Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.063
Filtrar
1.
Arch Microbiol ; 206(5): 242, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698177

RESUMEN

A Gram-stain-positive aerobic, rod-shaped, spore-producing bacterium forming colonies with convex elevation and a smooth, intact margin was isolated from a freshwater sample collected from a well situated in an agricultural field. The 16S rRNA gene sequence of the isolated strain BA0131T showed the highest sequence similarity to Lysinibacillus yapensis ylb-03T (99.25%) followed by Ureibacillus chungkukjangi 2RL3-2T (98.91%) and U. sinduriensis BLB-1T (98.65%). The strain BA0131T was oxidase and catalase positive and urease negative. It also tested positive for esculin hydrolysis and reduction of potassium nitrate, unlike its phylogenetically closest relatives. The predominant fatty acids in strain BA0131T included were anteiso-C15:0, iso-C16:0, iso-C15:0, iso-C14:0 and the major polar lipids comprised were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The respiratory quinones identified in strain BA0131T were MK8 (H2) (major) and MK8 (minor). The strain BA0131T shared the lowest dDDH values with L. yapensis ylb-03T (21%) followed by U. chungkukjangi 2RL3-2T (24.2%) and U. sinduriensis BLB-1T (26.4%) suggesting a closer genetic relationship U. sinduriensis BLB-1T. The ANI percentage supported the close relatedness with U. sinduriensis BLB-1T (83.61%) followed by U. chungkukjangi 2RL3-2T (82.03%) and U. yapensis ylb-03T (79.57%). The core genome-based phylogeny constructed using over 13,704 amino acid positions and 92 core genes revealed the distinct phylogenetic position of strain BA0131T among the genus Ureibacillus. The distinct physiological, biochemical characteristics and genotypic relatedness data indicate the strain BA0131T represents a novel species of the genus Ureibacillus for which the name Ureibacillus aquaedulcis sp. nov. (Type strain, BA0131T = MCC 5284 = JCM 36475) is proposed. Additionally, based on extensive genomic and phylogenetic analyses, we propose reclassification of two species, L. yapensis and L. antri, as U. yapensis comb. nov. (Type strain, ylb-03T = JCM 32871T = MCCC 1A12698T) and U. antri (Type strain, SYSU K30002T = CGMCC 1.13504T = KCTC 33955T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Agua Dulce , Filogenia , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , ADN Bacteriano/genética , Agua Dulce/microbiología , Bacillaceae/genética , Bacillaceae/aislamiento & purificación , Bacillaceae/clasificación , Bacillaceae/metabolismo , Análisis de Secuencia de ADN , Fosfolípidos/análisis
2.
Harmful Algae ; 134: 102627, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38705620

RESUMEN

Due to climate changes and eutrophication, blooms of predominantly toxic freshwater cyanobacteria are intensifying and are likely to colonize estuaries, thus impacting benthic organisms and shellfish farming representing a major ecological, health and economic risk. In the natural environment, Microcystis form large mucilaginous colonies that influence the development of both cyanobacterial and embedded bacterial communities. However, little is known about the fate of natural colonies of Microcystis by salinity increase. In this study, we monitored the fate of a Microcystis dominated bloom and its microbiome along a French freshwater-marine gradient at different phases of a bloom. We demonstrated changes in the cyanobacterial genotypic composition, in the production of specific metabolites (toxins and compatible solutes) and in the heterotrophic bacteria structure in response to the salinity increase. In particular M. aeruginosa and M. wesenbergii survived salinities up to 20. Based on microcystin gene abundance, the cyanobacteria became more toxic during their estuarine transfer but with no selection of specific microcystin variants. An increase in compatible solutes occurred along the continuum with extensive trehalose and betaine accumulations. Salinity structured most the heterotrophic bacteria community, with an increased in the richness and diversity along the continuum. A core microbiome in the mucilage-associated attached fraction was highly abundant suggesting a strong interaction between Microcystis and its microbiome and a likely protecting role of the mucilage against an osmotic shock. These results underline the need to better determine the interactions between the Microcystis colonies and their microbiome as a likely key to their widespread success and adaptation to various environmental conditions.


Asunto(s)
Agua Dulce , Microbiota , Agua Dulce/microbiología , Microcystis/fisiología , Cianobacterias/fisiología , Cianobacterias/metabolismo , Cianobacterias/genética , Salinidad , Microcistinas/metabolismo , Floraciones de Algas Nocivas , Agua de Mar/microbiología , Agua de Mar/química , Francia
3.
J Hazard Mater ; 471: 134328, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643575

RESUMEN

The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.


Asunto(s)
Bacterias , Biodegradación Ambiental , Sedimentos Geológicos , Polietileno , Polipropilenos , Contaminantes Químicos del Agua , Polipropilenos/química , Polietileno/química , Polietileno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Bacterias/metabolismo , Bacterias/genética , Microplásticos/toxicidad , Microplásticos/metabolismo , Agua Dulce/microbiología , Estuarios
4.
J Water Health ; 22(4): 721-734, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38678425

RESUMEN

The present study aimed to determine the antibiotic resistance, underlying mechanisms, antibiotic residues, and virulence genes involved in 32 multi-drug-resistant Klebsiella pneumoniae isolates from freshwater fishes in Andhra Pradesh, India. Antibiogram studies revealed that all isolates were multi-drug-resistant, harbored tetA (96.8%), tetC (59.3%), tetD (71.9%), nfsA (59.3%), nfsB (53.1%), sul2 (68.7%), qnrC (43.7%), qnrD (50%), blaSHV (75%), blaTEM (68.7%), and blaCTX-M (93.7%) genes. Multiple antibiotic resistance index was calculated as 0.54. Sixteen isolates were confirmed to be hyper-virulent and harbored magA and rmpA genes. In total, 46.9, 31.2, and 21.9% of the isolates were categorized as strong, moderate, or weak biofilm formers, respectively. All isolates possessed an active efflux pump and harbored acrA, acrB, acrAB, and tolC genes in 94% of the isolates, followed by mdtK (56.2%). Porins such as ompK35 and ompK36 were detected in 59.3 and 62.5% of the isolates, respectively. Virulence genes fimH-1, mrkD, and entB were present in 84.3, 81.2, 87.5% of the isolates, respectively. These findings imply a potential threat that multi-drug-resistant bacterial pathogens could transmit to surrounding environments and humans through contaminated water and the aquaculture food chain.


Asunto(s)
Antibacterianos , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Peces , Klebsiella pneumoniae , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/fisiología , Biopelículas/efectos de los fármacos , Animales , Virulencia , Peces/microbiología , Antibacterianos/farmacología , India/epidemiología , Agua Dulce/microbiología , Acuicultura , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
Nat Commun ; 15(1): 3421, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653968

RESUMEN

The emergence of bacterial species is rooted in their inherent potential for continuous evolution and adaptation to an ever-changing ecological landscape. The adaptive capacity of most species frequently resides within the repertoire of genes encoding the secreted proteome (SP), as it serves as a primary interface used to regulate survival/reproduction strategies. Here, by applying evolutionary genomics approaches to metagenomics data, we show that abundant freshwater bacteria exhibit biphasic adaptation states linked to the eco-evolutionary processes governing their genome sizes. While species with average to large genomes adhere to the dominant paradigm of evolution through niche adaptation by reducing the evolutionary pressure on their SPs (via the augmentation of functionally redundant genes that buffer mutational fitness loss) and increasing the phylogenetic distance of recombination events, most of the genome-reduced species exhibit a nonconforming state. In contrast, their SPs reflect a combination of low functional redundancy and high selection pressure, resulting in significantly higher levels of conservation and invariance. Our findings indicate that although niche adaptation is the principal mechanism driving speciation, freshwater genome-reduced bacteria often experience extended periods of adaptive stasis. Understanding the adaptive state of microbial species will lead to a better comprehension of their spatiotemporal dynamics, biogeography, and resilience to global change.


Asunto(s)
Adaptación Fisiológica , Bacterias , Agua Dulce , Genoma Bacteriano , Filogenia , Bacterias/genética , Bacterias/clasificación , Agua Dulce/microbiología , Adaptación Fisiológica/genética , Metagenómica/métodos , Evolución Molecular , Tamaño del Genoma , Proteoma/genética , Proteoma/metabolismo
6.
Toxins (Basel) ; 16(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38668615

RESUMEN

Cyanobacteria are harmful algae that are monitored worldwide to prevent the effects of the toxins that they can produce. Most research efforts have focused on direct or indirect effects on human populations, with a view to gain easy accurate detection and quantification methods, mainly in planktic communities, but with increasing interest shown in benthos. However, cyanobacteria have played a fundamental role from the very beginning in both the development of our planet's biodiversity and the construction of new habitats. These organisms have colonized almost every possible planktic or benthic environment on earth, including the most extreme ones, and display a vast number of adaptations. All this explains why they are the most important or the only phototrophs in some habitats. The negative effects of cyanotoxins on macroinvertebrates have been demonstrated, but usually under conditions that are far from natural, and on forms of exposure, toxin concentration, or composition. The cohabitation of cyanobacteria with most invertebrate groups is long-standing and has probably contributed to the development of detoxification means, which would explain the survival of some species inside cyanobacteria colonies. This review focuses on benthic cyanobacteria, their capacity to produce several types of toxins, and their relationships with benthic macroinvertebrates beyond toxicity.


Asunto(s)
Cianobacterias , Agua Dulce , Invertebrados , Cianobacterias/metabolismo , Animales , Agua Dulce/microbiología , Ecosistema , Toxinas Bacterianas/toxicidad , Biodiversidad
7.
Ecotoxicol Environ Saf ; 277: 116375, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677071

RESUMEN

Eco-friendly reagents derived from plants represent a promising strategy to mitigate the occurrence of toxic cyanobacterial blooms. The use of an amentoflavone-containing Selaginella tamariscina extract (STE) markedly decreased the number of Microcystis aeruginosa cells, thus demonstrating significant anti-cyanobacterial activity. In particular, the Microcystis-killing fraction obtained from pulverized S. tamariscina using hot-water-based extraction at temperatures of 40 °C induced cell disruption in both axenic and xenic M. aeruginosa. Liquid chromatographic analysis was also conducted to measure the concentration of amentoflavone in the STE, thus supporting the potential M. aeruginosa-specific killing effects of STE. Bacterial community analysis revealed that STE treatment led to a reduction in the relative abundance of Microcystis species while also increasing the 16S rRNA gene copy number in both xenic M. aeruginosa NIBR18 and cyanobacterial bloom samples isolated from a freshwater environment. Subsequent testing on bacteria, cyanobacteria, and algae isolated from freshwater revealed that STE was not toxic for other taxa. Furthermore, ecotoxicology assessment involving Aliivibrio fischeri, Daphnia magna, and Danio rerio found that high STE doses immobilized D. magna but did not impact the other organisms, while there was no change in the water quality. Overall, due to its effective Microcystis-killing capability and low ecotoxicity, aqueous STE represents a promising practical alternative for the management of Microcystis blooms.


Asunto(s)
Microcystis , Extractos Vegetales , Selaginellaceae , Microcystis/efectos de los fármacos , Selaginellaceae/química , Animales , Extractos Vegetales/farmacología , Daphnia/efectos de los fármacos , Floraciones de Algas Nocivas , ARN Ribosómico 16S , Agua Dulce/microbiología
8.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38650065

RESUMEN

The overall impact of a crude oil spill into a pristine freshwater environment in Canada is largely unknown. To evaluate the impact on the native microbial community, a large-scale in situ model experimental spill was conducted to assess the potential role of the natural community to attenuate hydrocarbons. A small volume of conventional heavy crude oil (CHV) was introduced within contained mesocosm enclosures deployed on the shoreline of a freshwater lake. The oil was left to interact with the shoreline for 72 h and then free-floating oil was recovered using common oil spill response methods (i.e. freshwater flushing and capture on oleophilic absorptive media). Residual polycyclic aromatic hydrocarbon (PAH) concentrations returned to near preoiling concentrations within 2 months, while the microbial community composition across the water, soil, and sediment matrices of the enclosed oligotrophic freshwater ecosystems did not shift significantly over this period. Metagenomic analysis revealed key polycyclic aromatic and alkane degradation mechanisms also did not change in their relative abundance over the monitoring period. These trends suggest that for small spills (<2 l of oil per 15 m2 of surface freshwater), physical oil recovery reduces polycyclic aromatic hydrocarbon concentrations to levels tolerated by the native microbial community. Additionally, the native microbial community present in the monitored pristine freshwater ecosystem possesses the appropriate hydrocarbon degradation mechanisms without prior challenge by hydrocarbon substrates. This study corroborated trends found previously (Kharey et al. 2024) toward freshwater hydrocarbon degradation in an environmentally relevant scale and conditions on the tolerance of residual hydrocarbons in situ.


Asunto(s)
Ecosistema , Lagos , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Petróleo/metabolismo , Lagos/microbiología , Hidrocarburos Policíclicos Aromáticos/metabolismo , Canadá , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Sedimentos Geológicos/microbiología , Microbiota/efectos de los fármacos , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Bacterias/clasificación , Agua Dulce/microbiología
9.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38650064

RESUMEN

With the increase in crude oil transport throughout Canada, the potential for spills into freshwater ecosystems has increased and additional research is needed in these sensitive environments. Large enclosures erected in a lake were used as mesocosms for this controlled experimental dilbit (diluted bitumen) spill under ambient environmental conditions. The microbial response to dilbit, the efficacy of standard remediation protocols on different shoreline types commonly found in Canadian freshwater lakes, including a testing of a shoreline washing agent were all evaluated. We found that the native microbial community did not undergo any significant shifts in composition after exposure to dilbit or the ensuing remediation treatments. Regardless of the treatment, sample type (soil, sediment, or water), or type of associated shoreline, the community remained relatively consistent over a 3-month monitoring period. Following this, metagenomic analysis of polycyclic aromatic and alkane hydrocarbon degradation mechanisms also showed that while many key genes identified in PAH and alkane biodegradation were present, their abundance did not change significantly over the course of the experiment. These results showed that the native microbial community present in a pristine freshwater lake has the prerequisite mechanisms for hydrocarbon degradation in place, and combined with standard remediation practices in use in Canada, has the genetic potential and resilience to potentially undertake bioremediation.


Asunto(s)
Biodegradación Ambiental , Hidrocarburos , Lagos , Contaminación por Petróleo , Lagos/microbiología , Canadá , Hidrocarburos/metabolismo , Microbiota , Contaminantes Químicos del Agua/metabolismo , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Hidrocarburos Policíclicos Aromáticos/metabolismo , Sedimentos Geológicos/microbiología , Agua Dulce/microbiología , Metagenómica
10.
Chemosphere ; 356: 141880, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570049

RESUMEN

As an emerging pollutant, microplastics (MPs) cause widespread concern around the world owing to the serious threat they pose to ecosystems. In particular, sediments are thought to be the long-term sink for the continual accumulation of MPs in freshwater ecosystems. Polyethylene (PE) and polyethylene terephthalate (PET) have been frequently detected with large concentration variations in freshwater sediments from the lower reaches of the Yangtze River, one of the most economically developed regions in China, characterized by accelerated urbanization and industrialization, high population density and high plastics consumption. However, the impact of PE and PET on the sedimental bacterial community composition and its function has not been well reported for this specific region. Herein, PE and PET particles were added to freshwater sediments to assess the effects of different MP types on the bacterial community and its function, using three concentrations (500, 1500 and 2500 items/kg) per MP and incubations of 35, 105 and 175 days, respectively. This study identified a total of 68 phyla, 211 classes, 518 orders, 853 families and 1745 genera. Specifically, Proteobacteria, Chloroflexi, Acidobacteriota, Actinobacteriota and Firmicutes were the top five phyla. A higher bacterial diversity was obtained in control sediments than in the MP-treated sediments. The presence of MPs, whether PET or PE, had significant impact on the bacterial diversity, community structure and community composition. PICRUSt2 and FAPOTAX predictions demonstrated that MPs could potentially affect the metabolic pathways and ecologically functional groups of bacteria in the sediment. Besides the MP-related factors, such as the type, concentration and incubation time, the physicochemical parameters had an effect on the structure and function of the bacterial community in the freshwater sediment. Taken together, this study provides useful information for further understanding how MPs affect bacterial communities in the freshwater sediment of the lower reaches of the Yangtze River, China.


Asunto(s)
Bacterias , Sedimentos Geológicos , Lagos , Microplásticos , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Microplásticos/análisis , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Bacterias/clasificación , Bacterias/efectos de los fármacos , China , Lagos/microbiología , Lagos/química , Tereftalatos Polietilenos , Monitoreo del Ambiente , Polietileno , Ecosistema , Agua Dulce/microbiología , Agua Dulce/química
11.
J Microbiol ; 62(3): 249-260, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38587591

RESUMEN

The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.


Asunto(s)
Agua Dulce , Microcystis , Microcystis/crecimiento & desarrollo , Microcystis/efectos de los fármacos , Microcystis/metabolismo , Agua Dulce/microbiología , Floraciones de Algas Nocivas , Eutrofización , Ecosistema , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Microcistinas/metabolismo , Fotosíntesis , Cambio Climático
12.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38553956

RESUMEN

Habitat type is a strong determinant of microbial composition. Habitat interfaces, such as the boundary between aquatic and terrestrial systems, present unique combinations of abiotic factors for microorganisms to contend with. Aside from the spillover of certain harmful microorganisms from agricultural soils into water (e.g. fecal coliform bacteria), we know little about the extent of soil-water habitat switching across microbial taxa. In this study, we developed a proof-of-concept system to facilitate the capture of putatively generalist microorganisms that can colonize and persist in both soil and river water. We aimed to examine the phylogenetic breadth of putative habitat switchers and how this varies across different source environments. Microbial composition was primarily driven by recipient environment type, with the strongest phylogenetic signal seen at the order level for river water colonizers. We also identified more microorganisms colonizing river water when soil was collected from a habitat interface (i.e. soil at the side of an intermittently flooded river, compared to soil collected further from water sources), suggesting that environmental interfaces could be important reservoirs of microbial habitat generalists. Continued development of experimental systems that actively capture microorganisms that thrive in divergent habitats could serve as a powerful tool for identifying and assessing the ecological distribution of microbial generalists.


Asunto(s)
Ecosistema , Agua Dulce , Filogenia , Agua Dulce/microbiología , Suelo , Agua
13.
Microbiol Spectr ; 12(4): e0353623, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38376152

RESUMEN

Alternative irrigation waters (rivers, ponds, and reclaimed water) can harbor bacterial foodborne pathogens like Salmonella enterica and Listeria monocytogenes, potentially contaminating fruit and vegetable commodities. Detecting foodborne pathogens using qPCR-based methods may accelerate testing methods and procedures compared to culture-based methods. This study compared detection of S. enterica and L. monocytogenes by qPCR (real-time PCR) and culture methods in irrigation waters to determine the influence of water type (river, pond, and reclaimed water), season (winter, spring, summer, and fall), or volume (0.1, 1, and 10 L) on sensitivity, accuracy, specificity, and positive (PPV), and negative (NPV) predictive values of these methods. Water samples were collected by filtration through modified Moore swabs (MMS) over a 2-year period at 11 sites in the Mid-Atlantic U.S. on a bi-weekly or monthly schedule. For qPCR, bacterial DNA from culture-enriched samples (n = 1,990) was analyzed by multiplex qPCR specific for S. enterica and L. monocytogenes. For culture detection, enriched samples were selectively enriched, isolated, and PCR confirmed. PPVs for qPCR detection of S. enterica and L. monocytogenes were 68% and 67%, respectively. The NPV were 87% (S. enterica) and 85% (L. monocytogenes). Higher levels of qPCR/culture agreement were observed in spring and summer compared to fall and winter for S. enterica; for L. monocytogenes, lower levels of agreement were observed in winter compared to spring, summer, and fall. Reclaimed and pond water supported higher levels of qPCR/culture agreement compared to river water for both S. enterica and L. monocytogenes, indicating that water type may influence the agreement of these results. IMPORTANCE: Detecting foodborne pathogens in irrigation water can inform interventions and management strategies to reduce risk of contamination and illness associated with fresh and fresh-cut fruits and vegetables. The use of non-culture methods like qPCR has the potential to accelerate the testing process. Results indicated that pond and reclaimed water showed higher levels of agreement between culture and qPCR methods than river water, perhaps due to specific physiochemical characteristics of the water. These findings also show that season and sample volume affect the agreement of qPCR and culture results. Overall, qPCR methods could be more confidently utilized to determine the absence of Salmonella enterica and Listeria monocytogenes in irrigation water samples examined in this study.


Asunto(s)
Listeria monocytogenes , Salmonella enterica , Salmonella enterica/genética , Listeria monocytogenes/genética , Agua Dulce/microbiología , Ríos , Agua , Microbiología de Alimentos
14.
Environ Res ; 249: 118337, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325783

RESUMEN

Microorganisms are integral to freshwater ecological functions and, reciprocally, their activity and diversity are shaped by the ecosystem state. Yet, the diversity of bacterial community and its driving factors at a large scale remain elusive. To bridge this knowledge gap, we delved into an analysis of 16S RNA gene sequences extracted from 929 water samples across China. Our analyses revealed that inland water bacterial communities showed a weak latitudinal diversity gradient. We found 530 bacterial genera with high relative abundance of hgcI clade. Among them, 29 core bacterial genera were identified, that is strongly linked to mean annual temperature and nutrient loadings. We also detected a non-linear response of bacterial network complexity to the increasing of human pressure. Mantel analysis suggested that MAT, HPI and P loading were the major factors driving bacterial communities in inland waters. The map of taxa abundance showed that the abundant CL500-29 marine group in eastern and southern China indicated high eutrophication risk. Our findings enhance our understanding of the diversity and large-scale biogeographic pattern of bacterial communities of inland waters and have important implications for microbial ecology.


Asunto(s)
Bacterias , ARN Ribosómico 16S , China , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Biodiversidad , Microbiología del Agua , Agua Dulce/microbiología
15.
Environ Sci Technol ; 58(3): 1473-1483, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38205949

RESUMEN

Though toxins produced during harmful blooms of cyanobacteria present diverse risks to public health and the environment, surface water quality surveillance of cyanobacterial toxins is inconsistent, spatiotemporally limited, and routinely relies on ELISA kits to estimate total microcystins (MCs) in surface waters. Here, we employed liquid chromatography tandem mass spectrometry to examine common cyanotoxins, including five microcystins, three anatoxins, nodularin, cylindrospermopsin, and saxitoxin in 20 subtropical reservoirs spatially distributed across a pronounced annual rainfall gradient. Probabilistic environmental hazard analyses identified whether water quality values for cyanotoxins were exceeded and if these exceedances varied spatiotemporally. MC-LR was the most common congener detected, but it was not consistently observed with other toxins, including MC-YR, which was detected at the highest concentrations during spring with many observations above the California human recreation guideline (800 ng/L). Cylindrospermopsin was also quantitated in 40% of eutrophic reservoirs; these detections did not exceed a US Environmental Protection Agency swimming/advisory level (15,000 ng/L). Our observations have implications for routine water quality monitoring practices, which traditionally use ELISA kits to estimate MC levels and often limit collection of surface samples during summer months near reservoir impoundments, and further indicate that spatiotemporal surveillance efforts are necessary to understand cyanotoxins risks when harmful cyanobacteria blooms occur throughout the year.


Asunto(s)
Toxinas Bacterianas , Cianobacterias , Humanos , Microcistinas/análisis , Calidad del Agua , Toxinas Marinas , Toxinas Bacterianas/análisis , Agua Dulce/análisis , Agua Dulce/química , Agua Dulce/microbiología , Toxinas de Cianobacterias , Cianobacterias/química , Monitoreo del Ambiente/métodos
16.
Yakugaku Zasshi ; 144(1): 27-32, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38171790

RESUMEN

More than 2000 compounds have been reported from cyanobacteria. The most successful example is dolastatin 10, of which a related compound monomethylauristatin E is used as antibody-drug conjugate (ADC) for Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Recently genome-based analyses by Piel led to the discovery of novel compounds from cyanobacteria. W. H. Gerwick found a potential as anti-SARS-CoV-2 agent in gallinamide A, which was reported as a cathepsin L inhibitor. In our group columbamides were isolated from the marine cyanobacterium Moorena bouillonii. The geometry of the double bond was determined by the coupling constant obtained using non-decoupled heteronuclear single quantum coherence (HSQC). The configuration of chloromethine in a long-chain acyl moiety was determined by the Ohrui method at room temperature using a chiral HPLC column. Columbamide D showed biosurfactant activity. One strain many compounds (OSMAC) is a method to discover new compounds by changing culture conditions. Prior to our experiments, attempts to apply OSMAC in cyanobacteria resulted in the induction or up-regulation of only known compounds. The heat shock culture of the freshwater cyanobacterium Microcystis aeruginosa up-regulated a ribosomal peptide argicyclamide C. At the same time, we discovered bis-prenylated and monoprenylated argicyclamides A and B. More recently iron-limited culture produced hydroxylated argicyclamide A. OSMAC and genome-based screening could lead the discovery of unique biologically active compounds from cyanobacteria.


Asunto(s)
Productos Biológicos , Cianobacterias , Microcystis , Cianobacterias/química , Agua Dulce/microbiología , Hierro
17.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37917535

RESUMEN

A Gram-stain-negative, rod-shaped, amylolytic bacterial strain, designated as bsSlp3-1T, was isolated from the Slepian water system, a freshwater reservoir. Strain bsSlp3-1T was found to be aerobic, oxidase-positive and catalase-negative, grew at 5-37 °C (optimum, 28 °C), pH 5.0-9.5 (optimum, pH 7.0) and low NaCl concentration (up to 1.0 %). Comparative analysis of 16S rRNA gene sequence similarity revealed that strain bsSlp3-1T clustered with Roseateles species and is closely related to Roseateles depolymerans KCTC 42856T (98.7 %) and Roseateles terrae CCUG 52222T (98.6 %). Whole-genome comparisons using average nucleotide identity and digital DNA-DNA hybridization values suggested that strain bsSlp3-1T represents a novel species within the genus Roseateles and is most closely related to Roseateles aquatilis CCUG 48205T (81.2 and 25.6 %, respectively). The genome of strain bsSlp3-1T consisted of a single circular chromosome with size 6 289 366 bp and DNA G+C content of 66.8 mol%. The predominant cellular fatty acids of bsSlp3-1T were cis-9-hexadecanoic and hexadecenoic acids. According to the data obtained in this work, strain bsSlp3-1T represents a novel Roseateles species for which the name Roseateles amylovorans sp. nov. is proposed. The type strain is bsSlp3-1T (=BIM B-1768T=NBIMCC 9098T=VKM B-3671T).


Asunto(s)
Comamonadaceae , Ácidos Grasos , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Composición de Base , Filogenia , Análisis de Secuencia de ADN , Agua Dulce/microbiología
18.
J Microbiol ; 61(10): 891-901, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37851309

RESUMEN

Two novel bacterial strains CJ74T and CJ75T belonging to the genus Flavobacterium were isolated from freshwater of Han River and ginseng soil, South Korea, respectively. Strain CJ74T was Gram-stain-negative, aerobic, rod-shaped, non-motile, and non-flagellated, and did not produce flexirubin-type pigments. Strain CJ75T was Gram-stain-negative, aerobic, rod-shaped, motile by gliding, and non-flagellated, and produced flexirubin-type pigments. Both strains were shown to grow optimally at 30 °C in the absence of NaCl on R2A medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains CJ74T and CJ75T belonged to the genus Flavobacterium and were most closely related to Flavobacterium niveum TAPW14T and Flavobacterium foetidum CJ42T with 96.17% and 97.29% 16S rRNA sequence similarities, respectively. Genomic analyses including the reconstruction of phylogenomic tree, average nucleotide identity, and digital DNA-DNA hybridization suggested that they were novel species of the genus Flavobacterium. Both strains contained menaquinone 6 (MK-6) as the primary respiratory quinone and phosphatidylethanolamine as a major polar lipid. The predominant fatty acids of both strains were iso-C15:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). Based on the polyphasic taxonomic study, strains CJ74T and CJ75T represent novel species of the genus Flavobacterium, for which names Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov. are proposed, respectively. The type strains are CJ74T (=KACC 19819T =JCM 32889T) and CJ75T (=KACC 23149T =JCM 36132T).


Asunto(s)
Flavobacterium , Suelo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ácidos Grasos/análisis , Agua Dulce/microbiología , Vitamina K 2 , ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
19.
Water Res ; 243: 120342, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544109

RESUMEN

Harmful algal blooms negatively impact freshwater, estuarine, and marine systems worldwide, including those used for drinking water, recreation, and aquaculture, through the production of toxic and nontoxic secondary metabolites as well as hypoxic events that occur when algal blooms degrade. Consequently, water resource managers often utilize chemical, bacterial, physical, and/or plant-based treatments to control algal blooms and improve water quality. However, awareness of available treatments may be limited, and there is ambiguity among the effects of algal bloom treatments across studies. Such variation within the literature and lack of knowledge of other tested treatments leave uncertainty for water resource managers when deciding what treatments are best to control algal blooms and improve water quality. Our primary objective was to synthesize data from 39 published and unpublished studies that used one of 28 chemical, bacterial, physical, and/or plant-based treatments in field experiments on various water quality measurements, including phytoplankton pigments and cell density, cyanobacterial toxins (microcystin), and common off-flavors (i.e., taste and odor compounds; geosmin and 2-methylisoborneol). We hypothesized that treatments would improve water quality. Across all studies and treatment types (227 effect sizes), water quality improvements were observed when measured at the time of greatest decline following treatment or at the end of the experiment. However, these findings were primarily mediated by only four chemicals, namely copper sulfate, hydrogen peroxide, peracetic acid, and simazine. None of the bacterial, physical, or plant-based treatments were shown to significantly improve water quality by themselves. Results from this synthesis quantitatively showed that most treatments fail to improve water quality in the field and highlight the need for more research on existing and alternative treatments.


Asunto(s)
Cianobacterias , Cianobacterias/metabolismo , Fitoplancton/metabolismo , Agua Dulce/microbiología , Floraciones de Algas Nocivas , Calidad del Agua
20.
World J Microbiol Biotechnol ; 39(9): 241, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37394567

RESUMEN

Cyanobacterial harmful algal blooms (CHABs) are a global environmental concern that encompasses public health issues, water availability, and water quality owing to the production of various secondary metabolites (SMs), including cyanotoxins in freshwater, brackish water, and marine ecosystems. The frequency, extent, magnitude, and duration of CHABs are increasing globally. Cyanobacterial species traits and changing environmental conditions, including anthropogenic pressure, eutrophication, and global climate change, together allow cyanobacteria to thrive. The cyanotoxins include a diverse range of low molecular weight compounds with varying biochemical properties and modes of action. With the application of modern molecular biology techniques, many important aspects of cyanobacteria are being elucidated, including aspects of their diversity, gene-environment interactions, and genes that express cyanotoxins. The toxicological, environmental, and economic impacts of CHABs strongly advocate the need for continuing, extensive efforts to monitor cyanobacterial growth and to understand the mechanisms regulating species composition and cyanotoxin biosynthesis. In this review, we critically examined the genomic organization of some cyanobacterial species that lead to the production of cyanotoxins and their characteristic properties discovered to date.


Asunto(s)
Toxinas de Cianobacterias , Cianobacterias , Toxinas Marinas/metabolismo , Ecosistema , Agua Dulce/microbiología , Cianobacterias/metabolismo , Familia de Multigenes , Microcistinas/genética , Microcistinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...