Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Intervalo de año de publicación
1.
Arch Insect Biochem Physiol ; 116(4): e22143, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39166352

RESUMEN

JH and ecdysone signaling regulate insect metamorphosis through the master transcription factors, Krüppel homolog 1 (kr-h1), Broad-Complex (BR-C), and E93. Ecdysone signaling activates successively expressed ecdysone responsive transcription factors (ERTFs), and the interaction between ERTFs determines the expression profiles of ERTFs themselves. Through the construction of expressed sequence tag (EST) database of Bombyx mori from many tissues, the existence of a large number of cuticular protein (CP) genes was identified in wing disc cDNA library of the 3 days after the start of wandering (W3). From the genomic analysis, 12 types of CP clusters of CP genes were identified. DNA sequences of CP genes revealed the duplication of CP genes, which suggests to reflect the insect evolution. These CP genes responded to ecdysone and ecdysone pulse; therefore, CP genes were applied for the analysis of transcriptional regulation by ERTF. The binding sites of ERTF have been reported to exist upstream of CP genes in several insects, and the activation of CP genes occurred by the binding of ERTFs. Through the analysis, the following were speculated; the successive appearance of ERTFs and the activation of target genes resulted in the successively produced CPs and cuticular layer. The sequence of the ERTF and CP gene expression was the same at larval to pupal and pupal to adult transformation. The involvement of several ERTFs in one CP gene expression was also clarified; BmorCPG12 belongs to group showing expression peak at W3 and was regulated by two ERTFs; BHR3 and ßFTZ-F1, BmorCPH2 belongs to group showing expression peak at P0 and was regulated by two ERTFs; ßFTZ-F1 and E74A. The involvement of BHR39 as a negative regulator of CP gene expression was found. Larval, pupal, and adult cuticular layers were supposed to be constructed by the combination of different and similar types of CPs, through the expressed timing of CP genes.


Asunto(s)
Bombyx , Proteínas de Insectos , Animales , Bombyx/genética , Bombyx/metabolismo , Bombyx/crecimiento & desarrollo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Genoma de los Insectos , Ecdisona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Larva/genética , Larva/metabolismo , Larva/crecimiento & desarrollo , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Regulación de la Expresión Génica , Metamorfosis Biológica/genética
2.
PLoS Biol ; 22(7): e3002547, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39047051

RESUMEN

Despite the deep conservation of the DNA damage response (DDR) pathway, cells in different contexts vary widely in their susceptibility to DNA damage and their propensity to undergo apoptosis as a result of genomic lesions. One of the cell signaling pathways implicated in modulating the DDR is the highly conserved Wnt pathway, which is known to promote resistance to DNA damage caused by ionizing radiation in a variety of human cancers. However, the mechanisms linking Wnt signal transduction to the DDR remain unclear. Here, we use a genetically encoded system in Drosophila to reliably induce consistent levels of DNA damage in vivo, and demonstrate that canonical Wnt signaling in the wing imaginal disc buffers cells against apoptosis in the face of DNA double-strand breaks. We show that Wg, the primary Wnt ligand in Drosophila, activates epidermal growth factor receptor (EGFR) signaling via the ligand-processing protease Rhomboid, which, in turn, modulates the DDR in a Chk2-, p53-, and E2F1-dependent manner. These studies provide mechanistic insight into the modulation of the DDR by the Wnt and EGFR pathways in vivo in a highly proliferative tissue. Furthermore, they reveal how the growth and patterning functions of Wnt signaling are coupled with prosurvival, antiapoptotic activities, thereby facilitating developmental robustness in the face of genomic damage.


Asunto(s)
Apoptosis , Daño del ADN , Proteínas de Drosophila , Receptores ErbB , Discos Imaginales , Alas de Animales , Vía de Señalización Wnt , Proteína Wnt1 , Animales , Receptores ErbB/metabolismo , Receptores ErbB/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Discos Imaginales/metabolismo , Discos Imaginales/crecimiento & desarrollo , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Apoptosis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Quinasa de Punto de Control 2/metabolismo , Quinasa de Punto de Control 2/genética , Transducción de Señal , Roturas del ADN de Doble Cadena , Receptores de Péptidos de Invertebrados/metabolismo , Receptores de Péptidos de Invertebrados/genética , Drosophila/metabolismo , Drosophila/genética , Factores de Transcripción
3.
Arthritis Res Ther ; 26(1): 131, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010233

RESUMEN

BACKGROUND: Association of HLA-B27 with spondyloarthritis (SpA) has been known for 50 years, but still remains unexplained. We recently showed that HLA-B27 expressed in wing imaginal disc from HLA-B27/human-ß2 microglobulin (hß2m) transgenic Drosophila deregulated bone morphogenetic protein (BMP) pathway by interacting physically with type I BMP receptor (BMPR1) Saxophone (Sax), leading to crossveinless phenotype. METHODS: Genetic interaction was studied between activin/transforming growth factor ß (TGFß) pathway and HLA-B27/hß2m in transgenic Drosophila wings. The HLA-B27-bound peptidome was characterized in wing imaginal discs. In mesenteric lymph node (mLN) T cells from HLA-B27/hß2m rat (B27 rat), physical interaction between HLA-B27 and activin receptor-like kinase-2 (ALK2), ALK3 and ALK5 BMPR1s, phosphorylation of small mothers against decapentaplegic (SMADs) and proteins of the non-canonical BMP/TGFß pathways induced by its ligands, and the transcript level of target genes of the TGFß pathway, were evaluated. RESULTS: In HLA-B27/hß2m transgenic Drosophila, inappropriate signalling through the activin/TGFß pathway, involving Baboon (Babo), the type I activin/TGFß receptor, contributed to the crossveinless phenotype, in addition to deregulated BMP pathway. We identified peptides bound to HLA-B27 with the canonical binding motif in HLA-B27/hß2m transgenic Drosophila wing imaginal disc. We demonstrated specific physical interaction, between HLA-B27/hß2m and mammalian orthologs of Sax and Babo, i.e. ALK2 and ALK5 (i.e. TGFß receptor I), in the mLN cells from B27 rat. The magnitude of phosphorylation of SMAD2/3 in response to TGFß1 was increased in T cells from B27 rats, showing evidence for deregulated TGFß pathway. Accordingly, expression of several target genes of the pathway was increased in T cells from B27 rats, in basal conditions and/or after TGFß exposure, including Foxp3, Rorc, Runx1 and Maf. Interestingly, Tgfb1 expression was reduced in naive T cells from B27 rats, even premorbid, an observation consistent with a pro-inflammatory pattern. CONCLUSIONS: This study shows that HLA-B27 alters the TGFß pathways in Drosophila and B27 rat. Given the importance of this pathway in CD4 + T cells differentiation and regulation, its disturbance could contribute to the abnormal expansion of pro-inflammatory T helper 17 cells and altered regulatory T cell phenotype observed in B27 rats.


Asunto(s)
Animales Modificados Genéticamente , Antígeno HLA-B27 , Transducción de Señal , Espondiloartritis , Factor de Crecimiento Transformador beta , Animales , Transducción de Señal/fisiología , Espondiloartritis/metabolismo , Espondiloartritis/inmunología , Humanos , Antígeno HLA-B27/genética , Antígeno HLA-B27/metabolismo , Antígeno HLA-B27/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Ratas , Drosophila , Drosophila melanogaster , Alas de Animales/metabolismo
4.
Nature ; 630(8016): 466-474, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839952

RESUMEN

Histone acetylation regulates gene expression, cell function and cell fate1. Here we study the pattern of histone acetylation in the epithelial tissue of the Drosophila wing disc. H3K18ac, H4K8ac and total lysine acetylation are increased in the outer rim of the disc. This acetylation pattern is controlled by nuclear position, whereby nuclei continuously move from apical to basal locations within the epithelium and exhibit high levels of H3K18ac when they are in proximity to the tissue surface. These surface nuclei have increased levels of acetyl-CoA synthase, which generates the acetyl-CoA for histone acetylation. The carbon source for histone acetylation in the rim is fatty acid ß-oxidation, which is also increased in the rim. Inhibition of fatty acid ß-oxidation causes H3K18ac levels to decrease in the genomic proximity of genes involved in disc development. In summary, there is a physical mark of the outer rim of the wing and other imaginal epithelia in Drosophila that affects gene expression.


Asunto(s)
Acetilcoenzima A , Núcleo Celular , Cromatina , Drosophila melanogaster , Animales , Acetato CoA Ligasa/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Transporte Biológico , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Histonas/química , Histonas/metabolismo , Discos Imaginales/citología , Discos Imaginales/crecimiento & desarrollo , Discos Imaginales/metabolismo , Lisina/metabolismo , Oxidación-Reducción , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
5.
Elife ; 122024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842917

RESUMEN

The atypical cadherins Fat and Dachsous (Ds) signal through the Hippo pathway to regulate growth of numerous organs, including the Drosophila wing. Here, we find that Ds-Fat signaling tunes a unique feature of cell proliferation found to control the rate of wing growth during the third instar larval phase. The duration of the cell cycle increases in direct proportion to the size of the wing, leading to linear-like growth during the third instar. Ds-Fat signaling enhances the rate at which the cell cycle lengthens with wing size, thus diminishing the rate of wing growth. We show that this results in a complex but stereotyped relative scaling of wing growth with body growth in Drosophila. Finally, we examine the dynamics of Fat and Ds protein distribution in the wing, observing graded distributions that change during growth. However, the significance of these dynamics is unclear since perturbations in expression have negligible impact on wing growth.


Asunto(s)
Cadherinas , Ciclo Celular , Proteínas de Drosophila , Drosophila melanogaster , Transducción de Señal , Alas de Animales , Animales , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Cadherinas/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Proliferación Celular , Moléculas de Adhesión Celular
6.
Cell Rep ; 43(7): 114398, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38935502

RESUMEN

Mechanosensitive Piezo channels regulate cell division, cell extrusion, and cell death. However, systems-level functions of Piezo in regulating organogenesis remain poorly understood. Here, we demonstrate that Piezo controls epithelial cell topology to ensure precise organ growth by integrating live-imaging experiments with pharmacological and genetic perturbations and computational modeling. Notably, the knockout or knockdown of Piezo increases bilateral asymmetry in wing size. Piezo's multifaceted functions can be deconstructed as either autonomous or non-autonomous based on a comparison between tissue-compartment-level perturbations or between genetic perturbation populations at the whole-tissue level. A computational model that posits cell proliferation and apoptosis regulation through modulation of the cutoff tension required for Piezo channel activation explains key cell and tissue phenotypes arising from perturbations of Piezo expression levels. Our findings demonstrate that Piezo promotes robustness in regulating epithelial topology and is necessary for precise organ size control.


Asunto(s)
Células Epiteliales , Canales Iónicos , Canales Iónicos/metabolismo , Canales Iónicos/genética , Animales , Tamaño de los Órganos , Células Epiteliales/metabolismo , Ratones , Proliferación Celular , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Apoptosis , Humanos , Epitelio/metabolismo
7.
Dev Biol ; 514: 37-49, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38885804

RESUMEN

The conserved bazooka (baz/par3) gene acts as a key regulator of asymmetrical cell divisions across the animal kingdom. Associated Par3/Baz-Par6-aPKC protein complexes are also well known for their role in the establishment of apical/basal cell polarity in epithelial cells. Here we define a novel, positive function of Baz/Par3 in the Notch pathway. Using Drosophila wing and eye development, we demonstrate that Baz is required for Notch signaling activity and optimal transcriptional activation of Notch target genes. Baz appears to act independently of aPKC in these contexts, as knockdown of aPKC does not cause Notch loss-of-function phenotypes. Using transgenic Notch constructs, our data positions Baz activity downstream of activating Notch cleavage steps and upstream of Su(H)/CSL transcription factor complex activity on Notch target genes. We demonstrate a biochemical interaction between NICD and Baz, suggesting that Baz is required for NICD activity before NICD binds to Su(H). Taken together, our data define a novel role of the polarity protein Baz/Par3, as a positive and direct regulator of Notch signaling through its interaction with NICD.


Asunto(s)
Proteínas de Drosophila , Receptores Notch , Transducción de Señal , Alas de Animales , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Notch/metabolismo , Alas de Animales/metabolismo , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Unión Proteica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Ojo/embriología , Ojo/metabolismo , Ojo/crecimiento & desarrollo , Drosophila/metabolismo , Drosophila/embriología , Polaridad Celular , Péptidos y Proteínas de Señalización Intracelular
8.
PLoS Biol ; 22(5): e3002629, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805504

RESUMEN

Despite significant progress in understanding epigenetic reprogramming of cells, the mechanistic basis of "organ reprogramming" by (epi-)gene-environment interactions remained largely obscure. Here, we use the ether-induced haltere-to-wing transformations in Drosophila as a model for epigenetic "reprogramming" at the whole organism level. Our findings support a mechanistic chain of events explaining why and how brief embryonic exposure to ether leads to haltere-to-wing transformations manifested at the larval stage and on. We show that ether interferes with protein integrity in the egg, leading to altered deployment of Hsp90 and widespread repression of Trithorax-mediated establishment of active H3K4me3 chromatin marks throughout the genome. Despite this global reduction, Ubx targets and wing development genes preferentially retain higher levels of H3K4me3 that predispose these genes for later up-regulation in the larval haltere disc, hence the wing-like outcome. Consistent with compromised protein integrity during the exposure, the penetrance of bithorax transformations increases by genetic or chemical reduction of Hsp90 function. Moreover, joint reduction in Hsp90 and trx gene dosage can cause bithorax transformations without exposure to ether, supporting an underlying epistasis between Hsp90 and trx loss-of-functions. These findings implicate environmental disruption of protein integrity at the onset of histone methylation with altered epigenetic regulation of developmental patterning genes. The emerging picture provides a unique example wherein the alleviation of the Hsp90 "capacitor function" by the environment drives a morphogenetic shift towards an ancestral-like body plan. The morphogenetic impact of chaperone response during a major setup of epigenetic patterns may be a general scheme for organ transformation by environmental cues.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Epigénesis Genética , Proteínas HSP90 de Choque Térmico , Histonas , Alas de Animales , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histonas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Interacción Gen-Ambiente , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Cromatina/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Memoria Epigenética , Factores de Transcripción
9.
Biomolecules ; 14(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38785929

RESUMEN

Suppressor of deltex (Su(dx)) is a Drosophila melanogaster member of the NEDD4 family of the HECT domain E3 ubiquitin ligases. Su(dx) acts as a regulator of Notch endocytic trafficking, promoting Notch lysosomal degradation and the down-regulation of both ligand-dependent and ligand-independent signalling, the latter involving trafficking through the endocytic pathway and activation of the endo/lysosomal membrane. Mutations of Su(dx) result in developmental phenotypes in the Drosophila wing that reflect increased Notch signalling, leading to gaps in the specification of the wing veins, and Su(dx) functions to provide the developmental robustness of Notch activity to environmental temperature shifts. The full developmental functions of Su(dx) are unclear; however, this is due to a lack of a clearly defined null allele. Here we report the first defined null mutation of Su(dx), generated by P-element excision, which removes the complete open reading frame. We show that the mutation is recessive-viable, with the Notch gain of function phenotypes affecting wing vein and leg development. We further uncover new roles for Su(dx) in Drosophila oogenesis, where it regulates interfollicular stalk formation, egg chamber separation and germline cyst enwrapment by the follicle stem cells. Interestingly, while the null allele exhibited a gain in Notch activity during oogenesis, the previously described Su(dx)SP allele, which carries a seven amino acid in-frame deletion, displayed a Notch loss of function phenotypes and an increase in follicle stem cell turnover. This is despite both alleles displaying similar Notch gain of function in wing development. We attribute this unexpected context-dependent outcome of Su(dx)sp being due to the partial retention of function by the intact C2 and WW domain regions of the protein. Our results extend our understanding of the developmental role of Su(dx) in the tissue renewal and homeostasis of the Drosophila ovary and illustrate the importance of examining an allelic series of mutations to fully understand developmental functions.


Asunto(s)
Alelos , Proteínas de Drosophila , Drosophila melanogaster , Oogénesis , Receptores Notch , Animales , Oogénesis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Femenino , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Mutación , Transducción de Señal , Fenotipo , Proteínas de la Membrana
10.
Nat Commun ; 15(1): 4073, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769302

RESUMEN

Vivid structural colours in butterflies are caused by photonic nanostructures scattering light. Structural colours evolved for numerous biological signalling functions and have important technological applications. Optically, such structures are well understood, however insight into their development in vivo remains scarce. We show that actin is intimately involved in structural colour formation in butterfly wing scales. Using comparisons between iridescent (structurally coloured) and non-iridescent scales in adult and developing H. sara, we show that iridescent scales have more densely packed actin bundles leading to an increased density of reflective ridges. Super-resolution microscopy across three distantly related butterfly species reveals that actin is repeatedly re-arranged during scale development and crucially when the optical nanostructures are forming. Furthermore, actin perturbation experiments at these later developmental stages resulted in near total loss of structural colour in H. sara. Overall, this shows that actin plays a vital and direct templating role during structural colour formation in butterfly scales, providing ridge patterning mechanisms that are likely universal across lepidoptera.


Asunto(s)
Citoesqueleto de Actina , Actinas , Mariposas Diurnas , Pigmentación , Alas de Animales , Animales , Mariposas Diurnas/metabolismo , Mariposas Diurnas/fisiología , Mariposas Diurnas/ultraestructura , Alas de Animales/ultraestructura , Alas de Animales/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/metabolismo , Color , Escamas de Animales/metabolismo , Escamas de Animales/ultraestructura
11.
Commun Biol ; 7(1): 533, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710747

RESUMEN

Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Proteínas de la Membrana , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteínas Supresoras de Tumor , Alas de Animales , Animales , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Apoptosis , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
12.
Genes (Basel) ; 15(5)2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38790181

RESUMEN

Hairless (H) encodes the major antagonist in the Notch signaling pathway, which governs cellular differentiation of various tissues in Drosophila. By binding to the Notch signal transducer Suppressor of Hairless (Su(H)), H assembles repressor complexes onto Notch target genes. Using genome engineering, three new H alleles, HFA, HLLAA and HWA were generated and a phenotypic series was established by several parameters, reflecting the residual H-Su(H) binding capacity. Occasionally, homozygous HWA flies develop to adulthood. They were compared with the likewise semi-viable HNN allele affecting H-Su(H) nuclear entry. The H homozygotes were short-lived, sterile and flightless, yet showed largely normal expression of several mitochondrial genes. Typical for H mutants, both HWA and HNN homozygous alleles displayed strong defects in wing venation and mechano-sensory bristle development. Strikingly, however, HWA displayed only a loss of bristles, whereas bristle organs of HNN flies showed a complete shaft-to-socket transformation. Apparently, the impact of HWA is restricted to lateral inhibition, whereas that of HNN also affects the respective cell type specification. Notably, reduction in Su(H) gene dosage only suppressed the HNN bristle phenotype, but amplified that of HWA. We interpret these differences as to the role of H regarding Su(H) stability and availability.


Asunto(s)
Alelos , Proteínas de Drosophila , Drosophila melanogaster , Alas de Animales , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética
13.
Development ; 151(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38775023

RESUMEN

Regenerative ability often declines as animals mature past embryonic and juvenile stages, suggesting that regeneration requires redirection of growth pathways that promote developmental growth. Intriguingly, the Drosophila larval epithelia require the hormone ecdysone (Ec) for growth but require a drop in circulating Ec levels to regenerate. Examining Ec dynamics more closely, we find that transcriptional activity of the Ec-receptor (EcR) drops in uninjured regions of wing discs, but simultaneously rises in cells around the injury-induced blastema. In parallel, blastema depletion of genes encoding Ec biosynthesis enzymes blocks EcR activity and impairs regeneration but has no effect on uninjured wings. We find that local Ec/EcR signaling is required for injury-induced pupariation delay following injury and that key regeneration regulators upd3 and Ets21c respond to Ec levels. Collectively, these data indicate that injury induces a local source of Ec within the wing blastema that sustains a transcriptional signature necessary for developmental delay and tissue repair.


Asunto(s)
Proteínas de Drosophila , Ecdisona , Regeneración , Alas de Animales , Animales , Ecdisona/metabolismo , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva/metabolismo , Larva/crecimiento & desarrollo , Transducción de Señal , Drosophila , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética
14.
Genetics ; 227(4)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38805187

RESUMEN

The T-box (Tbx) proteins have a 180-230 amino acid DNA-binding domain, first reported in the Brachyury (T) protein. They are highly conserved among metazoans. They regulate a multitude of cellular functions in development and disease. Here, we report posttranscriptional and translational regulation of midline (mid), a Tbx member in Drosophila. We found that the 3'UTR of mid has mRNA degradation elements and AT-rich sequences. In Schneider S2 cells, mid-mRNA could be detected only when the transgene was without the 3'UTR. Similarly, the 3'UTR linked to the Renilla luciferase reporter significantly reduced the activity of the Luciferase, whereas deleting only the degradation elements from the 3'UTR resulted in reduced activity, but not as much. Overexpression of mid in MP2, an embryonic neuroblast, showed no significant difference in the levels of mid-mRNA between the 2 transgenes, with and without the 3'UTR, indicating the absence of posttranscriptional regulation of mid in MP2. Moreover, while elevated mid-RNA was detected in MP2 in nearly all hemisegments, only a fifth of those hemisegments had elevated levels of the protein. Overexpression of the 2 transgenes resulted in MP2-lineage defects at about the same frequency. These results indicate a translational/posttranslational regulation of mid in MP2. The regulation of ectopically expressed mid in the wing imaginal disc was complex. In the wing disc, where mid is not expressed, the ectopic expression of the transgene lacking the 3'UTR had a higher level of mid-RNA and the protein had a stronger phenotypic effect. These results indicate that the 3'UTR can subject mid-mRNA to degradation in a cell- and tissue-specific manner. We further report a balancer-mediated transgenerational modifier effect on the expression and gain of function effects of the 2 transgenes.


Asunto(s)
Regiones no Traducidas 3' , Proteínas de Drosophila , Proteínas de Dominio T Box , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Estabilidad del ARN/genética , Drosophila melanogaster/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Procesamiento Postranscripcional del ARN , Especificidad de Órganos , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Línea Celular , Drosophila/genética , Drosophila/metabolismo
15.
Cell Mol Life Sci ; 81(1): 195, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653877

RESUMEN

The Notch pathway is an evolutionarily conserved signaling system that is intricately regulated at multiple levels and it influences different aspects of development. In an effort to identify novel components involved in Notch signaling and its regulation, we carried out protein interaction screens which identified non-muscle myosin II Zipper (Zip) as an interacting partner of Notch. Physical interaction between Notch and Zip was further validated by co-immunoprecipitation studies. Immunocytochemical analyses revealed that Notch and Zip co-localize within same cytoplasmic compartment. Different alleles of zip also showed strong genetic interactions with Notch pathway components. Downregulation of Zip resulted in wing phenotypes that were reminiscent of Notch loss-of-function phenotypes and a perturbed expression of Notch downstream targets, Cut and Deadpan. Further, synergistic interaction between Notch and Zip resulted in highly ectopic expression of these Notch targets. Activated Notch-induced tumorous phenotype of larval tissues was enhanced by over-expression of Zip. Notch-Zip synergy resulted in the activation of JNK pathway that consequently lead to MMP activation and proliferation. Taken together, our results suggest that Zip may play an important role in regulation of Notch signaling.


Asunto(s)
Proteínas de Drosophila , Proteínas de la Membrana , Cadenas Pesadas de Miosina , Receptores Notch , Transducción de Señal , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Notch/metabolismo , Receptores Notch/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Drosophila/metabolismo , Drosophila/genética , Fenotipo , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/genética , Proliferación Celular , Miosina Tipo II/metabolismo , Miosina Tipo II/genética
16.
Nature ; 628(8009): 811-817, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38632397

RESUMEN

Hybridization allows adaptations to be shared among lineages and may trigger the evolution of new species1,2. However, convincing examples of homoploid hybrid speciation remain rare because it is challenging to demonstrate that hybridization was crucial in generating reproductive isolation3. Here we combine population genomic analysis with quantitative trait locus mapping of species-specific traits to examine a case of hybrid speciation in Heliconius butterflies. We show that Heliconius elevatus is a hybrid species that is sympatric with both parents and has persisted as an independently evolving lineage for at least 180,000 years. This is despite pervasive and ongoing gene flow with one parent, Heliconius pardalinus, which homogenizes 99% of their genomes. The remaining 1% introgressed from the other parent, Heliconius melpomene, and is scattered widely across the H. elevatus genome in islands of divergence from H. pardalinus. These islands contain multiple traits that are under disruptive selection, including colour pattern, wing shape, host plant preference, sex pheromones and mate choice. Collectively, these traits place H. elevatus on its own adaptive peak and permit coexistence with both parents. Our results show that speciation was driven by introgression of ecological traits, and that speciation with gene flow is possible with a multilocus genetic architecture.


Asunto(s)
Mariposas Diurnas , Introgresión Genética , Especiación Genética , Hibridación Genética , Sitios de Carácter Cuantitativo , Animales , Femenino , Masculino , Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/clasificación , Mariposas Diurnas/genética , Flujo Génico , Introgresión Genética/genética , Genoma de los Insectos/genética , Preferencia en el Apareamiento Animal , Fenotipo , Pigmentación/genética , Sitios de Carácter Cuantitativo/genética , Aislamiento Reproductivo , Selección Genética/genética , Especificidad de la Especie , Simpatría/genética , Alas de Animales/anatomía & histología , Alas de Animales/metabolismo
17.
Cell Rep ; 43(5): 114147, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38662541

RESUMEN

Butterfly wings display a diversity of cell types, including large polyploid scale cells, yet the molecular basis of such diversity is poorly understood. To explore scale cell diversity at a transcriptomic level, we employ single-cell RNA sequencing of ∼5,200 large cells (>6 µm) from 22.5- to 25-h male pupal forewings of the butterfly Bicyclus anynana. Using unsupervised clustering, followed by in situ hybridization, immunofluorescence, and CRISPR-Cas9 editing of candidate genes, we annotate various cell types on the wing. We identify genes marking non-innervated scale cells, pheromone-producing glandular cells, and innervated sensory cell types. We show that senseless, a zinc-finger transcription factor, and HR38, a hormone receptor, determine the identity, size, and color of different scale cell types and are important regulators of scale cell differentiation. This dataset and the identification of various wing cell-type markers provide a foundation to compare and explore scale cell-type diversification across arthropod species.


Asunto(s)
Mariposas Diurnas , Pupa , Análisis de la Célula Individual , Alas de Animales , Animales , Mariposas Diurnas/genética , Alas de Animales/metabolismo , Alas de Animales/citología , Pupa/metabolismo , Análisis de la Célula Individual/métodos , Masculino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Transcriptoma/genética
18.
Insect Sci ; 31(3): 748-758, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38445520

RESUMEN

Lipid homeostasis is crucial for growth and development of organisms. Several cytochrome P450 monooxygenases (CYPs) are involved in lipid metabolism. The function of Cyp311a1 in the anterior midgut as a regulator of phosphatidylethanolamine (PE) metabolism in Drosophila melanogaster has been demonstrated, as depletion of Cyp311a1 caused larval growth arrest that was partially rescued by supplying PE. In this study, we investigated the role of CYP311A1 in wing morphogenesis in Drosophila. Using the GAL4-UAS system, Cyp311a1 was selectively knocked down in the wing disc. A deformed wing phenotype was observed in flies with reduced Cyp311a1 transcripts. BODIPY and oil red O staining revealed a reduction of neutral lipids in the wing disc after the depletion of Cyp311a1. In addition, we observed an enhanced sensitivity to Eosin Y penetration in the wings of Cyp311a1 knocked-down flies. Moreover, the reduction of CYP311A1 function in developing wings does not affect cell proliferation and apoptosis, but entails disordered Phalloidin or Cadherin distribution, suggesting an abnormal cell morphology and cell cortex structure in wing epithelial cells. Taken together, our results suggest that Cyp311a1 is needed for wing morphogenesis by participating in lipid assembly and cell homeostasis.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Proteínas de Drosophila , Drosophila melanogaster , Alas de Animales , Animales , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Morfogénesis , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Metabolismo de los Lípidos
19.
F1000Res ; 12: 1428, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38778811

RESUMEN

Background: How the precise spatial regulation of genes is correlated with spatial variation in chromatin accessibilities is not yet clear. Previous studies that analysed chromatin from homogenates of whole-body parts of insects found little variation in chromatin accessibility across those parts, but single-cell studies of Drosophila brains showed extensive spatial variation in chromatin accessibility across that organ. In this work we studied the chromatin accessibility of butterfly wing tissue fated to differentiate distinct colors and patterns in pupal wings of Bicyclus anynana. Methods: We dissected small eyespot and adjacent control tissues from 3h pupae and performed ATAC-Seq to identify the chromatin accessibility differences between different sections of the wings. Results: We observed that three dissected wing regions showed unique chromatin accessibilities. Open chromatin regions specific to eyespot color patterns were highly enriched for binding motifs recognized by Suppressor of Hairless (Su(H)), Krüppel (Kr), Buttonhead (Btd) and Nubbin (Nub) transcription factors. Genes in the vicinity of the eyespot-specific open chromatin regions included those involved in wound healing and SMAD signal transduction pathways, previously proposed to be involved in eyespot development. Conclusions: We conclude that eyespot and non-eyespot tissue samples taken from the same wing have distinct patterns of chromatin accessibility, possibly driven by the eyespot-restricted expression of potential pioneer factors, such as Kr.


Asunto(s)
Mariposas Diurnas , Cromatina , Alas de Animales , Animales , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Cromatina/metabolismo , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Pigmentación , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
20.
Biol. Res ; 44(1): 25-34, 2011. ilus
Artículo en Inglés | LILACS | ID: lil-591861

RESUMEN

The Notch signaling pathway plays an important role in development and physiology. In Drosophila, Notch is activated by its Delta or Serrate ligands, depending in part on the sugar modifications present in its extracellular domain. O-fucosyltransferase-1 (OFUT1) performs the first glycosylation step in this process, O-fucosylating various EGF repeats at the Notch extracellular domain. Besides its O-fucosyltransferase activity, OFUT1 also behaves as a chaperone during Notch synthesis and is able to down regulate Notch by enhancing its endocytosis and degradation. We have reevaluated the roles that O-fucosylation and the synthesis of GDP-fucose play in the regulation of Notch protein stability. Using mutants and the UAS/Gal4 system, we modified in developing tissues the amount of GDP-mannose-deshydratase (GMD), the first enzyme in the synthesis of GDP-fucose. Our results show that GMD activity, and likely the levels of GDP-fucose and O-fucosylation, are essential to stabilize the Notch protein. Notch degradation observed under low GMD expression is absolutely dependent on OFUT1 and this is also observed in Notch Abruptex mutants, which have mutations in some potential O-fucosylated EGF domains. We propose that the GDP-fucose/OFUT1 balance determines the ability of OFUT1 to endocytose and degrade Notch in a manner that is independent of the residues affected by Abruptex mutations in Notch EGF domains.


Asunto(s)
Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Fucosiltransferasas/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Guanosina Difosfato Manosa/metabolismo , Receptores Notch/metabolismo , Alas de Animales/metabolismo , Alelos , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/metabolismo , Endocitosis/genética , Fucosiltransferasas/genética , Guanosina Difosfato Fucosa/genética , Guanosina Difosfato Manosa/genética , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptores Notch/genética , Transducción de Señal , Alas de Animales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA