precursors that arrive in the olfactory bulb after their generation in the subventricular zone. While the agrin receptor components MuSK and Lrp4 were below detection level in neuron populations that represent synaptic targets for the new interneurons, the alternative receptor α3-Na(+)K(+)-ATPase was strongly expressed in mitral cells. Using a transplantation approach, we demonstrate that agrin-deficient interneuron precursors migrate correctly into the OB. However, in contrast to wild-type neurons, which form synapses and survive for prolonged periods, mutant neurons do not mature and are rapidly eliminated. Using in vivo brain electroporation of the olfactory system, we show that the transmembrane form of agrin alone is sufficient to mediate integration and demonstrate that excess transmembrane agrin increases the number of dendritic spines. Last, we provide in vivo evidence that an interaction between agrin and α3-Na(+)K(+)-ATPase is of functional importance in this system.


Asunto(s)
Agrina/fisiología , Neurogénesis/fisiología , Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , Transducción de Señal/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Factores de Edad , Agrina/biosíntesis , Agrina/deficiencia , Animales , Células Cultivadas , Femenino , Regulación Enzimológica de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/enzimología , Bulbo Olfatorio/enzimología , Bulbo Olfatorio/crecimiento & desarrollo , Transducción de Señal/genética , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , Sinapsis/genética
15.
Neurochem Int ; 61(6): 848-53, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22414531

RESUMEN

Development of the neuromuscular junction (NMJ) requires secretion of specific isoforms of the proteoglycan agrin by motor neurons. Secreted agrin is widely expressed in the basal lamina of various tissues, whereas a transmembrane form is highly expressed in the brain. Expression in the brain is greatest during the period of synaptogenesis, but remains high in regions of the adult brain that show extensive synaptic plasticity. The well-established role of agrin in NMJ development and its presence in the brain elicited investigations of its possible role in synaptogenesis in the brain. Initial studies on the embryonic brain and neuronal cultures of agrin-null mice did not reveal any defects in synaptogenesis. However, subsequent studies in culture demonstrated inhibition of synaptogenesis by agrin antisense oligonucleotides or agrin siRNA. More recently, a substantial loss of excitatory synapses was found in the brains of transgenic adult mice that lacked agrin expression everywhere but in motor neurons. The mechanisms by which agrin influences synapse formation, maintenance and plasticity may include enhancement of excitatory synaptic signaling, activation of the "muscle-specific" receptor tyrosine kinase (MuSK) and positive regulation of dendritic filopodia. In this article I will review the evidence that agrin regulates synapse development, plasticity and signaling in the brain and discuss the evidence for the proposed mechanisms.


Asunto(s)
Agrina/fisiología , Sistema Nervioso Central/fisiología , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Ratones , Ratones Noqueados
16.
J Cell Sci ; 125(Pt 6): 1531-43, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22328506

RESUMEN

At neuromuscular synapses, neural agrin (n-agrin) stabilizes embryonic postsynaptic acetylcholine receptor (AChR) clusters by signalling through the muscle-specific kinase (MuSK) complex. Live imaging of cultured myotubes showed that the formation and disassembly of primitive AChR clusters is a dynamic and reversible process favoured by n-agrin, and possibly other synaptic signals. Neuregulin-1 is a growth factor that can act through muscle ErbB receptor kinases to enhance synaptic gene transcription. Recent studies suggest that neuregulin-1-ErbB signalling can modulate n-agrin-induced AChR clustering independently of its effects on transcription. Here we report that neuregulin-1 increased the size of developing AChR clusters when injected into muscles of embryonic mice. We investigated this phenomenon using cultured myotubes, and found that in the ongoing presence of n-agrin, neuregulin-1 potentiates AChR clustering by increasing the tyrosine phosphorylation of MuSK. This potentiation could be blocked by inhibiting Shp2, a postsynaptic tyrosine phosphatase known to modulate the activity of MuSK. Our results provide new evidence that neuregulin-1 modulates the signaling activity of MuSK and hence might function as a second-order regulator of postsynaptic AChR clustering at the neuromuscular synapse. Thus two classic synaptic signalling systems (neuregulin-1 and n-agrin) converge upon MuSK to regulate postsynaptic differentiation.


Asunto(s)
Agrina/fisiología , Neurregulina-1/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Mioblastos/citología , Mioblastos/enzimología , Fosforilación/fisiología , Embarazo , Cultivo Primario de Células , Ratas
17.
FASEB J ; 26(2): 955-65, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22075647

RESUMEN

Neural agrin plays a pleiotropic role in skeletal muscle innervation and maturation, but its specific effects on the contractile function of aneural engineered muscle remain unknown. In this study, neonatal rat skeletal myoblasts cultured within 3-dimensional engineered muscle tissue constructs were treated with 10 nM soluble recombinant miniagrin and assessed using histological, biochemical, and functional assays. Depending on the treatment duration and onset time relative to the stage of myogenic differentiation, miniagrin was found to induce up to 1.7-fold increase in twitch and tetanus force amplitude. This effect was associated with the 2.3-fold up-regulation of dystrophin gene expression at 6 d after agrin removal and enhanced ACh receptor (AChR) cluster formation, but no change in cell number, expression of muscle myosin, or important aspects of intracellular Ca(2+) handling. In muscle constructs with endogenous ACh levels suppressed by the application of α-NETA, miniagrin increased AChR clustering and twitch force amplitude but failed to improve intracellular Ca(2+) handling and increase tetanus-to-twitch ratio. Overall, our studies suggest that besides its synaptogenic function that could promote integration of engineered muscle constructs in vivo, neural agrin can directly promote the contractile function of aneural engineered muscle via mechanisms distinct from those involving endogenous ACh.


Asunto(s)
Agrina/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Ingeniería de Tejidos , Acetilcolina/metabolismo , Agrina/fisiología , Animales , Señalización del Calcio/efectos de los fármacos , Recuento de Células , Células Cultivadas , Distrofina/genética , Contracción Isométrica/efectos de los fármacos , Contracción Isométrica/fisiología , Músculo Esquelético/citología , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/fisiología , Miosinas/metabolismo , Ratas , Receptores Colinérgicos/metabolismo , Proteínas Recombinantes/farmacología , Solubilidad , Regulación hacia Arriba/efectos de los fármacos
19.
Blood ; 118(10): 2733-42, 2011 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-21653324

RESUMEN

Hematopoiesis is the process leading to the sustained production of blood cells by hematopoietic stem cells (HSCs). Growth, survival, and differentiation of HSCs occur in specialized microenvironments called "hematopoietic niches," through molecular cues that are only partially understood. Here we show that agrin, a proteoglycan involved in the neuromuscular junction, is a critical niche-derived signal that controls survival and proliferation of HSCs. Agrin is expressed by multipotent nonhematopoietic mesenchymal stem cells (MSCs) and by differentiated osteoblasts lining the endosteal bone surface, whereas Lin(-)Sca1(+)c-Kit(+) (LSK) cells express the α-dystroglycan receptor for agrin. In vitro, agrin-deficient MSCs were less efficient in supporting proliferation of mouse Lin(-)c-Kit(+) cells, suggesting that agrin plays a role in the hematopoietic cell development. These results were indeed confirmed in vivo through the analysis of agrin knockout mice (Musk-L;Agrn(-/-)). Agrin-deficient mice displayed in vivo apoptosis of CD34(+)CD135(-) LSK cells and impaired hematopoiesis, both of which were reverted by an agrin-sufficient stroma. These data unveil a crucial role of agrin in the hematopoietic niches and in the cross-talk between stromal and hematopoietic stem cells.


Asunto(s)
Agrina/fisiología , Proliferación Celular , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Nicho de Células Madre , Animales , Western Blotting , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Células Cultivadas , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Técnicas para Inmunoenzimas , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/citología , Osteoblastos/metabolismo , ARN Mensajero/genética , Receptores de Factores de Crecimiento , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
20.
Birth Defects Res A Clin Mol Teratol ; 91(3): 129-41, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21308976

RESUMEN

BACKGROUND: Alcohol (ethanol) is a teratogen known to affect the developing eyes, face, and brain. Among the ocular defects in fetal alcohol spectrum disorder (FASD) are microphthalmia and optic nerve hypoplasia. Employing zebrafish as an FASD model provides an excellent system to analyze the molecular basis of prenatal ethanol exposure-induced defects because embryos can be exposed to ethanol at defined developmental stages and affected genetic pathways can be examined. We have previously shown that disruption of agrin function in zebrafish embryos produces microphthalmia and optic nerve hypoplasia. METHODS: Zebrafish embryos were exposed to varying concentrations of ethanol in the absence or presence of morpholino oligonucleotides (MOs) that disrupt agrin function. In situ hybridization was used to analyze ocular gene expression as a consequence of ethanol exposure and agrin knockdown. Morphologic analysis of zebrafish embryos was also conducted. RESULTS: Acute ethanol exposure induces diminished agrin gene expression in zebrafish eyes and, importantly, combined treatment with subthreshold levels of agrin MO and ethanol produces pronounced microphthalmia, markedly reduces agrin gene expression, and perturbs Pax6a and Mbx gene expression. Microphthalmia produced by combined agrin MO and ethanol treatment was rescued by sonic hedgehog (Shh) mRNA overexpression, suggesting that ethanol-mediated disruption of agrin expression results in disrupted Shh function. CONCLUSIONS: These studies illustrate the strong potential for using zebrafish as a model to aid in defining the molecular basis for ethanol's teratogenic effects. The results of this work suggest that agrin expression and function may be a target of ethanol exposure during embryogenesis.


Asunto(s)
Agrina/fisiología , Etanol/farmacología , Ojo/efectos de los fármacos , Ojo/embriología , Pez Cebra/embriología , Agrina/genética , Agrina/metabolismo , Animales , Animales Modificados Genéticamente , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Embrión no Mamífero , Exposición a Riesgos Ambientales , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/fisiología , Microftalmía/inducido químicamente , Microftalmía/genética , Microftalmía/patología , Oligorribonucleótidos Antisentido/farmacología , Fenotipo , Pez Cebra/genética , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...