Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Pharm ; 663: 124586, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39147249

RESUMEN

This study demonstrates the application of Langmuir and Langmuir-Blodgett films as biomimetic drug reservoirs and delivery systems to investigate the effect of an anthelmintic on cancer cell culture. The repurposing of benzimidazole anthelmintics for cancer therapy due to their microtubule-inhibiting properties has gained attention, showing promising anticancer effects and tumor-suppressive properties. Although widely used in medicine, the low aqueous solubility of benzimidazole compounds poses challenges for studying their effects on cancer cells, requiring incorporation into various formulations. Our study demonstrates that incorporating albendazole into stable Palmitic Acid Langmuir monolayers, forming Langmuir-Blodgett films, significantly affects the proliferation of liver carcinoma cells. This report presents the initial findings of the effect of an antitumoral drug on cancer cell culture using a simple and repeatable methodology.


Asunto(s)
Albendazol , Antineoplásicos , Proliferación Celular , Sistemas de Liberación de Medicamentos , Albendazol/química , Albendazol/administración & dosificación , Albendazol/farmacología , Humanos , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Línea Celular Tumoral , Antihelmínticos/química , Antihelmínticos/administración & dosificación , Antihelmínticos/farmacología , Solubilidad , Propiedades de Superficie
2.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834396

RESUMEN

Parasitic diseases, including giardiasis caused by Giardia lamblia (G. lamblia), present a considerable global health burden. The limited effectiveness and adverse effects of current treatment options underscore the necessity for novel therapeutic compounds. In this study, we employed a rational design strategy to synthesize retroalbendazole (RetroABZ), aiming to address the limitations associated with albendazole, a commonly used drug for giardiasis treatment. RetroABZ exhibited enhanced in vitro activity against G. lamblia trophozoites, demonstrating nanomolar potency (IC50 = 83 nM), outperforming albendazole (189 nM). Moreover, our in vivo murine model of giardiasis displayed a strong correlation, supporting the efficacy of RetroABZ, which exhibited an eleven-fold increase in potency compared to albendazole, with median effective dose (ED50) values of 5 µg/kg and 55 µg/kg, respectively. A notable finding was RetroABZ's significantly improved water solubility (245.74 µg/mL), representing a 23-fold increase compared to albendazole, thereby offering potential opportunities for developing derivatives that effectively target invasive parasites. The molecular docking study revealed that RetroABZ displays an interaction profile with tubulin similar to albendazole, forming hydrogen bonds with Glu198 and Cys236 of the ß-tubulin. Additionally, molecular dynamics studies demonstrated that RetroABZ has a greater number of hydrophobic interactions with the binding site in the ß-tubulin, due to the orientation of the propylthio substituent. Consequently, RetroABZ exhibited a higher affinity compared to albendazole. Overall, our findings underscore RetroABZ's potential as a promising therapeutic candidate not only for giardiasis but also for other parasitic diseases.


Asunto(s)
Antiprotozoarios , Giardia lamblia , Giardiasis , Animales , Ratones , Albendazol/química , Giardiasis/tratamiento farmacológico , Giardiasis/parasitología , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Tubulina (Proteína) , Simulación del Acoplamiento Molecular , Solubilidad
3.
PLoS Pathog ; 18(9): e1010840, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36166467

RESUMEN

Giardia duodenalis causes giardiasis, a major diarrheal disease in humans worldwide whose treatment relies mainly on metronidazole (MTZ) and albendazole (ABZ). The emergence of ABZ resistance in this parasite has prompted studies to elucidate the molecular mechanisms underlying this phenomenon. G. duodenalis trophozoites convert ABZ into its sulfoxide (ABZSO) and sulfone (ABZSOO) forms, despite lacking canonical enzymes involved in these processes, such as cytochrome P450s (CYP450s) and flavin-containing monooxygenases (FMOs). This study aims to identify the enzyme responsible for ABZ metabolism and its role in ABZ resistance in G. duodenalis. We first determined that the iron-containing cofactor heme induces higher mRNA expression levels of flavohemoglobin (gFlHb) in Giardia trophozoites. Molecular docking analyses predict favorable interactions of gFlHb with ABZ, ABZSO and ABZSOO. Spectral analyses of recombinant gFlHb in the presence of ABZ, ABZSO and ABZSOO showed high affinities for each of these compounds with Kd values of 22.7, 19.1 and 23.8 nM respectively. ABZ and ABZSO enhanced gFlHb NADH oxidase activity (turnover number 14.5 min-1), whereas LC-MS/MS analyses of the reaction products showed that gFlHb slowly oxygenates ABZ into ABZSO at a much lower rate (turnover number 0.01 min-1). Further spectroscopic analyses showed that ABZ is indirectly oxidized to ABZSO by superoxide generated from the NADH oxidase activity of gFlHb. In a similar manner, the superoxide-generating enzyme xanthine oxidase was able to produce ABZSO in the presence of xanthine and ABZ. Interestingly, we find that gFlHb mRNA expression is lower in albendazole-resistant clones compared to those that are sensitive to this drug. Furthermore, all albendazole-resistant clones transfected to overexpress gFlHb displayed higher susceptibility to the drug than the parent clones. Collectively these findings indicate a role for gFlHb in ABZ conversion to its sulfoxide and that gFlHb down-regulation acts as a passive pharmacokinetic mechanism of resistance in this parasite.


Asunto(s)
Antihelmínticos , Giardia lamblia , Albendazol/química , Albendazol/farmacocinética , Animales , Antihelmínticos/farmacología , Biotransformación , Cromatografía Liquida , Citocromos/metabolismo , Flavinas/metabolismo , Giardia lamblia/genética , Giardia lamblia/metabolismo , Hemo/metabolismo , Humanos , Hierro , Metronidazol/farmacología , Oxigenasas de Función Mixta/metabolismo , Simulación del Acoplamiento Molecular , ARN Mensajero/metabolismo , Sulfonas , Sulfóxidos/metabolismo , Superóxidos , Espectrometría de Masas en Tándem , Trofozoítos/metabolismo , Xantina Oxidasa/metabolismo , Xantinas
4.
Curr Drug Deliv ; 19(1): 86-92, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34126897

RESUMEN

BACKGROUND: Albendazole (ABZ) is the drug of choice for the treatment of a variety of human and veterinary parasites. However, it has low aqueous solubility and low bioavailability. Cyclodextrins (CD) are pharmaceutical excipients with the ability to modulate the solubilization property of hydrophobic molecules. OBJECTIVE: The aim of the study was to analyze through in vitro and in silico studies (Autodock Vina software and CycloMolder platform) the formation of inclusion complexes between ABZ, ß-cyclodextrin (ß-CD) and its derivatives Methyl-ß-cyclodextrin (M-ß-CD) and Hydroxypropyl-ß-cyclodextrin (HP-ß-CD). METHODS: The most stable inclusion complexes were produced by the kneading method and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), determination of the ABZ content and in vitro dissolution profile. RESULTS: Molecular modeling revealed that inclusion complexes between HP-ß-CD:ABZ (in the proportion 1:1 and 2:1) presented the lowest formation energy and the highest number of intermolecular interactions, showing that the use of more cyclodextrins does not generate gains in the stability of the complex. On the characterization tests, the complexes experimentally obtained by the kneading method demonstrated highly suggestive parameters, including ABZ in HP-ß-CD in both molar proportions, suppression of bands in the infrared spectrum, displacement of the drug's melting temperature in DSC, crystallinity halos instead of the characteristic peaks of ABZ crystals in the XRD and a release of more than 80% of ABZ in less than 5 minutes, dissolution efficiency of up to 92%. CONCLUSION: In silico studies provided a rational selection of the appropriate complexes of cyclodextrin, enabling the elaboration of more targeted complexes, decreasing time and costs for elaboration of new formulations, thereby increasing the oral biodisponibility of ABZ.


Asunto(s)
Albendazol , Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , Albendazol/química , Rastreo Diferencial de Calorimetría , Ciclodextrinas/química , Humanos , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X
5.
Int J Biol Macromol ; 164: 1704-1714, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763396

RESUMEN

From a materials science perspective, herein we present the design and synthesis of six macromolecular carbohydrate derivatives, obtained by combining the native cyclic oligosaccharide ßCD and dendritic poly(ester) moieties, coupled by CuAAc click reactions, in a convergent fashion. We envisioned two structural variables to promote the formation of inclusion complexes (ICs) with the anti-parasitic drug Albendazole, the degree of substitution on the ßCD (mono or hepta-substitution) and the dendritic generation (from first to third). In terms of synthetic effort and cost, the mono-substituted ßCD derivatives were obtained in more approachable experimental conditions in comparison to the ßCD dendrimers (hepta-substituted macrocycle). The six dendritic derivatives were more soluble in water and showed better complexation capacity than native ßCD. For both, mono and hepta-substituted ßCD, we observed that the amount of encapsulated ABZ increases when the dendron generation increases. Interestingly, different degrees of substitution (mono and hepta) lead comparable results of ABZ complexation. In conclusion, the encapsulation performance and the consequent solubility enhancement, make these molecular containers excellent materials to positively impact the therapeutic desirability of ABZ.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/química , Albendazol/química , Química Clic/métodos , Portadores de Fármacos , Sustancias Macromoleculares , Solubilidad , Agua/química , beta-Ciclodextrinas
6.
AAPS PharmSciTech ; 21(5): 149, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32435903

RESUMEN

Albendazole (ABZ), an anthelmintic compound widely used in the treatment of systemic nematode infections, is included in the list of class II drugs based on the Biopharmaceutical Classification System. ABZ has limited effectiveness due to its poor water solubility and consequent low bioavailability. Bioavailability of novel ABZ microcrystals based on hydroxyethylcellulose (S4A) or chitosan (S10A) was studied in male and female mice of two inbred lines, from the murine CBi-IGE model of trichinellosis, differing in susceptibility to this parasitosis (line CBi/L, resistant; line CBi+, susceptible). ABZ microcrystals were administered orally, and albendazole sulfoxide (ABZSO) was quantified in plasma by high-performance liquid chromatography. Mice given the microcrystals showed a significant increase in maximum plasmatic concentration (Cmax) compared with those receiving pure ABZ (P < 0.01). In both genotypes, males and females given S4A had higher Cmax than those receiving S10A (P < 0.05). CBi/L showed a greater Cmax than CBi+ (significantly different only in females treated with S4A (P = 0.001)). CBi/L females attained a higher Cmax than males (P < 0.05). No sex effect was observed for this variable in CBi+ (P > 0.05). The results of the pharmacokinetic analysis indicate that the microcrystalline formulations optimize ABZ bioavailability, both in males and females, S4A being the best system in CBi/L mice and S10A in CBi+. In summary, the microcrystals increased ABZ bioavailability, and under the conditions of this investigation, both host genotype and sex influenced the pharmacokinetic parameters measured.


Asunto(s)
Albendazol/farmacocinética , Celulosa/análogos & derivados , Quitosano/química , Albendazol/química , Animales , Área Bajo la Curva , Disponibilidad Biológica , Celulosa/química , Femenino , Genotipo , Masculino , Ratones , Caracteres Sexuales
7.
Mem Inst Oswaldo Cruz ; 115: e190348, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32049098

RESUMEN

BACKGROUND: It was previously demonstrated that CMC-20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid molecule, had higher in vitro activity against Giardia intestinalis WB strain than metronidazole and albendazole and similar to nitazoxanide. OBJETIVES: To evaluate the in vitro activity of CMC-20 against G. intestinalis strains with different susceptibility/resistance to albendazole and nitazoxanide and evaluate its effect on the distribution of parasite cytoskeletal proteins and its in vivo giardicidal activity. METHODS: CMC-20 activity was tested against two isolates from patients with chronic and acute giardiasis, an experimentally induced albendazole resistant strain and a nitazoxanide resistant clinical isolate. CMC-20 effect on the distribution of parasite cytoskeletal proteins was analysed by indirect immunofluorescence and its activity was evaluated in a murine model of giardiasis. FINDINGS CMC-20: showed broad activity against susceptible and resistant strains to albendazole and nitaxozanide. It affected the parasite microtubule reservoir and triggered the parasite encystation. In this process, alpha-7.2 giardin co-localised with CWP-1 protein. CMC-20 reduced the infection time and cyst load in feces of G. muris infected mice similar to albendazole. MAIN CONCLUSIONS: The in vitro and in vivo giardicidal activity of CMC-20 suggests its potential use in the treatment of giardiasis.


Asunto(s)
Albendazol/farmacología , Antiprotozoarios/farmacología , Proteínas del Citoesqueleto/efectos de los fármacos , Giardia lamblia/efectos de los fármacos , Tiazoles/farmacología , Albendazol/química , Animales , Antiprotozoarios/química , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Ratones , Nitrocompuestos , Pruebas de Sensibilidad Parasitaria , Tiazoles/química , Factores de Tiempo
8.
Xenobiotica ; 50(4): 408-414, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31305200

RESUMEN

Combinations of bioactive phytochemicals with synthetic compounds have been suggested as promissory tools for the improvement of nematode control in livestock. Bioactive phytochemicals may interfere with the activity of drug-metabolizing enzymes and delay the metabolic conversion of anthelmintics into less potent metabolites.This research assessed the effect of the monoterpene thymol (TML) on the in vitro hepatic metabolism of the anthelmintic albendazole (ABZ) in sheep.Liver microsomes from four (4) Texel lambs were incubated with ABZ (50 µM) in absence or in presence of TML (0.05-10 mM).The concentration of TML producing a 50% decrease in ABZ S-oxygenation (IC50) was 13.5 mM. The FMO-dependent S-oxygenation of ABZ was markedly inhibited by the monoterpene (54.1 ± 11.6%, p < .01). In agreement with this observation, TML produced a marked inhibition of benzydamine (BZ) N-oxidase, a specific FMO activity.The CYP-dependent production of the sulfoxide metabolite (ABZSO) was less affected, being 25.3 ± 17.5 lower (p < .05) in presence of TML. Additionally, TML completely abolished the specific CYP1A1-dependent enzyme activity 7-ethoxyresorufin O-deethylase.Overall, the results presented here show that, in addition to its own anthelmintic affect, TML may potentiate ABZ anthelmintic activity by preventing its metabolic conversion into a less active metabolite.


Asunto(s)
Albendazol/metabolismo , Antihelmínticos/metabolismo , Timol/metabolismo , Albendazol/química , Animales , Antihelmínticos/química , Citocromo P-450 CYP1A1/metabolismo , Hígado/metabolismo , Tasa de Depuración Metabólica , Microsomas Hepáticos/metabolismo , Monoterpenos , Ovinos
9.
Mem. Inst. Oswaldo Cruz ; 115: e190348, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1091246

RESUMEN

BACKGROUND It was previously demonstrated that CMC-20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid molecule, had higher in vitro activity against Giardia intestinalis WB strain than metronidazole and albendazole and similar to nitazoxanide. OBJETIVES To evaluate the in vitro activity of CMC-20 against G. intestinalis strains with different susceptibility/resistance to albendazole and nitazoxanide and evaluate its effect on the distribution of parasite cytoskeletal proteins and its in vivo giardicidal activity. METHODS CMC-20 activity was tested against two isolates from patients with chronic and acute giardiasis, an experimentally induced albendazole resistant strain and a nitazoxanide resistant clinical isolate. CMC-20 effect on the distribution of parasite cytoskeletal proteins was analysed by indirect immunofluorescence and its activity was evaluated in a murine model of giardiasis. FINDINGS CMC-20 showed broad activity against susceptible and resistant strains to albendazole and nitaxozanide. It affected the parasite microtubule reservoir and triggered the parasite encystation. In this process, alpha-7.2 giardin co-localised with CWP-1 protein. CMC-20 reduced the infection time and cyst load in feces of G. muris infected mice similar to albendazole. MAIN CONCLUSIONS The in vitro and in vivo giardicidal activity of CMC-20 suggests its potential use in the treatment of giardiasis.


Asunto(s)
Humanos , Animales , Ratones , Tiazoles/farmacología , Albendazol/farmacología , Giardia lamblia/efectos de los fármacos , Proteínas del Citoesqueleto/efectos de los fármacos , Antiprotozoarios/farmacología , Tiazoles/química , Factores de Tiempo , Albendazol/química , Técnica del Anticuerpo Fluorescente Indirecta , Pruebas de Sensibilidad Parasitaria , Antiprotozoarios/química
10.
Mem. Inst. Oswaldo Cruz ; 115: e190348, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1056773

RESUMEN

BACKGROUND It was previously demonstrated that CMC-20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid molecule, had higher in vitro activity against Giardia intestinalis WB strain than metronidazole and albendazole and similar to nitazoxanide. OBJETIVES To evaluate the in vitro activity of CMC-20 against G. intestinalis strains with different susceptibility/resistance to albendazole and nitazoxanide and evaluate its effect on the distribution of parasite cytoskeletal proteins and its in vivo giardicidal activity. METHODS CMC-20 activity was tested against two isolates from patients with chronic and acute giardiasis, an experimentally induced albendazole resistant strain and a nitazoxanide resistant clinical isolate. CMC-20 effect on the distribution of parasite cytoskeletal proteins was analysed by indirect immunofluorescence and its activity was evaluated in a murine model of giardiasis. FINDINGS CMC-20 showed broad activity against susceptible and resistant strains to albendazole and nitaxozanide. It affected the parasite microtubule reservoir and triggered the parasite encystation. In this process, alpha-7.2 giardin co-localised with CWP-1 protein. CMC-20 reduced the infection time and cyst load in feces of G. muris infected mice similar to albendazole. MAIN CONCLUSIONS The in vitro and in vivo giardicidal activity of CMC-20 suggests its potential use in the treatment of giardiasis.


Asunto(s)
Humanos , Animales , Ratones , Tiazoles/farmacología , Albendazol/farmacología , Giardia lamblia/efectos de los fármacos , Proteínas del Citoesqueleto/efectos de los fármacos , Antiprotozoarios/farmacología , Tiazoles/química , Factores de Tiempo , Albendazol/química , Técnica del Anticuerpo Fluorescente Indirecta , Pruebas de Sensibilidad Parasitaria , Antiprotozoarios/química
11.
Exp Parasitol ; 198: 79-86, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30769018

RESUMEN

Cystic echinococcosis (CE), which is caused during the metacestode larval stage of Echinococcus granulosus, is a life-threatening disease and is very difficult to treat. At present, the FDA-approved antihelmintic drugs are mebendazole (MBZ), albendazole (ABZ) and its principal metabolite ABZ sulfoxide (ABZSO), but as these have a therapeutic efficacy over 50%, underlining the need for new drug delivery systems. The aim of this work was the optimization and characterization of previously developed ABZ lipid nanocapsules (ABZ-LNCs) and evaluate their efficacy in mice infected with E. granulosus. LNCs were prepared by the phase inversion technique and characterized in terms of size, surface charge, drug loading, and in vitro stability followed by an in vivo proof-of-concept using a murine model infected with E. granulosus. Stable particle dispersions with a narrow size distribution and high efficiency of encapsulation (≥90%) were obtained. ABZ-LNCs showed a greater chemoprophylactic efficacy than ABZ suspension administered by the oral route as 4 out of the 10 ABZ-LNCs treated mice did not develop any cysts, whereas the infection progressed in all mice from the ABZ suspension group. Regarding the ultrastructural studies of cysts, mice treated with ABZ-LNCs or ABZ suspension revealed changes in the germinal layer. However, the extent of the damage appeared to be greater after ABZ-LNC administration compared to the suspension treatment. These results suggest that ABZ-LNCs could be a promising novel candidate for ABZ delivery to treat CE.


Asunto(s)
Albendazol/uso terapéutico , Anticestodos/uso terapéutico , Equinococosis/tratamiento farmacológico , Echinococcus granulosus/efectos de los fármacos , Albendazol/administración & dosificación , Albendazol/química , Animales , Anticestodos/administración & dosificación , Anticestodos/química , Bovinos , Cromatografía Líquida de Alta Presión , Equinococosis/prevención & control , Echinococcus granulosus/ultraestructura , Femenino , Intestinos/química , Ratones , Microscopía Electrónica de Rastreo , Nanocápsulas/normas , Nanocápsulas/ultraestructura , Enfermedades Desatendidas/tratamiento farmacológico , Enfermedades Desatendidas/prevención & control , Tamaño de la Partícula , Polvos , Estómago/química
12.
Drug Deliv Transl Res ; 9(1): 273-283, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30264285

RESUMEN

This work aimed to synthesize a novel ß-cyclodextrin derivative, itaconyl-ß-cyclodextrin to evaluate whether albendazole inclusion complexes with the new ß-cyclodextrin derivative-improved albendazole dissolution efficiency and its anthelminthic activity. The new derivative was thoroughly evaluated and characterized, and an average degree of substitution of 1.4 per cyclodextrin molecule was observed. Albendazole:itaconyl-ß-cyclodextrin complexes were prepared by spray drying procedures and investigated using phase solubility diagrams, dissolution efficiency, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared, scanning electronic microscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Phase solubility diagrams and mass spectrometry studies showed that the inclusion complex was formed in an equimolar ratio. Stability constant values were 602 M-1 in water, and 149 M-1 in HCl 0.1 N. Nuclear magnetic resonance experiments of the inclusion complex showed correlation signals between the aromatic and propyl protons of albendazole and the itaconyl-ß-cyclodextrin inner protons. The studies indicated solid structure changes of albendazole included in itaconyl-ß-cyclodextrin. The maximum drug release was reached at 15 min, and the inclusion complex solubility was 88-fold higher than that of the pure drug. The in vitro anthelmintic activity assay showed that the complex was significantly more effective than pure albendazole.


Asunto(s)
Albendazol/química , Antihelmínticos/síntesis química , Trichinella spiralis/efectos de los fármacos , beta-Ciclodextrinas/síntesis química , Administración Oral , Animales , Antihelmínticos/química , Antihelmínticos/farmacología , Rastreo Diferencial de Calorimetría , Diseño de Fármacos , Microscopía Electrónica de Rastreo , Estructura Molecular , Solubilidad , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacología
13.
Mater Sci Eng C Mater Biol Appl ; 92: 694-702, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184797

RESUMEN

Succinyl-ß-CD derivatives were obtained by green synthesis with degrees of substitution (DS) 1.3 and 2.9. The spray-drying technique was used to obtain albendazole (ABZ):succinyl-ß-CD inclusion complexes. Phase solubility diagrams indicated that both succinyl-ß-CD derivatives formed 1:1 molar ratio ABZ complexes, but the complex with DS 2.9 has a lower formation constant. The presence of stable inclusion complexes in aqueous solution was confirmed by NMR. For both complexes the aromatic moiety is encapsulated into the host cavity. In the solid-state, 13C and 15N NMR spectral differences between ABZ and ABZ included in spray-dried systems showed that strong structural changes occurred in the systems. At least two different ABZ amorphous species were identified based on DS. ABZ species were stable over more than six months based on spectral data. Finally, the influence of DS in the number and type of the inclusion complexes was elucidated.


Asunto(s)
Albendazol/química , Resonancia Magnética Nuclear Biomolecular , beta-Ciclodextrinas/química
14.
Ther Deliv ; 9(9): 623-638, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30189808

RESUMEN

AIM: Solid dispersions using Poloxamer 407 as carrier were developed to improve albendazole (ABZ) solubility and dissolution profiles. METHODS: ABZ/poloxamer solid dispersions were prepared, and dissolution profiles were mathematically modeled and compared with physical mixtures, pharmaceutical ABZ and a commercial formulation. RESULTS: Poloxamer 407 increased exponentially ABZ solubility, in about 400% when 95% w/w of polymer compared with its absence. Solid dispersions initial dissolution rate was three to 20-fold higher than physical mixtures, the drug and the commercial formulation. All the solid dispersions required less than 2.2 min to reach an 80% of ABZ dissolution, while the commercial formulation needed around 40 min. CONCLUSION: Solid dispersions improved ABZ solubility and dissolution rate, which could result in a faster absorption and an increased bioavailability.


Asunto(s)
Albendazol/farmacocinética , Portadores de Fármacos/química , Liberación de Fármacos , Poloxámero/química , Absorción Fisicoquímica , Albendazol/administración & dosificación , Albendazol/química , Disponibilidad Biológica , Química Farmacéutica , Composición de Medicamentos/métodos , Solubilidad
15.
AAPS PharmSciTech ; 19(8): 3734-3741, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30255471

RESUMEN

Drug repositioning refers to the identification of new therapeutic indications for drugs already approved. Albendazole and ricobendazole have been used as anti-parasitic drugs for many years; their therapeutic action is based on the inhibition of microtubule formation. Therefore, the study of their properties as antitumor compounds and the design of an appropriate formulation for cancer therapy is an interesting issue to investigate. The selected compounds are poorly soluble in water, and consequently, they have low and erratic bioavailability. In order to improve their biopharmaceutics properties, several formulations employing cyclodextrin inclusion complexes were developed. To carefully evaluate the in vitro and in vivo antitumor activity of these drugs and their complexes, several studies were performed on a breast cancer cell line (4T1) and BALB/c mice. In vitro studies showed that albendazole presented improved antitumor activity compared with ricobendazole. Furthermore, albendazole:citrate-ß-cyclodextrin complex decreased significantly 4T1 cell growth both in in vitro and in vivo experiments. Thus, new formulations for anti-parasitic drugs could help to reposition them for new therapeutic indications, offering safer and more effective treatments by using a well-known drug.


Asunto(s)
Antiparasitarios/administración & dosificación , Ciclodextrinas/administración & dosificación , Reposicionamiento de Medicamentos/métodos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Albendazol/administración & dosificación , Albendazol/análogos & derivados , Albendazol/química , Animales , Antiparasitarios/química , Disponibilidad Biológica , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Ciclodextrinas/química , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Distribución Aleatoria , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/patología , Difracción de Rayos X , beta-Ciclodextrinas/administración & dosificación , beta-Ciclodextrinas/química
16.
AAPS PharmSciTech ; 19(3): 1468-1476, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29464593

RESUMEN

Albendazole, an effective broad-spectrum anthelmintic agent, showed unpredictable therapeutic response caused by poor water solubility and slow dissolution rate. Then, novel binary and multicomponent supramolecular systems of two different solid forms of albendazole (I and II) with maltodextrin alone or with glutamic acid were studied as an alternative to improve the oral bioavailability of albendazole. The interactions and effects on the properties of albendazole were studied in solution and solid state. The solid systems were characterized using Raman and Fourier transform-infrared spectroscopy, thermal analysis, powder X-ray diffraction, and scanning electron microscopy. The solubility measurements, performed in aqueous and simulated gastric fluid, showed that albendazole (form II) was the most soluble form, while its supramolecular systems showed the highest solubility in simulated gastric fluid. On the other hand, the dissolution profiles of binary and multicomponent systems in simulated gastric fluid displayed pronounced increments of the dissolved drug and a faster dissolution rate compared to those of free albendazole forms. Thus, these supramolecular structures constitute an interesting alternative to improve the physicochemical properties of albendazole, with potential application for the preparation of pharmaceutical oral formulations.


Asunto(s)
Albendazol/química , Antihelmínticos/química , Ácido Glutámico/química , Polisacáridos/química , Albendazol/administración & dosificación , Antihelmínticos/administración & dosificación , Jugo Gástrico , Solubilidad
17.
Parasitol Res ; 117(3): 705-712, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29327323

RESUMEN

Albendazole (ABZ), a benzimidazole widely used to control gastrointestinal parasites, is poorly soluble in water, resulting in variable and incomplete bioavailability. This has favored the appearance ABZ-resistant nematodes and, consequently, an increase in its clinical ineffectiveness. Among the pharmaceutical techniques developed to increase drug efficacy, cyclodextrins (CDs) and other polymers have been extensively used with water-insoluble pharmaceutical drugs to increase their solubility and availability. Our objective was to prepare ABZ formulations, including ß-cyclodextrin (ßCD) or hydroxypropyl-ß-cyclodextrin (HPßCD), associated or not to the water-soluble polymer polyvinylpyrrolidone (PVP). These formulations had their solubility and anthelmintic effect both evaluated in vitro. Also, their anthelmintic efficacy was evaluated in lambs naturally infected with gastrointestinal nematodes (GIN) through the fecal egg count (FEC) reduction test. In vitro, the complex ABZ/HPßCD had higher solubility than ABZ/ßCD. The addition of PVP to the complexes increased solubility and dissolution rates more effectively for ABZ/HPßCD than for ABZ/ßCD. In vivo, 48 lambs naturally infected with GIN were divided into six experimental groups: control, ABZ, ABZ/ßCD, ABZ/ßCD-PVP, ABZ/HPßCD, and ABZ/HPßCD-PVP. Each treated animal received 10 mg/kg of body weight (based on the ABZ dose) for three consecutive days. After 10 days of the last administered dose, treatment efficacy was calculated. The efficacy values were as follows: ABZ (70.33%), ABZ/ßCD (85.33%), ABZ/ßCD-PVP (82.86%), ABZ/HPßCD (78.37%), and ABZ/HPßCD-PVP (43.79%). In vitro, ABZ/HPßCD and ABZ/HPßCD-PVP had high solubility and dissolution rates. In vivo, although the efficacies of ABZ/ßCD, ABZ/ßCD-PVP, and ABZ/HPßCD increased slightly when compared to pure ABZ, this increase was not significant (P > 0.05).


Asunto(s)
Albendazol/farmacocinética , Antiparasitarios/farmacocinética , Ciclodextrinas/farmacocinética , Nanopartículas/química , Povidona/farmacocinética , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacocinética , Albendazol/química , Animales , Antihelmínticos/química , Antihelmínticos/farmacocinética , Antiparasitarios/química , Disponibilidad Biológica , Ciclodextrinas/química , Composición de Medicamentos , Parasitosis Intestinales/tratamiento farmacológico , Parasitosis Intestinales/veterinaria , Masculino , Nematodos , Infecciones por Nematodos/tratamiento farmacológico , Infecciones por Nematodos/veterinaria , Povidona/química , Ovinos , Enfermedades de las Ovejas/tratamiento farmacológico , Enfermedades de las Ovejas/parasitología , Solubilidad , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacocinética
18.
Ther Deliv ; 9(2): 89-97, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29325510

RESUMEN

AIM: Albendazole (ABZ) is a broad-spectrum antiparasitic agent with poor aqueous solubility, which leads to poor/erratic bioavailability and therapeutic failures. Here, we aimed to produce a novel formulation of ABZ nanocrystals (ABZNC) and assess its pharmacokinetic performance in mice. Results/methodology: ABZNC were prepared by high-pressure homogenization and spray-drying processes. Redispersion capacity and solid yield were measured in order to obtain an optimized product. The final particle size was 415.69±7.40 nm and the solid yield was 72.32%. The pharmacokinetic parameters obtained in a mice model for ABZNC were enhanced (p < 0.05) with respect to the control formulation. CONCLUSION: ABZNC with improved pharmacokinetic behavior were produced by a simple, inexpensive and potentially scalable methodology.


Asunto(s)
Albendazol/farmacocinética , Antihelmínticos/farmacocinética , Nanopartículas/metabolismo , Tamaño de la Partícula , Albendazol/química , Animales , Antihelmínticos/química , Masculino , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Solubilidad
19.
AAPS PharmSciTech ; 19(3): 1152-1159, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29218582

RESUMEN

Albendazole (ABZ) and ricobendazole (RBZ) are referred to as class II compounds in the Biopharmaceutical Classification System. These drugs exhibit poor solubility, which profoundly affects their oral bioavailability. Micellar systems are excellent pharmaceutical tools to enhance solubilization and absorption of poorly soluble compounds. Polysorbate 80 (P80), poloxamer 407 (P407), sodium cholate (Na-C), and sodium deoxycholate (Na-DC) have been selected as surfactants to study the solubilization process of these drugs. Fluorescence emission was applied in order to obtain surfactant/fluorophore (S/F) ratio, critical micellar concentration, protection efficiency of micelles, and thermodynamic parameters. Systems were characterized by their size and zeta potential. A blue shift from 350 to 345 nm was observed when ABZ was included in P80, Na-DC, and Na-C micelles, while RBZ showed a slight change in the fluorescence band. P80 showed a significant solubilization capacity: S/F values were 688 for ABZ at pH 4 and 656 for RBZ at pH 6. Additionally, P80 micellar systems presented the smallest size (10 nm) and their size was not affected by pH change. S/F ratio for bile salts was tenfold higher than for the other surfactants. Quenching plots were linear and their constant values (2.17/M for ABZ and 2.29/M for RBZ) decreased with the addition of the surfactants, indicating a protective effect of the micelles. Na-DC showed better protective efficacy for ABZ and RBZ than the other surfactants (constant values 0.54 and 1.57/M, respectively), showing the drug inclusion into the micelles. Entropic parameters were negative in agreement with micelle formation.


Asunto(s)
Albendazol/análogos & derivados , Albendazol/química , Ácido Desoxicólico/química , Fluorescencia , Micelas , Poloxámero/química , Polisorbatos/química , Colato de Sodio/química , Solubilidad , Espectrometría de Fluorescencia , Tensoactivos/química , Termodinámica
20.
Carbohydr Polym ; 164: 379-385, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28325339

RESUMEN

Novel complexes of two different solid forms of Albendazol and ß-cyclodextrin were investigated in an attempt to obtain promising candidates for the preparation of alternative matrices used in pharmaceutical oral formulations. The interaction between each form of Albendazol and ß-cyclodextrin was studied in solution and solid state, in order to investigate their effect on the solubility and dissolution rate of Albendazol solid forms. The solid supramolecular systems were characterized using a variety of techniques including natural-abundance 13C cross-polarization magic-angle-spinning nuclear magnetic resonance, powder X-ray diffraction, Fourier transform-infrared spectroscopy and scanning electron microscopy. The results obtained showed the highest increment of solubility and dissolution rate, in simulated gastric fluid, for the Albendazole II:ß-cyclodextrin systems. Thus, these new complexes constitute an interesting alternative for improving the oral bioavailability of Albendazol.


Asunto(s)
Albendazol/química , Antiparasitarios/química , beta-Ciclodextrinas/química , Rastreo Diferencial de Calorimetría , Microscopía Electrónica de Rastreo , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA