Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.883
Filtrar
1.
Acta Cir Bras ; 39: e392124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629652

RESUMEN

PURPOSE: To evaluate the effects of curcumin supplementation on abdominal surgical wound healing in rats using clinical, histological, and hematological parameters. METHODS: Forty Wistar rats were randomly divided into two groups: the curcumin group, and the control group. The curcumin group received, in addition to water and standard feed, curcumin via gavage at the dose of 200 mg/kg for seven days preceding and seven days following surgery. The control group received only water and standard feed. Both groups underwent median laparotomy and left colotomy. On the eighth postoperative day, the groups were euthanized, and the left colon was resected for histological analysis. RESULTS: In the preoperative evaluation, there was a significant decrease in the mean C-reactive protein levels in the curcumin group (0.06) compared to the control group (0.112) (p = 0.0001). In the postoperative wound healing assessment, a significant decrease was observed in inflammatory infiltrate (p = 0.0006) and blood vessel count (p = 0.0002) in the curcumin group compared to the control group. CONCLUSIONS: Curcumin supplementation was able to significantly reduce inflammatory parameters in both pre-and post-operative phases of abdominal surgical wounds in rats.


Asunto(s)
Curcumina , Herida Quirúrgica , Ratas , Animales , Curcumina/farmacología , Ratas Wistar , Herida Quirúrgica/tratamiento farmacológico , Cicatrización de Heridas , Agua/farmacología , Suplementos Dietéticos
2.
Int J Biol Macromol ; 265(Pt 2): 131398, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38599903

RESUMEN

This research aimed to assess the effects of flaxseed mucilage (Mu) coatings supplemented with postbiotics (P) obtained from Lactobacillus acidophilus LA-5 on various physical, biochemical, and microbial characteristics of strawberry fruits. Strawberry fruits were immersed for 2 min in Mu2.5 (2.5 % mucilage in distilled water), Mu5 (5 % mucilage in distilled water), P-Mu2.5 (2.5 % mucilage in undiluted postbiotics) and P-Mu5 (5 % mucilage in undiluted postbiotics) solutions and were stored at 4 °C and 85 RH for 12 days. All coatings were effective in reducing fungal count compared to the uncoated control fruits. Mu5 coating exhibited the highest efficacy, reducing fungal count by 2.85 log10 CFU/g, followed by Mu2.5 (1.47 log10 CFU/g reduction) and P-Mu2.5 groups (0.90 log10 CFU/g reduction). The fruits coated with edible coatings showed significant delays in the change of weight loss, pH, and total soluble solids as compared to the uncoated fruits. The coating containing postbiotics i.e., P-Mu5 also showed a significant increase in the total phenolic contents, total flavonoid content, antioxidant capacity, and total anthocyanin content at the end of storage relative to the uncoated fruits. Thus, Mu and P-Mu coatings may be a useful approach to maintaining the postharvest quality of strawberry fruits during cold storage.


Asunto(s)
Lino , Fragaria , Conservación de Alimentos , Almacenamiento de Alimentos , Fragaria/química , Polisacáridos/farmacología , Agua/farmacología
3.
PeerJ ; 12: e17190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560461

RESUMEN

Maize production and productivity are affected by drought stress in tropical and subtropical ecologies, as the majority of the area under maize cultivation in these ecologies is rain-fed. The present investigation was conducted to study the physiological and biochemical effects of 24-Epibrassinolide (EBR) as a plant hormone on drought tolerance in maize. Two maize hybrids, Vivek hybrid 9 and Bio 9637, were grown under three different conditions: (i) irrigated, (ii) drought, and (iii) drought+EBR. A total of 2 weeks before the anthesis, irrigation was discontinued to produce a drought-like condition. In the drought+EBR treatment group, irrigation was also stopped, and in addition, EBR was applied as a foliar spray on the same day in the drought plots. It was observed that drought had a major influence on the photosynthesis rate, membrane stability index, leaf area index, relative water content, and leaf water potential; this effect was more pronounced in Bio 9637. Conversely, the activities of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) increased in both hybrids under drought conditions. Specifically, Vivek hybrid 9 showed 74% higher CAT activity under drought conditions as compared to the control. Additionally, EBR application further enhanced the activity of this enzyme by 23% compared to plants under drought conditions. Both hybrids experienced a significant reduction in plant girth due to drought stress. However, it was found that exogenously applying EBR reduced the detrimental effects of drought stress on the plant, and this effect was more pronounced in Bio 9637. In fact, Bio 9637 treated with EBR showed an 86% increase in proline content and a 70% increase in glycine betaine content compared to untreated plants under drought conditions. Taken together, our results suggested EBR enhanced tolerance to drought in maize hybrids. Hence, pre-anthesis foliar application of EBR might partly overcome the adverse effects of flowering stage drought in maize.


Asunto(s)
Brasinoesteroides , Esteroides Heterocíclicos , Estrés Fisiológico , Zea mays , Sequías , Antioxidantes/farmacología , Agua/farmacología
4.
Sci Rep ; 14(1): 7971, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575637

RESUMEN

This study was divided into two parts. The first part involved the isolation, and detection of the prevalence and antimicrobial resistance profile of Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio species from Nile tilapia fish and marine aquatic water. One hundred freshly dead Nile tilapia fish were collected from freshwater aquaculture fish farms located in Al-Abbassah district, Sharkia Governorate, and 100 samples of marine aquatic water were collected from fish farms in Port Said. The second part of the study focused on determining the in vitro inhibitory effect of dual-combination of AgNPs-H2O2 on bacterial growth and its down regulatory effect on crucial virulence factors using RT-PCR. The highest levels of A. hydrophila and P. aeruginosa were detected in 43%, and 34% of Nile tilapia fish samples, respectively. Meanwhile, the highest level of Vibrio species was found in 37% of marine water samples. Additionally, most of the isolated A. hydrophila, P. aeruginosa and Vibrio species exhibited a multi-drug resistance profile. The MIC and MBC results indicated a bactericidal effect of AgNPs-H2O2. Furthermore, a transcriptional modulation effect of AgNPs-H2O2 on the virulence-associated genes resulted in a significant down-regulation of aerA, exoU, and trh genes in A. hydrophila, P. aeruginosa, and Vibrio spp., respectively. The findings of this study suggest the effectiveness of AgNPs-H2O2 against drug resistant pathogens related to aquaculture.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Nanopartículas del Metal , Animales , Peróxido de Hidrógeno/farmacología , Plata/farmacología , Explotaciones Pesqueras , Antibacterianos/farmacología , Pseudomonas aeruginosa/genética , Agua/farmacología , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Aeromonas hydrophila
5.
Anat Histol Embryol ; 53(3): e13032, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38525664

RESUMEN

The objective of this study is to assess the efficacy of a solution including honey, ethyl alcohol, liquid paraffin, distilled water and citric acid (HEFS) as a preservative for rabbit cadavers, serving as a potential substitute for formaldehyde. The cadavers underwent preservation using three distinct solutions: 10% formalin, 35% alcohol and HEFS. The cadavers were subjected to a total of four sampling events, occurring at 4-month intervals, in order to collect specimens for microanatomical, histological, microbiological, mycological, colourimetric, texture and odour analysis. In terms of hardness, suitability for dissection and joint mobility metrics, the cadavers fixed with HEFS had superior qualities to those fixed with formalin. The fixation quality of HEFS for histological analyses was deemed acceptable, except kidney and intestinal tissues. In texture analysis, differences only in the elasticity parameter (p < 0.05) in the same sampling period. A total of 10 (13.9) bacteria isolates were identified among which, Metasolibacillus meyeri 3 (30%) was predominantly followed by Staphylococcus aureus 2 (20%), Bacillus siamensis, Bacillus subtilis, Pseudarthrobacter oxydans, Bacillus licheniformis, Bacillus subtilis subsp. subtilis with a proportion of 1 (10%), respectively, by both microbiological and molecular analysis. However, no anaerobic bacteria and fungi were isolated. A considerable percentage of the students had the perception that HEFS was appropriate for utilization in laboratory settings due to its absence of unpleasant odours and detrimental impact on ocular and respiratory functions. In conclusion, we consider that HEFS may serve as a viable substitute for formalin solution in the preservation of rabbit cadavers.


Asunto(s)
Bacillus , Miel , Aceite Mineral , Humanos , Animales , Conejos , Etanol , Ácido Cítrico/farmacología , Formaldehído/farmacología , Cadáver , Agua/farmacología , Fijadores/farmacología
6.
Chemosphere ; 353: 141576, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462180

RESUMEN

Bullfrog tadpoles, Aquarana catesbeiana, were exposed to settleable particulate matter (SePM), (1 g L-1, 96 h) and their organs were collected for analysis of metal/metalloid, oxidative stress and neurotoxicity in liver, muscle, kidney and brain. The SePM water of the exposed groups contained 18 of the 28 metals/metalloids detected in ambient particulate matter (APM). Fe56 and Al were those that presented the highest concentrations, Cr, Mn, Pb and Cu increased from 10 to 20 times and Ti, V, Sr, Rb, Cd, Sn and Ni increased from 1 to 3 times compared to the control. Bioaccumulation of metals/metalloids in the exposure water varied significantly between organs, with the muscle and liver showing the highest concentrations of metals, followed by the brain. Lipoperoxidation and malondialdehyde increased only in muscle, while carbonyl proteins increased only in the liver and brain. Regarding nitric oxide synthase, there was an increase in the liver and brain in the group exposed to SePM. Catalase activity decreased in the liver and muscle, while the activity of glutathione peroxidase, increased in the liver and kidney and decreased in muscle. Glutathione S-transferase, which is mainly responsible for detoxification, increased in the liver and decreased in muscle and the kidney. Cholinesterase activity increased only in the muscle. The results indicate oxidative stress, due to oxidation catalyzed by metals, components of SePM. Thus, the results contribute to the understanding that SePM has a deleterious effect on the aquatic environment, negatively affecting bullfrog tadpoles, in different ways and levels in relation to the analyzed organs.


Asunto(s)
Metaloides , Contaminantes Químicos del Agua , Animales , Rana catesbeiana , Material Particulado/análisis , Larva , Metales/análisis , Estrés Oxidativo , Agua/farmacología , Metaloides/análisis , Contaminantes Químicos del Agua/análisis
7.
Molecules ; 29(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543011

RESUMEN

Artemisia japonica Thunb. has been used as a traditional Chinese medicine and a vegetable for thousands of years in China. However, there are few reports on the chemical composition and biological activity of its leaves. Thus, this study aimed to evaluate the chemical composition, antioxidant and anti-inflammatory effects of water extracts of A. japonica leaves and their underlying mechanisms. A total of 48 compounds were identified in the water extract using UPLC-QTOF-MS2 analysis, with phenolic acids, particularly chlorogenic acid compounds, being the predominant components. The ethyl acetate fraction (EAF) contained most of the total phenolic content (385.4217 mg GAE/g) and displayed superior antioxidant capacity with the IC50DPPH•, IC50ABTS•+, and OD0.5reducing power at 10.987 µg/mL, 43.630 µg/mL and 26.883 µg/mL, respectively. Furthermore, EAF demonstrated potent antioxidant and anti-inflammatory effects in LPS-induced RAW264.7 cells by upregulating the Nrf2/HO-1 signal pathway. These findings highlight that A. japonica leaves possess remarkable abilities to mitigate inflammation and oxidative stress, suggesting their potential utilization as medicinal agents and food additives for promoting human health.


Asunto(s)
Antioxidantes , Artemisia , Humanos , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Lipopolisacáridos/farmacología , Extractos Vegetales/química , Artemisia/metabolismo , Transducción de Señal , Estrés Oxidativo , Antiinflamatorios/farmacología , Agua/farmacología , Células RAW 264.7
8.
J Clin Pediatr Dent ; 48(2): 19-25, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38548629

RESUMEN

This study aims to investigate the impact of storage conditions for crown fragments (specifically, whether they were stored within a tooth rescue box or in tap water) on their adhesion to fractured teeth when subjected to two different adhesive systems (namely, total etch and self etch). Sixty maxillary premolars were sectioned to obtain tooth fragments. These fragments were stored briefly (2 hours) and reattached in the following groups: Group 1 (fragments stored in tooth rescue box and reattached with etch and rinse (E&R) technique), Group 2 (fragments stored in tap water and reattached with E&R technique), Group 3 (fragments stored in tooth rescue box and reattached with self-etch (SE) technique), and Group 4 (fragments stored in tap water and reattached SE technique). After reattachment, the bonded tooth fragments underwent thermal cycling (500 cycles, 5-55 °C) and bond strength testing using a universal testing machine. Two-way Analysis of Variance (ANOVA) and Tukey's tests were used for bond strength comparison (p ≤ 0.05). A two-parameter Weibull distribution was conducted to evaluate the reliability of the storage medium and adhesion modality on bond strength. The results showed that measured shear bond values (MPa ± Standard deviation (SD); arranged in descending order) for each group were: Group 2 (Tap water/E&R = 6.5 ± 2.1), Group 1 (Rescue box/E&R = 6.0 ± 2.5), Group 4 (Tap water/E&R = 5.1 ± 2.8), and Group 3 (Rescue box/SE = 3.6 ± 3.2). Significant differences were found only between Groups 2 and 3 (p = 0.002). In conclusion, storing crown fragments in a tooth rescue box did not significantly affect the shear bond strength of the restored tooth. However, fragments reattached using the self-etch technique showed comparable shear bond strength but a higher rate of adhesive failures compared to the E&R technique.


Asunto(s)
Recubrimiento Dental Adhesivo , Fracturas de los Dientes , Humanos , Reproducibilidad de los Resultados , Resinas Compuestas/química , Resinas Compuestas/farmacología , Agua/farmacología , Recubrimiento Dental Adhesivo/métodos , Cementos de Resina/química , Cementos de Resina/farmacología , Ensayo de Materiales , Resistencia al Corte , Recubrimientos Dentinarios/química , Recubrimientos Dentinarios/farmacología , Dentina
9.
J Agric Food Chem ; 72(11): 5609-5624, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38467054

RESUMEN

This study investigates the impact of plasma-seed interaction on germination and early plant development, focusing on Arabidopsis thaliana and Brassica napus. The investigation delves into changes in chemical composition, water absorption, and surface morphology induced by plasma filaments generated in synthetic air. These analyses were conducted using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Although plasma treatment enhanced water absorption and modified surface chemistry, its impact on germination demonstrated species- and context-dependent variations. Notably, the accelerated germination and morphogenesis of seedlings in microbiome-enriched (MB+) soil could be achieved also in microbiome-deprived (MB-) soil by short-term plasma treatment of seeds. Remarkably, the positive effects of plasma treatment on early developmental events (germination, morphogenesis) and later events (formation of inflorescences) were more pronounced in the context of MB- soil but were accompanied by a slight decrease in disease resistance, which was not detected in MB+ soil. The results underscore the intricate dynamics of plasma-plant interactions and stress the significance of accounting for the soil microbiome while designing experiments with potential field application.


Asunto(s)
Arabidopsis , Germinación , Suelo , Semillas , Plantones , Agua/farmacología
10.
Theriogenology ; 219: 132-137, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430797

RESUMEN

Infectious endometritis is considered one of the major causes of infertility and it can affect up to 60% of barren mares. It is characterized by the presence of one or more microorganisms in the reproductive tract and it is treated with the administration of antibiotics, ecbolic agents and uterine lavages. Ozone, thanks to its antimicrobial properties that are based on its high oxidative potential, could represent an effective alternative treatment for endometritis. The aim of this study was to test in vitro the bactericidal and fungicidal properties of different ozone formulations, either as gas (experiment 1) or dissolved in two liquid matrices (experiment 2), specifically distilled water or oil (Neozone 4000, Cosmoproject, Parma, Italy), onto 6 different species of microorganisms isolated from mares with clinical endometritis, namely Escherichia coli, Staphylococcus aureus, Streptococcus equi subsp. Zooepidemicus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Candida albicans. In the first experiment, 3 clinical antibiotic-resistant strains per each species were exposed to different conditions: to O2O3 gas mixtures (15 and 40 µg/ml for 1, 3 and 5 min), to 100 % O2 or left untreated. The results showed a reduction of the microbial count of over 99,9% for every pathogen, time and concentration of O2O3 gas mixtures tested. Furthermore, gaseous ozone showed both a time-dependant effect (5 vs 3 vs 1 min of exposure) and a concentration-dependant effect (40 vs 15 µg/ml) at 1 and 3 min, while after 5 min no differences were observed. In the second experiment, minimum inhibitory concentration (MIC), and minimum bactericidal/fungicidal concentration (MBC, MFC) of ozonated distilled water and ozonated oil were evaluated. Ozonated oil showed a bactericidal/fungicidal activity against all the strains tested (MIC range 12.5-25 % v/v, MBC/MFC range 12.5-50 % v/v) while ozonated distilled water didn't show an observable antimicrobial effect, discouraging its use as an antimicrobial agent for the treatment of endometritis. The results of this in vitro study indicate that both gaseous ozone and ozonated oil exerted remarkable antimicrobial activities and are promising alternative treatments for infectious endometritis, even when caused by antibiotic-resistant bacteria, and encourage further experiments in an effort to scale down or even prevent the use of antibiotics in equine reproduction.


Asunto(s)
Antiinfecciosos , Endometritis , Enfermedades de los Caballos , Ozono , Caballos , Animales , Femenino , Endometritis/tratamiento farmacológico , Endometritis/veterinaria , Endometritis/microbiología , Ozono/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Agua/farmacología , Enfermedades de los Caballos/tratamiento farmacológico , Enfermedades de los Caballos/microbiología
11.
Chemosphere ; 355: 141810, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554872

RESUMEN

Climate change, including global warming, leads to rising temperatures in aquatic ecosystems, which is one of the numerous repercussions it brings. Furthermore, water warming can indirectly impact aquatic organisms by modifying the toxicity levels of pollutants. Nevertheless, numerous studies have explored the potential impacts of chemical stress on aquatic biota, but little is known about how such chemicals and toxins interact with climate change factors, especially elevated temperatures. As such, this review paper focuses on exploring the potential effects of thermochemical stress on a wide sector of aquatic organisms, including aquatic vertebrates and invertebrates, in various aquatic ecosystems (freshwater and marine systems). Herein, the objective of this study is to explore the most up-to-date the impact of water warming (without chemical stress) and thermochemical stress on various biochemical and physiological processes in aquatic fauna and how this greatly affects biodiversity and sustainability. Therefore, there is a growing need to understand and evaluate this synergistic mechanism and its potential hazardous impacts. However, we need further investigations and scientific reports to address this serious environmental issue in order to confront anthropogenic pollutants regarding climate change and chemical pollution risks in the near future and subsequently find sustainable solutions for them.


Asunto(s)
Ecosistema , Contaminantes Ambientales , Animales , Cambio Climático , Biota , Organismos Acuáticos , Agua/farmacología , Contaminantes Ambientales/farmacología
12.
J Occup Environ Hyg ; 21(4): 259-269, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38447033

RESUMEN

Legionella pneumophila, the leading cause of Legionnaires' disease in the United States, is found in lakes, ponds, and streams but poses a health risk when it grows in building water systems. The growth of L. pneumophila in hot water systems of healthcare facilities poses a significant risk to patients, staff, and visitors. Hospitals and long-term care facilities account for 76% of reported Legionnaires' disease cases with mortality rates of 25%. Controlling L. pneumophila growth in hot water systems serving healthcare and hospitality buildings is currently achieved primarily by adding oxidizing chemical disinfectants. Chemical oxidants generate disinfection byproducts and can accelerate corrosion of premise plumbing materials and equipment. Alternative control methods that do not generate hazardous disinfection byproducts or accelerate corrosion are needed. L. pneumophila is an obligate aerobe that cannot sustain cellular respiration, amplify, or remain culturable when dissolved oxygen (DO) concentrations are too low (< 0.3 mg/L). An alternative method of controlling L. pneumophila growth by reducing DO levels in a hot water model system using a gas transfer membrane contactor was evaluated. A hot water model system was constructed and inoculated with L. pneumophila at DO concentrations above 0.5 mg/L. Once the model system was colonized, DO levels were incrementally reduced. Water samples were collected each week to evaluate the effect of reducing dissolved oxygen levels when all other conditions favored Legionella amplification. At DO concentrations below 0.3 mg/L, L. pneumophila concentrations were reduced by 1-log over 7 days. Under conditions in the hot water model system, at favorable temperatures and with no residual chlorine disinfectant, L. pneumophila concentrations were reduced by 1-log, indicating growth inhibition by reducing DO levels as the sole control measure. In sections of the model system where DO levels were not lowered L. pneumophila continued to grow. Reducing dissolved oxygen levels in hot water systems of healthcare and other large buildings to control L. pneumophila could also lower the risk of supplemental chemical treatment methods currently in use.


Asunto(s)
Desinfectantes , Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Humanos , Enfermedad de los Legionarios/prevención & control , Abastecimiento de Agua , Ingeniería Sanitaria , Desinfectantes/farmacología , Agua/farmacología , Microbiología del Agua , Calor
13.
J Biomed Mater Res B Appl Biomater ; 112(4): e35403, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520706

RESUMEN

For decades, titanium implants have shown impressive advantages in bone repair. However, the preparation of implants with excellent antimicrobial properties as well as better osseointegration ability remains difficult for clinical application. In this study, black phosphorus nanosheets (BPNSs) were doped into hydroxyapatite (HA) coatings using electrophoretic deposition. The coatings' surface morphology, roughness, water contact angle, photothermal properties, and antibacterial properties were investigated. The BP/HA coating exhibited a surface roughness of 59.1 nm, providing an ideal substrate for cell attachment and growth. The water contact angle on the BP/HA coating was measured to be approximately 8.55°, indicating its hydrophilic nature. The BPNSs demonstrated efficient photothermal conversion, with a temperature increase of 42.2°C under laser irradiation. The BP/HA composite coating exhibited a significant reduction in bacterial growth, with inhibition rates of 95.6% and 96.1% against Staphylococcus aureus and Escherichia coli. In addition, the cytocompatibility of the composite coating was evaluated by cell adhesion, CCK8 and AM/PI staining; the effect of the composite coating in promoting angiogenesis was assessed by scratch assay, transwell assay, and protein blotting; and the osteoinductivity of the composite coating was evaluated by alkaline phosphatase assay, alizarin red staining, and Western blot. The results showed that the BP/HA composite coating exhibited superior performance in promoting biological functions such as cell proliferation and adhesion, antibacterial activity, osteogenic differentiation, and angiogenesis, and had potential applications in vascularized bone regeneration.


Asunto(s)
Durapatita , Titanio , Durapatita/farmacología , Durapatita/química , Titanio/farmacología , Titanio/química , Oseointegración , Osteogénesis , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Antibacterianos/farmacología , Agua/farmacología , Propiedades de Superficie
14.
J Biomater Appl ; 38(9): 943-956, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462970

RESUMEN

Bletilla striata polysaccharide (BSP) was added to curdlan to form a blend hydrogel through a simple heating-cooling procedure to improve the hydrophilicity and healing efficacy of curdlan-based hydrogel used in wound healing. We explored the interplay between BSP and curdlan, studied how BSP concentration affects the physical properties and microstructures of hydrogels, and examined the biocompatibility and healing properties of the blend hydrogel. It was proved that the hydrogel framework was primarily formed by ordered arranged curdlan molecules, with BSP uniformly dispersed and intertwined with curdlan through hydrogen bonding. This effectively improved its hydrophilicity and strengthened the microstructure. Curdlan was found to be compatible with BSP. The blend hydrogel B3Cd3 (containing 1.5% BSP and 1.5% curdlan, w/v) was identified as the optimal formulation based on its higher water adsorption, water retention, thermal stability and interconnected microstructure, and was thus selected for further research. In vitro experiments revealed the highest cell viability of L929 in B3Cd3 extracts compared to those extracts of single-component curdlan hydrogel (Cd). In vivo, animal studies indicated that the B3Cd3 accelerated wound healing compared to the control group by improving re-epithelialization and blood vessel regeneration. On Days 3 and 11, the therapeutic benefits of B3Cd3 exceeded those of the Cd group, and no significant differences were observed in wound healing rates between the B and B3Cd3 groups from Day 7. The study proves that BSP enhances the physical and healing properties, as well as cell proliferation, of the curdlan-based hydrogel. The blend hydrogel B3Cd3, with its exceptional properties, holds potential for future application as a material for non-infected wound healing.


Asunto(s)
Hidrogeles , Orchidaceae , beta-Glucanos , Animales , Hidrogeles/farmacología , Cadmio/farmacología , Cicatrización de Heridas , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Orchidaceae/química , Agua/farmacología
15.
J Food Sci ; 89(4): 2025-2039, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38465674

RESUMEN

Microbial contamination of dehydrated onion products is a challenge to the industry. The study focused on opting for a suitable drying condition for minced onion and exploring the decontamination efficacy of pulsed light (PL) treatment conditions for the dehydrated product. The minced onions were hot air dried at 55-75°C for 280 min. The drying condition selected was 195 min at 75°C with a final water activity of 0.5 and moisture content of 7% (wet basis [w.b.]). The weight losses, browning indexes (BI), shrinkage volumes (%), and thiosulfinate content were considered. The dehydrated product was exposed to PL treatment corresponding to an effective fluence range of 0.007-0.731 J/cm2. A fluence of 0.444 J/cm2 (1.8 kV for 150 s) achieved 5.00, 3.14, 2.96, and 2.98 log reduction in total plate count, yeast and mold count, Bacillus cereus 10876, and Escherichia coli ATCC 43888, respectively. The PL-treated sample (0.444 J/cm2) produced a microbially safe product with no significant difference in the moisture contents (%w.b.) and water activity (aw) from the untreated dehydrated sample. Further, a 30.9% increase in the BI and a 4.25% depletion in thiosulfinate content were observed after PL treatment. An optimum drying combination (75°C for 195 min) of minced onion followed by decontamination using pulsed light treatment at 0.444 J/cm2 fluence satisfies the microbial safety and quality. PRACTICAL APPLICATION: Dehydrated minced onion can be used for dishes requiring low water content and short cooking time. It is helpful during shortages, high price fluctuations, and famines.


Asunto(s)
Escherichia coli O157 , Cebollas , Microbiología de Alimentos , Recuento de Colonia Microbiana , Descontaminación , Deshidratación , Agua/farmacología , Luz
16.
J Hazard Mater ; 469: 134000, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508107

RESUMEN

The ubiquitous presence of water-soluble polymers (WSPs) in freshwater environments raises concerns regarding potential threats to aquatic organisms. This study investigated, for the first time, the effects of widely used WSPs -polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylic acid (PAA), and polyethylene glycol (PEG)- using a multi-level approach in the freshwater biological model Daphnia magna. This integrated assessment employed a suite of biomarkers, evaluation of swimming behaviour, and proteomic analysis to investigate the effects of three environmentally relevant concentrations (0.001, 0.5, and 1 mg/L) of the tested WSPs from molecular to organismal levels, assessing both acute and chronic effects. Our findings reveal that exposure to different WSPs induces specific responses at each biological level, with PEG being the only WSP inducing lethal effects at 0.5 mg/L. At the physiological level, although all WSPs impacted both swimming performance and heart rate of D. magna specimens, PAA exhibited the greatest effects on the measured behavioural parameters. Furthermore, proteomic analyses demonstrated altered protein profiles following exposure to all WSPs, with PVA emerging as the most effective.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Animales , Agua/farmacología , Polímeros/toxicidad , Daphnia magna , Proteoma , Proteómica , Daphnia , Contaminantes Químicos del Agua/toxicidad
17.
Int Immunopharmacol ; 131: 111776, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38471363

RESUMEN

The aim of this study is to explore the potential of repurposing the antiarthritic drug diacerein (DCN) against diclofenac (DCF)-induced acute nephrotoxicity in rats. Rats were divided into four groups: Group I (CTRL) served as the negative control; Group II (DCF) served as the positive control and was injected with DCF (50 mg/kg/day) for three consecutive days (fourth-sixth) while being deprived of water starting on day 5; Group III (DCF + DCN50) and Group IV (DCF + DCN100) were orally administered DCN (50 and 100 mg/kg/day, respectively) for six days and injected with DCF, while being deprived of water as described above. Changes in kidney function biomarkers were assessed. Levels of MDA and GSH along with NO content in kidney tissues were measured as indicators of oxidative stress status. Histopathological changes of the renal cortex and medulla were evaluated. Changes in renal NF-κB and SIRT-1 levels were immunohistochemically addressed. Western blotting was used to estimate the relative expressions of HIF-1α, p53, and active caspase-3. Our results showed that DCN inhibited kidney dysfunction and suppressed oxidative stress, which were reflected in improved kidney architecture, including less tubular degeneration and necrosis in the cortex and medulla. Interestingly, DCN reduced renal HIF-1α, p53, and active caspase-3 expression and NF-κB activation while increasing renal SIRT1 expression. In conclusion, for the first time, DCN counteracts acute kidney injury induced by DCF in rats by its anti-oxidative, anti-inflammatory, antinecrotic, and anti-apoptotic effects in a dose-dependent manner, which are mainly via targeting SIRT1/HIF-1α/NF-κB and SIRT1/p53 regulatory axes.


Asunto(s)
Diclofenaco , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Diclofenaco/uso terapéutico , Caspasa 3/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Sirtuina 1/metabolismo , Apoptosis , Riñón , Estrés Oxidativo , Agua/metabolismo , Agua/farmacología
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 190-197, 2024 Jan 20.
Artículo en Chino | MEDLINE | ID: mdl-38322514

RESUMEN

Objective: To create a novel chitosan antibacterial hemostatic sponge (NCAHS) and to evaluate its material and biological properties. Methods: Chitosan, a polysaccharide, was used as the sponge substrate and different proportions of sodium tripolyphosphate (STPP), glycerol, and phenol sulfonyl ethylamine were added to prepare the sponges through the freeze-drying method. The whole-blood coagulation index (BCI) was used as the screening criterion to determine the optimal concentrations of chitosan and the other additives and the hemostatic sponges were prepared accordingly. Zein/calcium carbonate (Zein/CaCO3) composite microspheres loaded with ciprofloxacin hydrochloride were prepared and added to the hemostatic sponges to obtain NCAHS. Scanning electron microscope was used to observe the microscopic morphology and porosity of the NCAHS. The water absorption rate, in vitro antibacterial susceptibility rate against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), in vitro coagulation performance, and hemocompatibility of NCAHS were examined. The coagulation performance of NCAHS was evaluated by using rabbit liver injury and rabbit auricular artery hemorrhageear models and commercial hemostatic sponge (CHS) was used as a control. The in vivo biocompatibility, including such aspects as cytotoxicity, skin irritation in animals, and acute in vivo toxicity, of the NCAHS extracts was examined by using as a reference the national standards for biological evaluation of medical devices. Results: The NCAHS prepared with 1.5% chitosan (W/V), 0.01% STPP (W/V), 0% glycerol (V/V), 0.15% phenol-sulfonyl-ethylamine (V/V), Zein and CaCO3 at the mixing ratio of 5∶1 (W/W), Zein at the final mass concentration of 2.5 g/L, and ethanol at the final concentration of 17.5% (V/V) were fine and homogeneous, possessing a honeycomb-like porous structure with a pore size of about 200 µm. The NCAHS thus prepared had the lowest BCI value. The water absorption ([2362.16±201.15] % vs. [1102.56±91.79]%) and in vitro coagulation performance (31.338% vs. 1.591%) of NCAHS were significantly better than those of CHS (P<0.01). Tests with the in vivo auricular artery hemorrhage model ([36.00±13.42] s vs. [80.00±17.32] s) and rabbit liver bleeding model ([30.00±0] s vs. [70.00±17.32] s) showed that the hemostasis time of NCAHS was significantly shorter than that of CHS (P<0.01). NCAHS had significant inhibitory ability against S. aureus and E. coli. In addition, NCAHS showed good in vitro and in vivo biocompatibility. Conclusion: NCAHS is a composite sponge that shows excellent antimicrobial properties, hemostatic effect, and biocompatibility. Therefore, its extensive application in clinical settings is warranted.


Asunto(s)
Quitosano , Hemostáticos , Zeína , Animales , Conejos , Quitosano/química , Hemostáticos/farmacología , Escherichia coli , Glicerol/farmacología , Staphylococcus aureus , Zeína/farmacología , Hemostasis , Antibacterianos/farmacología , Hemorragia , Agua/farmacología , Etilaminas/farmacología , Fenoles/farmacología
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 217-223, 2024 Jan 20.
Artículo en Chino | MEDLINE | ID: mdl-38322511

RESUMEN

Objective: To observe the effect of using hydrogen peroxide in periodic disinfection combining with continuous disinfection of dental unit waterlines and to provide references for the selection of waterway disinfection measures. Methods: A total of 4 dental units in a hospital of stomatology were selected through convenience sampling. The dental unit waterlines received periodic disinfection once every 4 weeks in addition to continuous disinfection (When the dental units were not used for more than 3 days, an additional periodic disinfection would be performed.). Periodic disinfection referred to filling up the waterlines with a disinfectant solution (1.4% hydrogen peroxide) by using the waterline disinfection device that came with the dental unit, immersing for 24 hours, and then emptying out the disinfectant solution. Continuous disinfection referred to using hydrogen peroxide at a concentration of 0.014% as dental treatment water and using it to flush the waterlines for 2 minutes before any dental treatment in the morning and to flush the waterlines for 30 seconds after each dental treatment. The study lasted for 25 weeks, with periodic disinfection being performed for 7 times and continuous disinfection carried out for the rest of the dental treatment time. During the 25 weeks, water samples were collected from air/water syringes and high-speed handpieces. Then, the water samples were incubated and the bacterial concentration and the qualification rates were calculated accordingly. When the bacterial concentration≤100 CFU/ mL, the water samples were considered to be qualified. Waterline tubes of 1 cm were collected before and after the 25 weeks of disinfection with hydrogen peroxide. Biofilms in the waterline tube were observed under scanning electron microscope. Results: A total of 352 water samples were collected. Eight water samples were collected before disinfection with hydrogen peroxide, with the median of bacterial concentration being 3140 CFU/mL. On the first day of disinfection with hydrogen peroxide, the median bacterial concentration in dental treatment water was 7.5 CFU/mL. There was a significant difference between the bacterial concentration of the water samples before the disinfection and that after the disinfection (P=0.012). A total of 344 water samples were collected after the disinfection, with the median bacterial concentrations for air/water syringes and high-speed handpieces being 11 CFU/mL and 11CFU/mL and the qualified rates being 83.7% and 82.0%, respectively. There was no significant difference in bacterial concentration or the qualification rates. During week 1 through week 9 of the disinfection, the qualification rates of the dental treatment water always exceeded 80% in 8 weeks, with week 3 being the exception. In the two four-week disinfection periods of week 14 through week 17 and week 18 through week 21, the qualification rate was maintained at above 80% for only the first two weeks and started to decrease from the third week. Biofilm morphology was observed under scanning electron microscope. Before the disinfection, the biofilm was found to be a dense structure and the mixture of a large number of bacteria. After 25 weeks of the disinfection, the biofilm structure appeared to be loose and did not show consistent characteristics of a large number of bacteria retained. Conclusion: Periodic disinfection combined with continuous disinfection using hydrogen peroxide can effectively control contamination in dental unit waterlines. But the cycles of periodic disinfection and the concentration of hydrogen peroxide for continuous disinfection should be further discussed according to the actual clinical situation.


Asunto(s)
Desinfectantes , Peróxido de Hidrógeno , Peróxido de Hidrógeno/farmacología , Desinfección , Desinfectantes/farmacología , Biopelículas , Agua/farmacología , Recuento de Colonia Microbiana
20.
Cell Signal ; 117: 111089, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38331012

RESUMEN

A bunch of complexes harboring vanadium as metal centers have been reported to exhibit a wide array of antineoplastic properties that come under non­platinum metallodrug series and emerge to offer alternative therapeutic strategies from the mechanistic behaviors of platinum-drugs. Though antineoplastic activities of vanado-complexes have been documented against several animal and xenografted human cancers, the definite mechanism of action is yet to unveil. In present study, a novel water soluble 1-methylimidazole substituted mononuclear dipicolinic acid based oxidovanadium (IV) complex (OVMI) has been evaluated for its antineoplastic properties in breast carcinoma both in vitro and in vivo. OVMI has been reported to generate cytotoxicity in human triple negative breast carcinoma cells, MDA-MB-231 as well as in mouse 4T1 cells by priming them for apoptosis. ROS-mediated, mitochondria-dependent as well as ER-stress-evoked apoptotic death seemed to be main operational hub guiding the cytotoxicity of OVMI in vitro. Moreover, OVMI has been noticed to elicit antimetastatic effect in vitro. Therapeutic application of OVMI has been extended on 4T1-based mammary tumor of female Balb/c mice, where it has been found to reduce tumor size, volume and restore general tissue architecture successfully to a great extent. Apart from that, OVMI has been documented to limit 4T1-based secondary pulmonary metastasis along with being non-toxic and biocompatible in vivo.


Asunto(s)
Antineoplásicos , Carcinoma , Neoplasias de la Mama Triple Negativas , Femenino , Animales , Ratones , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Apoptosis , Carcinoma/tratamiento farmacológico , Agua/farmacología , Línea Celular Tumoral , Ratones Endogámicos BALB C , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...