Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3340-3347, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041097

RESUMEN

This study aims to explore the protective effect of Albizia chinensis saponin on ethanol-induced acute gastric ulcer in rats and elucidate its mechanisms. SD rats were deprived of water for 24 hours before the experiment. The control group and model group were administered water by gavage, and the positive drug group received rabeprazole sodium solution(40 mg·kg~(-1)) by gavage. The experimental groups were given different doses of Albizia chinensis saponin solution(3, 10, and 30 mg·kg~(-1)). After 30 minutes, the control group received 1.5 mL of water by gavage, while the other groups were administered an equal volume of 95% ethanol for modeling. After six hours, the rats were killed by cervical dislocation, and the stomachs were collected. The ulcer area was measured, and the ulcer index was calculated. Hematoxylin-eosin(HE) staining was performed to assess histopathological changes in gastric tissue. Periodic acid-Schiff(PAS) staining was used to evaluate the distribution of gastric mucosal surface mucus. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of phospholipids and aminohexose in the gastric mucosa. Western blot was performed to determine the expression levels of the bicarbonate transporter, matrix metalloproteinase, and tight junction-associated proteins in gastric tissue. Immunohistochemistry(IHC) staining was conducted to quantify the number of positive cells for secreted mucin and tight junction-associated proteins. The results showed that the gastric tissue surface of rats in the control group was smooth without ulceration, and the gastric ulcer index of rats in the model group was 35±11. Albizia chinensis saponin at doses of 3, 10, and 30 mg·kg~(-1) resulted in inhibition rates of gastric ulcer of 46%(P<0.01), 85%(P<0.001), and 100%(P<0.001), respectively. Severe disruption of gastric mucosal structure and absence of the mucus layer were observed in the model group. Compared with the model group, the Albizia chinensis saponin group showed intact gastric mucosal surface mucus layer, significantly increased levels of phospholipids and aminohexose in the mucus, increased number of MUC5AC positive cells, and upregulated expression levels of the bicarbonate transporter SLC26A3 and CFTR. It also showed decreased phosphorylation of JNK and c-Jun, reduced expression levels of MMP-8, elevated expression of TIMP-1, and increased expression levels of Occludin and ZO-1. In conclusion, Albizia chinensis saponin enhances the function of the mucus-bicarbonate barrier by upregulating the content of MUC5AC, phospholipids, and aminohexose and increasing the expression levels of the bicarbonate transporter SLC26A3 and CFTR. Moreover, Albizia chinensis saponin exerts its protective effects on gastric ulcers by inhibiting the JNK signaling pathway to prevent excessive activation of MMP-8, thereby reducing the degradation of Occludin and ZO-1 and enhancing the mucosal barrier function. In summary, Albizia chinensis saponin exerts its anti-gastric ulcer effects by simultaneously enhancing the mucus barrier and the mucosal barrier.


Asunto(s)
Albizzia , Medicamentos Herbarios Chinos , Etanol , Mucosa Gástrica , Moco , Ratas Sprague-Dawley , Saponinas , Úlcera Gástrica , Animales , Saponinas/farmacología , Ratas , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Etanol/efectos adversos , Masculino , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/metabolismo , Úlcera Gástrica/prevención & control , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Albizzia/química , Moco/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/administración & dosificación , Humanos
2.
J Ethnopharmacol ; 333: 118413, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38824975

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Novel drugs are needed to address the issue of malarial infection resistance; natural items can be a different source of these medications. Albizia malacophylla (A. Rich.) Walp. (Leguminosae) is listed as one of the antimalarial medicinal plants in Ethiopian folk medicine. However, there are no reports regarding the biological activity or phytochemistry of the plant. AIM OF THE STUDY: Thus, this study aimed to evaluate the A. malacophylla crude extract and solvent fractions' in vivo antimalarial activity utilizing 4-day suppressive, preventative, and curative tests in mice infected with P. berghei. MATERIALS AND METHODS: The parasite Plasmodium berghei, which causes rodent malaria, was used to infect healthy male Swiss Albino mice, weighing 23-28 g and aged 6-8 weeks. Solvent fractions such as methanol, water, and chloroform were given in addition to an 80% methanolic extract at 100, 200, and 400 mg/kg doses. A Conventional test such as parasitemia, survival time, body weight, temperature, and packed cell capacity were employed to ascertain factors such as the suppressive, curative, and preventive tests. RESULTS: Every test substance dramatically reduced the number of parasites in every experiment. Crude extract (with the highest percentage suppression of 67.78%) performs better antimalarial effect than the methanol fraction, which is the most efficient solvent fraction with a percentage suppression of 55.74%. With a suppression value of 64.83% parasitemia level, the therapeutic effects of 80% methanolic crude extract were greater than its curative and preventative effects in a four-day suppressive test. The survival period (17 days) was longer with the hydroalcoholic crude extract dose of 400 mg/kg than with other doses of the materials under investigation. CONCLUSIONS: The results of this investigation validate the antimalarial characteristics of A. malacophylla leaf extract. The crude extract prevented weight loss, a decline in temperature, and a reduction in PCV. The results demonstrate that the plant has a promising antimalarial effect against P. berghei, hence supporting the traditional use of the plant. Therefore, it could serve as a foundation for the development of new antimalarial drugs.


Asunto(s)
Albizzia , Malaria , Extractos Vegetales , Plasmodium berghei , Albizzia/química , Hojas de la Planta/química , Metanol/química , Solventes/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/prevención & control , Modelos Animales de Enfermedad , Animales , Ratones , Masculino , Temperatura Corporal/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos
3.
Bioorg Chem ; 150: 107561, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936050

RESUMEN

The antifungal bioactivity potential of the organic extract of silk tree (Albizia kalkora) was investigated in the current study. The crude extracts of A. kalkora and methanol, n-hexane, chloroform, and ethyl acetate fractions were prepared. The antifungal activity of obtained fractions of A. kalkora was studied at different concentrations ranging from 0.39-50 µg/mL. Dimethyl sulfoxide (DMSO) was taken as a toxicity control, whereas thiophanate methyl (TM) as a positive control. All the fractions significantly reduced the FOL growth (methanolic: 9.49-94.93 %, n-hexane: 11.12-100 %, chloroform: 20.96-91.41 %, and ethyl acetate: 18.75-96.70 %). The n-hexane fraction showed 6.25 µg/mL MIC as compared to TM with 64 µg/mL MIC. The non-polar (n-hexane) fraction showed maximum antifungal bioactivity against FOL in comparison with chloroform, methanol, and ethyl acetate fractions. GC/MS analysis exhibited that the n-hexane fraction contained hexadecanoic acid, 9,12,15-octadecatrienoic acid, 9,12-octadecadienoic acid, bis(2-ethylhexyl) phthalate, methyl stearate, and [1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylic acid. The results of in vitro antifungal inhibition were further reinforced by molecular docking analysis. Five virulence proteins of FOL i.e., pH-responsive PacC transcription factor (PACC), MeaB, TOR; target of rapamycin (FMK1), Signal transducing MAP kinase kinase (STE-STE7), and High Osmolarity Glycerol 1(HOG1) were docked with identified phytocompounds in the n-hexane fraction by GC/MS analysis. MEAB showed maximum binding affinities with zinnimide (-12.03 kcal/mol), HOG1 and FMK1with α-Tocospiro-B (-11.51 kcal/mol) and (-10.55 kcal/mol) respectively, STE-STE7 with docosanoic acid (-11.31 kcal/mol), and PACC with heptadecanoic acid (-9.88 kcal/mol) respectively with strong hydrophobic or hydrophilic interactions with active pocket residues. In conclusion, the n-hexane fraction of the A. kalkora can be used to manage FOL.


Asunto(s)
Albizzia , Antifúngicos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Extractos Vegetales , Albizzia/química , Antifúngicos/farmacología , Antifúngicos/química , Relación Dosis-Respuesta a Droga , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fusarium/efectos de los fármacos , Estructura Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Relación Estructura-Actividad , Hexanos/química , Hexanos/farmacología
4.
Chem Pharm Bull (Tokyo) ; 72(5): 454-470, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38644216

RESUMEN

This study investigates the efficacy of modified Albizia procera gum as a release-retardant polymer in Diltiazem hydrochloride (DIL) matrix tablets. Carboxymethylated Albizia procera gum (CAP) and ionically crosslinked carboxymethylated Albizia procera gum (Ca-CAP) were utilized, with Ca-CAP synthesized via crosslinking CAP with calcium ions (Ca2+) using calcium chloride (CaCl2). Fourier Transform (FT) IR analysis affirmed polymer compatibility, while differential scanning calorimetry (DSC) and X-ray diffraction (XRD) assessed thermal behavior and crystallinity, respectively. Zeta potential analysis explored surface charge and electrostatic interactions, while rheology examined flow and viscoelastic properties. Swelling and erosion kinetics provided insights into water penetration and stability. CAP's carboxymethyl groups (-CH2-COO-) heightened divalent cation reactivity, and crosslinking with CaCl2 produced Ca-CAP through -CH2-COO- and Ca2+ interactions. Structural similarities between the polymers were revealed by FTIR, with slight differences. DSC indicated modified thermal behavior in Ca-CAP, while Zeta potential analysis showcased negative charges, with Ca-CAP exhibiting lower negativity. XRD highlighted increased crystallinity in Ca-CAP due to calcium crosslinking. Minimal impact on RBC properties was observed with both polymers compared to the positive control as water for injection (WFI). Ca-CAP exhibited improved viscosity, strength, controlled swelling, and erosion, allowing prolonged drug release compared to CAP. Stability studies confirmed consistent six-month drug release, emphasizing Ca-CAP's potential as a stable, sustained drug delivery system over CAP. Robustness and accelerated stability tests supported these findings, underscoring the promise of Ca-CAP in controlled drug release applications.


Asunto(s)
Diltiazem , Gomas de Plantas , Comprimidos , Diltiazem/química , Gomas de Plantas/química , Comprimidos/química , Albizzia/química , Liberación de Fármacos , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/síntesis química
5.
Arch Pharm (Weinheim) ; 357(6): e2300543, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38412461

RESUMEN

The genus Albizia is one of the richest genera in phenolics besides other classes of secondary metabolites including saponins, terpenes, and alkaloids with promising medicinal applications. In the current study, UHPLC-PDA-ESI-MS/MS-based metabolic profiling of leaves of Albizia lebbeck, Albizia julibrissin, Albizia odoratissima, Albizia procera, Albizia anthelmintica, Albizia guachapele, Albizia myriophylla, Albizia richardiana, and Albizia lucidior resulted in the tentative identification of 64 metabolites, mainly flavonoids, phenolic acids, saponins, and alkaloids. Some metabolites were identified in Albizia for the first time and could be used as species-specific chemotaxonomic markers, including: apigenin 7-O-dihydroferuloyl hexoside isomers, apigenin 7-O-pentosyl hexoside, quercetin 3-O-rutinoside 7-O-deoxyhexoside, quercetin 3,7-di-O-hexoside deoxyhexoside, quercetin 7-O-feruloyl hexoside, methyl myricetin 7-O-deoxyhexoside, kaempferol di-3-O-di-deoxyhexoside-7-O-hexoside, and kaempferol 3-O-neohesperidoside 7-O-hexoside. Comparative untargeted metabolomic analysis was undertaken to discriminate between species and provide a chemotaxonomic clue that can be used together with morphological and genetic analyses for more accurate classification within this genus. Moreover, the in vitro antiplasmodial activity was assessed and correlated to the metabolic profile of selected species. This was followed by a molecular docking study and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction of the identified budmunchiamine alkaloids, revealing promising interactions with the active site of lactate dehydrogenase of Plasmodium falciparum and good pharmacokinetics and pharmacodynamics, which could help in designing novel antimalarial drugs.


Asunto(s)
Albizzia , Antimaláricos , Metabolómica , Extractos Vegetales , Hojas de la Planta , Plasmodium falciparum , Albizzia/química , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum/efectos de los fármacos , Hojas de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Flavonoides/farmacología , Flavonoides/química , Cromatografía Líquida de Alta Presión , Alcaloides/farmacología , Alcaloides/química , Especificidad de la Especie
6.
Braz. j. microbiol ; 46(1): 139-143, 05/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-748240

RESUMEN

The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara. The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara. The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC50) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry.


Asunto(s)
Albizzia/química , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Antiinfecciosos/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación
7.
Braz. j. med. biol. res ; 45(2): 118-124, Feb. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-614572

RESUMEN

Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1 percent, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78 percent. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.


Asunto(s)
Animales , Femenino , Albizzia/química , Escarabajos/efectos de los fármacos , Proteínas de Almacenamiento de Semillas/toxicidad , Semillas/química , Larva/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA