Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.840
Filtrar
1.
PeerJ ; 12: e17378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726378

RESUMEN

Many citrus species and cultivars are grown successfully in tropical and subtropical countries, as well as in arid and semi-arid regions with low levels of organic matter and low cation exchange, resulting in lower nutrient uptake by the plant. The essential nutrients needed for citrus flowering and fruit set are limited in winter due to a reduction in transpiration rate, negatively effecting vegetative growth, flowering, yield, and fruit quality. The present investigation was carried out to assess the nutritional status, fruit yield parameters, and fruit quality of Valencia orange trees after foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations in the 2020/2021 and 2021/2022 seasons. The treatments were arranged in a split-plot design (three levels spraying seaweed extract × four levels spraying calcium chloride and boric acid and their combinations × four replicates × one tree/replicate). The results indicated that all of the characteristics measured, including leaf chlorophyll, leaf mineral contents, fruit yield parameters, fruit physical properties, and fruit chemical properties, were significantly affected by the foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations. Although all treatments increased the productivity and the physical and chemical properties of Valencia orange fruits compared to the control, a treatment of 10 g/L SW combined with 0.5 g/L boric acid and 1 g/L calcium chloride produced superior results. This ratio of SW, boric acid, and calcium chloride is therefore recommended to enhance productivity and improve the physico-chemical properties of Valencia orange for greater fruit yield.


Asunto(s)
Ácidos Bóricos , Cloruro de Calcio , Citrus sinensis , Frutas , Algas Marinas , Ácidos Bóricos/farmacología , Citrus sinensis/química , Frutas/química , Frutas/efectos de los fármacos , Algas Marinas/química , Algas Marinas/metabolismo , Cloruro de Calcio/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Clorofila/metabolismo
2.
Food Res Int ; 186: 114375, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729732

RESUMEN

The proximal composition and its seasonal variation of the green seaweed Ulva sp. harvested in a traditional saline (earthen ponds used for marine salt extraction) from Cadiz Bay (Southern Spain) was evaluated. Ulva sp. was also collected in a reference location within the Bay in order to compare and evaluate the effects of the particular characteristics of the saline in the composition of the macroalgae. Moisture, protein, lipid, ash, carbohydrate, fiber and macro- (Na, K, Ca, Mg), micro-mineral contents (Fe, Zn, Cu) and heavy metals (As, Cd, Co, Cr, Hg, Ni, Pb, Sn) of harvested biomass samples as well as environmental parameters of seawater (temperature, salinity, pH, DO, NH4+, NO3-, NO2- and PO43-) were measured. The results showed that Ulva sp. from the earthen ponds in the traditional salina was a better source of proteins, lipids, K and Mg, highlighting in summer with values of 27.54 % versus 6.11 %; 6.71 % versus 3.26 %; 26.60 mg g-1 versus 14.21 mg g-1 and 23.13 mg g-1 versus 17.79 mg g-1, respectively. It also had Na/K and Ca/Mg ratios of less than one, suggesting a healthy food source. Considering the Commission Recommendation (EU) 2018/464 as a working reference, Ulva sp. did not exceed the limit of toxic metals for human consumption.A season and site-season significant interaction on the composition of the seaweeds was observed. The proximal and mineral composition of Ulva sp. was influenced by the special features and environmental conditions of the earthen ponds. Hence, significant differences were observed in the macroalgae collected in the earthen ponds in summer and autumn, in contrast to the winter and spring samples, whose characteristics were similar to those from the inner bay. The closure of the lock-gates in summer to favor the production of salt significantly modified the environmental characteristics of the saline, affecting the physiological capacity of Ulva sp. to assimilate and storage nutrients, and therefore its tissue composition. As a consequence, the highest contents of lipid, ash, Ca, K, Mg and Fe were estimated in the macroalgae.


Asunto(s)
Metales Pesados , Minerales , Valor Nutritivo , Agua de Mar , Ulva , Ulva/química , Minerales/análisis , Metales Pesados/análisis , Agua de Mar/química , Humanos , España , Estaciones del Año , Algas Marinas/química , Lactuca/química , Salinidad
3.
Mol Biol Rep ; 51(1): 611, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704796

RESUMEN

BACKGROUND: Endophytic fungi have an abundant sources rich source of rich bioactive molecules with pivotal pharmacological properties. Several studies have found that endophytic fungi-derived bioactive secondary metabolites have antiproliferative, anti-oxidant, and anti-inflammatory properties, but the molecular mechanism by which they induce cell cycle arrest and apoptosis pathways is unknown. This study aimed to determine the molecular mechanism underlying the anticancer property of the endophytic fungi derived active secondary metabolites on human breast cancer cells. METHODS: In this study, we identified four endophytic fungi from marine seaweeds and partially screened its phytochemical properties by Chromatography-Mass Spectrometry (GC-MS) analysis. Moreover, the molecular mechanism underlying the anticancer property of these active secondary metabolites (FA, FB, FC and FE) on human breast cancer cells were examined on MCF-7 cells by TT assay, Apoptotic assay by Acridine orang/Ethidium Bromide (Dual Staining), DNA Fragmentation by DAPI Staining, reactive oxygen species (ROS) determination by DCFH-DA assay, Cell cycle analysis was conducted Flow cytometry and the apoptotic signalling pathway was evaluated by westernblot analysis. Doxorubicin was used as a positive control drug for this experiment. RESULTS: The GC-MS analysis of ethyl acetate extract of endophytic fungi from the marine macro-algae revealed the different functional groups and bioactive secondary metabolites. From the library, we observed the FC (76%), FB (75%), FA (73%) and FE (71%) have high level of antioxidant activity which was assessed by DPPH scavenging assay. Further, we evaluated the cytotoxic potentials of these secondary metabolites on human breast cancer MCF-7 cells for 24 h and the IC50 value were calculated (FA:28.62 ± 0.3 µg/ml, FB:49.81 ± 2.5 µg/ml, FC:139.42 ± µg/ml and FE:22.47 ± 0.5 µg/ul) along with positive control Doxorubicin 15.64 ± 0.8 µg/ml respectively by MTT assay. The molecular mechanism by which the four active compound induced apoptosis via reactive oxygen species (ROS) and cell cycle arrest in MCF-7 cells was determined H2DCFDA staining, DAPI staining, Acridine orange and ethidium bromide (AO/EtBr) dual staining, flowcytometry analysis with PI staining and apoptotic key regulatory proteins expression levels measured by westernblot analysis. CONCLUSION: Our findings, revealed the anticancer potential of endophytic fungi from marine seaweed as a valuable source of bioactive compounds with anticancer properties and underscore the significance of exploring marine-derived endophytic fungi as a promising avenue for the development of novel anticancer agents. Further investigations are necessary to isolate and characterize specific bioactive compounds responsible for these effects and to validate their therapeutic potential in preclinical and clinical settings.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Puntos de Control del Ciclo Celular , Endófitos , Especies Reactivas de Oxígeno , Algas Marinas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Células MCF-7 , Puntos de Control del Ciclo Celular/efectos de los fármacos , Algas Marinas/microbiología , Algas Marinas/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/microbiología , Femenino , Endófitos/metabolismo , Hongos , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas
4.
Carbohydr Polym ; 337: 122156, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710572

RESUMEN

Seaweeds represent a rich source of sulfated polysaccharides with similarity to heparan sulfate, a facilitator of myriad virus host cell attachment. For this reason, attention has been drawn to their antiviral activity, including the potential for anti-SARS-CoV-2 activity. We have identified and structurally characterized several fucoidan extracts, including those from different species of brown macroalga, and a rhamnan sulfate from a green macroalga species. A high molecular weight fucoidan extracted from Saccharina japonica (FSjRPI-27), and a rhamnan sulfate extracted from Monostroma nitidum (RSMn), showed potent competitive inhibition of spike glycoprotein receptor binding to a heparin-coated SPR chip. This inhibition was also observed in cell-based assays using hACE2 HEK-293 T cells infected by pseudotyped SARS-CoV-2 virus with IC50 values <1 µg/mL. Effectiveness was demonstrated in vivo using hACE2-transgenic mice. Intranasal administration of FSjRPI-27 showed protection when dosed 6 h prior to and at infection, and then every 2 days post-infection, with 100 % survival and no toxicity at 104 plaque-forming units per mouse vs. buffer control. At 5-fold higher virus dose, FSjRPI-27 reduced mortality and yielded reduced viral titers in bronchioalveolar fluid and lung homogenates vs. buffer control. These findings suggest the potential application of seaweed-based sulfated polysaccharides as promising anti-SARS-CoV-2 prophylactics.


Asunto(s)
Antivirales , COVID-19 , Mananos , Polisacáridos , SARS-CoV-2 , Algas Marinas , Polisacáridos/química , Polisacáridos/farmacología , Animales , Humanos , SARS-CoV-2/efectos de los fármacos , Algas Marinas/química , Antivirales/farmacología , Antivirales/química , Células HEK293 , Ratones , COVID-19/prevención & control , COVID-19/virología , Tratamiento Farmacológico de COVID-19 , Ratones Transgénicos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Desoxiazúcares/farmacología , Desoxiazúcares/química , Enzima Convertidora de Angiotensina 2/metabolismo
5.
J Oleo Sci ; 73(5): 743-749, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692896

RESUMEN

Conjugated fatty acids have anticancer effects. Therefore, the establishment of a synthetic method for conjugated fatty acids is important for overcoming cancer. Here, we attempted to synthesize conjugated fatty acids using enzymes extracted from seaweeds containing these fatty acids. Lipids from 12 species of seaweeds from the seas around Japan were analyzed, and Padina arborescens Holmes was found to contain conjugated fatty acids. Then, we synthesized parinaric acid, a conjugated tetraenoic acid, from α-linolenic acid using the enzyme of P. arborescens. This method is expected to have a variety of potential applications for overcoming cancer.


Asunto(s)
Ácido alfa-Linolénico , Ácido alfa-Linolénico/química , Algas Marinas/química , Ácidos Grasos Insaturados/química , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología
6.
Anal Bioanal Chem ; 416(11): 2871-2882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581531

RESUMEN

Antarctic seaweeds are vital components of polar marine ecosystems, playing a crucial role in nutrient cycling and supporting diverse life forms. The sulfur content in these organisms is particularly interesting due to its implication in biogeochemical processes and potential impacts on local and global environmental systems. In this study, we present a comprehensive characterization of seaweed collected in the Antarctic in terms of their total sulfur content and its distribution among different classes of species, including thiols, using various methods and high-sensitivity techniques. The data presented in this paper are unprecedented in the scientific literature. These methods allowed for the determination of total sulfur content and the distribution of sulfur compounds in different fractions, such as water-soluble and proteins, as well as the speciation of sulfur compounds in these fractions, providing valuable insights into the chemical composition of these unique marine organisms. Our results revealed that the total sulfur concentration in Antarctic seaweeds varied widely across different species, ranging from 5.5 to 56 g kg-1 dry weight. Furthermore, our investigation into the sulfur speciation revealed the presence of various sulfur compounds, including sulfate, and some thiols, which were quantified in all ten seaweed species evaluated. The concentration of these individual sulfur species also displayed considerable variability among the studied seaweeds. This study provides the first in-depth examination of total sulfur content and sulfur speciation in brown and red Antarctic seaweeds.


Asunto(s)
Algas Marinas , Algas Marinas/química , Regiones Antárticas , Peso Molecular , Ecosistema , Azufre/metabolismo , Compuestos de Azufre/metabolismo , Verduras , Compuestos de Sulfhidrilo/metabolismo
7.
Int J Biol Macromol ; 267(Pt 1): 131506, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604422

RESUMEN

Marine green algae produce sulfated polysaccharides with diverse structures and a wide range of biological activities. This study aimed to enhance the biotechnological potential of sulfated heterorhamnan (Gb1) from Gayralia brasiliensis by chemically modifying it for improved or new biological functions. Using controlled Smith Degradation (GBS) and O-alkylation with 3-chloropropylamine, we synthesized partially water-soluble amine derivatives. GBS modification increase sulfate groups (29.3 to 37.5 %) and α-l-rhamnose units (69.9 to 81.2 mol%), reducing xylose and glucose, compared to Gb1. The backbone featured predominantly 3- and 2-linked α-l-rhamnosyl and 2,3- linked α-l-rhamnosyl units as branching points. Infrared and NMR analyses confirmed the substitution of hydroxyl groups with aminoalkyl groups. The modified compounds, GBS-AHCs and GBS-AHK, exhibited altered anticoagulant properties. GBS-AHCs showed reduced effectiveness in the APTT assay, while GBS-AHK maintained a similar anticoagulant activity level to Gb1 and GBS. Increased nitrogen content and N-alkylation in GBS-AHCs compared to GBS-AHK may explain their structural differences. The chemical modification proposed did not enhance its anticoagulant activity, possibly due to the introduction of amino groups and a positive charge to the polymer. This characteristic presents new opportunities for investigating the potential of these polysaccharides in various biological applications, such as antimicrobial and antitumoral activities.


Asunto(s)
Anticoagulantes , Chlorophyta , Mananos , Algas Marinas , Sulfatos , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/síntesis química , Chlorophyta/química , Algas Marinas/química , Sulfatos/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/síntesis química , Humanos , Desoxiazúcares/química , Desoxiazúcares/farmacología
8.
Mar Drugs ; 22(4)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38667761

RESUMEN

In order to explore the extraction and activity of macroalge glycolipids, six macroalgae (Bangia fusco-purpurea, Gelidium amansii, Gloiopeltis furcata, Gracilariopsis lemaneiformis, Gracilaria sp. and Pyropia yezoensis) glycolipids were extracted with five different solvents firstly. Considering the yield and glycolipids concentration of extracts, Bangia fusco-purpurea, Gracilaria sp. and Pyropia yezoensis were selected from six species of marine macroalgae as the raw materials for the extraction of glycolipids. The effects of the volume score of methanol, solid-liquid ratio, extraction temperature, extraction time and ultrasonic power on the yield and glycolipids concentration of extracts of the above three macroalgae were analyzed through a series of single-factor experiments. By analyzing the antioxidant activity in vitro, moisture absorption and moisturizing activity, the extraction process of Bangia fusco-purpurea glycolipids was further optimized by response surface method to obtain suitable conditions for glycolipid extraction (solid-liquid ratio of 1:27 g/mL, extraction temperature of 48 °C, extraction time of 98 min and ultrasonic power of 450 W). Bangia fusco-purpurea extracts exhibited a certain scavenging effect on DPPH free radicals, as well as good moisture-absorption and moisture retaining activities. Two glycolipids were isolated from Bangia fusco-purpurea by liquid-liquid extraction, silica gel column chromatography and thin-layer chromatography, and they showed good scavenging activities against DPPH free radicals and total antioxidant capacity. Their scavenging activities against DPPH free radicals were about 60% at 1600 µg/mL, and total antioxidant capacity was better than that of Trolox. Among them, the moisturizing activity of a glycolipid was close to that of sorbierite and sodium alginate. These two glycolipids exhibited big application potential as food humectants and antioxidants.


Asunto(s)
Antioxidantes , Glucolípidos , Algas Marinas , Glucolípidos/química , Glucolípidos/aislamiento & purificación , Glucolípidos/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Algas Marinas/química , Rhodophyta/química , Solventes/química , Picratos/química
9.
Mar Drugs ; 22(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667783

RESUMEN

The nutritional and bioactive value of seaweeds is widely recognized, making them a valuable food source. To use seaweeds as food, drying and thermal treatments are required, but these treatments may have a negative impact on valuable bioactive compounds. In this study, the effects of dehydration, rehydration, and thermal treatment on the bioactive compounds (carotenoids, phycobiliproteins, total phenolic content (TPC), total flavonoids content (TFC)), antioxidant (ABTS and DPPH radical scavenging activities) and anti-Alzheimer's (Acetylcholinesterase (AchE) inhibitory activities, and color properties of Porphyra umbilicalis and Porphyra linearis seaweeds were evaluated. The results revealed significant reductions in carotenoids, TPC, TFC, and antioxidant activities after the seaweeds' processing, with differences observed between species. Thermal treatment led to the most pronounced reductions in bioactive compound contents and antioxidant activity. AchE inhibitory activity remained relatively high in all samples, with P. umbilicalis showing higher activity than P. linearis. Changes in color (ΔE) were significant after seaweeds' dehydration, rehydration and thermal treatment, especially in P. umbilicalis. Overall, optimizing processing methods is crucial for preserving the bioactive compounds and biological activities of seaweeds, thus maximizing their potential as sustainable and nutritious food sources or as nutraceutical ingredients.


Asunto(s)
Antioxidantes , Inhibidores de la Colinesterasa , Algas Comestibles , Fenoles , Porphyra , Algas Marinas , Antioxidantes/química , Carotenoides/química , Inhibidores de la Colinesterasa/química , Desecación , Flavonoides/química , Calor , Fenoles/química , Ficobiliproteínas , Porphyra/química , Algas Marinas/química
10.
Toxins (Basel) ; 16(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38668613

RESUMEN

BACKGROUND: Snakebite envenomation (SBE) causes diverse toxic effects in humans, including disability and death. Current antivenom therapies effectively prevent death but fail to block local tissue damage, leading to an increase in the severity of envenomation; thus, seeking alternative treatments is crucial. METHODS: This study analyzed the potential of two fucoidan sulfated polysaccharides extracted from brown seaweeds Fucus vesiculosus (FVF) and Undaria pinnatifida (UPF) against the fibrinogen or plasma coagulation, proteolytic, and phospholipase A2 (PLA2) activities of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. The toxicity of FVF and UPF was assessed by the hemocompatibility test. RESULTS: FVF and UPF did not lyse human red blood cells. FVF and UPF inhibited the proteolytic activity of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom by approximately 25%, 50%, and 75%, respectively, while all venoms led to a 20% inhibition of PLA2 activity. UPF and FVF delayed plasma coagulation caused by the venoms of B. jararaca and B. neuwiedi but did not affect the activity of B. jararacussu venom. FVF and UPF blocked the coagulation of fibrinogen induced by all these Bothropic venoms. CONCLUSION: FVF and UPF may be of importance as adjuvants for SBE caused by species of Bothrops, which are the most medically relevant snakebite incidents in South America, especially Brazil.


Asunto(s)
Coagulación Sanguínea , Venenos de Crotálidos , Fucus , Fosfolipasas A2 , Polisacáridos , Undaria , Animales , Antivenenos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Bothrops , Bothrops jararaca , Venenos de Crotálidos/toxicidad , Venenos de Crotálidos/enzimología , Algas Comestibles/química , Fucus/química , Fosfolipasas A2/metabolismo , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Proteolisis/efectos de los fármacos , Algas Marinas/química , Undaria/química , Serpientes Venenosas
11.
Nutrients ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674913

RESUMEN

Seaweeds have proven to be nutrient-dense and are rich in antioxidants, like phenolics, flavonoids, and other essential metabolites that help to provide their medicinal benefits. Non-targeted metabolite profiling of the tropical green seaweed Acrosiphonia orientalis showed the presence of numerous groups of contents, including sugars, essential amino acids, and fatty acids. Targeted metabolite profiling using HPLC identified 17 amino acids. The extract exhibited a very low half-maximal effective concentration (EC50) dosage for HeLa and Huh-7 cell lines, indicating a high likelihood of anticancer properties. A significant positive correlation was found between biological activities, such as antioxidation, scavenging, and reducing power with the phenolic and flavonoid contents. The extract revealed augmentation of proliferation in selected cervical cells, as it upregulated p53 1.3-fold, and downregulated important cancerous genes such as Cas-3 and DNMT 12- and 8-fold, respectively. An approximate 55-fold downregulation was observed in selected hepatic cell lines. Microarray analysis of hepatic cells indicated 0.27% and 0.07% upregulation of coding and non-coding genes, respectively, and 0.41% and 0.13% downregulation of coding and non-coding genes, respectively. As a consequence, it can be said that A. orientalis has possible medicinal use, such as anticancer activity, and therefore may be an intriguing food component that has potential as a regular dietary supplement.


Asunto(s)
Suplementos Dietéticos , Algas Marinas , Humanos , Algas Marinas/química , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Células HeLa , Metabolómica/métodos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Flavonoides/farmacología , Flavonoides/análisis
12.
Mar Drugs ; 22(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667785

RESUMEN

Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.


Asunto(s)
Diabetes Mellitus , Suplementos Dietéticos , Hipoglucemiantes , Algas Marinas , Algas Marinas/química , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Animales , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Organismos Acuáticos
13.
Meat Sci ; 213: 109511, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38598966

RESUMEN

This study primarily aimed to investigate the influence of seaweed dietary fibre (SDF), as a potential alternative to phosphates, on the quality profiles and flavour attributes of frankfurters. The results revealed that SDF addition can significantly improve the cooking yield and texture characteristics of phosphate-free frankfurters (P < 0.05), and 1.00% SDF proved to be the optimal concentration for replacing phosphates in frankfurters. Moreover, electronic nose and electronic tongue analyses demonstrated that SDF incorporation potentially influences the aroma and taste of phosphate-free frankfurters. Furthermore, volatile compound analysis revealed that SDF addition potentially compensates for the decrease in volatile flavour compound content caused by phosphate deficiency. Generally, our results indicate that SDF can be successfully applied as a potential alternative to phosphates and subsequently improve the quality profiles and flavour attributes of phosphate-free frankfurters. Moreover, they provide valuable theoretical guidance for the processing of phosphate-free emulsified meat products.


Asunto(s)
Fibras de la Dieta , Productos de la Carne , Fosfatos , Algas Marinas , Gusto , Algas Marinas/química , Productos de la Carne/análisis , Fibras de la Dieta/análisis , Fosfatos/análisis , Animales , Humanos , Culinaria , Aromatizantes , Compuestos Orgánicos Volátiles/análisis , Odorantes , Porcinos , Masculino
14.
Mar Pollut Bull ; 202: 116413, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677104

RESUMEN

The contents of 24 elements were determined in seven species of macroalgae collected in Ceara-Brazil, in the rainy and dry seasons of 2022. The samples were digested, and the analytes were quantified by ICP-OES and Hg by direct analyzer. The CRM CD-200 was analyzed for accuracy and obtained recoveries were higher than 95 %. The seaweed species have different inorganic element profiles with predominant elements being: Ca, K, Na, Mg and P. The Sargassum vulgare species stood out for its Hg and As contents (1.479 ± 0.005 mg kg-1 and 172 ± 6 mg kg-1, both in the rainy seasons). Ulva lactuca attracted attention for its high concentration of V (46.4 ± 3.4 mg kg-1, rainy season). In general, the elemental content levels in the macroalgae samples were higher in the rainy season. Long-term studies to comprehend the effect of seasonality on the elemental composition of seaweed must be carried out.


Asunto(s)
Monitoreo del Ambiente , Algas Marinas , Algas Marinas/química , Brasil , Estaciones del Año , Contaminantes Químicos del Agua/análisis , Sargassum/química
15.
Chemosphere ; 356: 141877, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579948

RESUMEN

This study investigated the catalytic activity of biochar materials derived from algal biomass Sargassum fusiforme (S. fusiforme) for groundwater remediation. A facile single-step pyrolysis process was used to prepare S. fusiforme biochar (SFBCX), where x denotes pyrolysis temperatures (600 °C-900 °C). The surface characterization revealed that SFBC800 possesses intrinsic N and P heteroatoms. The optimum experimental condition for acetaminophen (AAP) degradation (>98.70%) was achieved in 60 min using 1.0 mM peroxymonosulfate (PMS), 100 mg L-1 SFBC800, and pH 5.8 (unadjusted). Moreover, the degradation rate constant (k) was evaluated by the pseudo-first-order kinetic model. The maximum degradation (>98.70%) of AAP was achieved within 60 min of oxidation. Subsequently, the k value was calculated to be 6.7 × 10-2 min-1. The scavenger tests showed that radical and nonradical processes are involved in the SFBC800/PMS system. Moreover, the formation of reactive oxygen species (ROS) in the SFBC800/PMS system was confirmed using electron spin resonance (ESR) spectroscopy. Intriguingly, both radical (O2•-, •OH, and SO4•-) and nonradical (1O2) ROS were formed in the SFBC800/PMS system. In addition, electrochemical studies were conducted to verify the electron transfer process of the nonradical mechanism in the SFBC800/PMS system. The scavenger and electron spin resonance (ESR) spectroscopy showed that singlet oxygen (1O2) is the predominant component in AAP degradation. Under optimal condition, the SFBC800/PMS system reached ∼81% mineralization of AAP within 5 min and continued to ∼85% achieved over 60 min of oxidation. Coexisting ions and different aqueous matrices were investigated to examine the feasibility of the catalyst system, and the SFBC800/PMS system was found to be effective in the remediation of AAP-contaminated groundwater, river water, and effluent water obtained from wastewater treatment plants. Moreover, the SFBC800-activated PMS system demonstrated reusability. Our findings indicate that the SFBC800 catalyst has excellent catalytic activity for AAP degradation in aquatic environments.


Asunto(s)
Acetaminofén , Carbón Orgánico , Algas Comestibles , Sargassum , Contaminantes Químicos del Agua , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Acetaminofén/química , Sargassum/química , Peróxidos/química , Algas Marinas/química , Cinética , Oxidación-Reducción , Agua Subterránea/química , Restauración y Remediación Ambiental/métodos , Especies Reactivas de Oxígeno
16.
Nutrients ; 16(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38674814

RESUMEN

This review delves into the burgeoning field of seaweed proteins as promising alternative sources of protein. With global demand escalating and concerns over traditional protein sources' sustainability and ethics, seaweed emerges as a viable solution, offering a high protein content and minimal environmental impacts. Exploring the nutritional composition, extraction methods, functional properties, and potential health benefits of seaweed proteins, this review provides a comprehensive understanding. Seaweed contains essential amino acids, vitamins, minerals, and antioxidants. Its protein content ranges from 11% to 32% of dry weight, making it valuable for diverse dietary preferences, including vegetarian and vegan diets. Furthermore, this review underscores the sustainability and environmental advantages of seaweed protein production compared to traditional sources. Seaweed cultivation requires minimal resources, mitigating environmental issues like ocean acidification. As the review delves into specific seaweed types, extraction methodologies, and functional properties, it highlights the versatility of seaweed proteins in various food products, including plant-based meats, dairy alternatives, and nutritional supplements. Additionally, it discusses the potential health benefits associated with seaweed proteins, such as their unique amino acid profile and bioactive compounds. Overall, this review aims to provide insights into seaweed proteins' potential applications and their role in addressing global protein needs sustainably.


Asunto(s)
Valor Nutritivo , Algas Marinas , Algas Marinas/química , Humanos , Proteínas de Plantas/análisis , Proteínas en la Dieta/análisis , Suplementos Dietéticos
17.
Molecules ; 29(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675719

RESUMEN

Non-communicable diseases (NCDs) represent a global health challenge, constituting a major cause of mortality and disease burden in the 21st century. Addressing the prevention and management of NCDs is crucial for improving global public health, emphasizing the need for comprehensive strategies, early interventions, and innovative therapeutic approaches to mitigate their far-reaching consequences. Marine organisms, mainly algae, produce diverse marine natural products with significant therapeutic potential. Harnessing the largely untapped potential of algae could revolutionize drug development and contribute to combating NCDs, marking a crucial step toward natural and targeted therapeutic approaches. This review examines bioactive extracts, compounds, and commercial products derived from macro- and microalgae, exploring their protective properties against oxidative stress, inflammation, cardiovascular, gastrointestinal, metabolic diseases, and cancer across in vitro, cell-based, in vivo, and clinical studies. Most research focuses on macroalgae, demonstrating antioxidant, anti-inflammatory, cardioprotective, gut health modulation, metabolic health promotion, and anti-cancer effects. Microalgae products also exhibit anti-inflammatory, cardioprotective, and anti-cancer properties. Although studies mainly investigated extracts and fractions, isolated compounds from algae have also been explored. Notably, polysaccharides, phlorotannins, carotenoids, and terpenes emerge as prominent compounds, collectively representing 42.4% of the investigated compounds.


Asunto(s)
Microalgas , Humanos , Microalgas/química , Organismos Acuáticos/química , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/uso terapéutico , Animales , Algas Marinas/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/química , Océanos y Mares , Estrés Oxidativo/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química
18.
Anal Bioanal Chem ; 416(12): 3033-3044, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520589

RESUMEN

Seaweed is becoming increasingly popular in the Western diet as consumers opt for more sustainable food sources. However, seaweed is known to accumulate high levels of arsenic-which may be in the form of carcinogenic inorganic arsenic (iAs). Here we propose a fast method for the routine measurement of iAs in seaweed using HPLC-ICP-MS without coelution of arsenosugars that may complicate quantification. The developed method was optimised using design of experiments (DOE) and tested on a range of reference materials including TORT-3 (0.36 ± 0.03 mg kg-1), DORM-5 (0.02 ± 0.003 mg kg-1), and DOLT-5 (0.07 ± 0.007 mg kg-1). The use of nitric acid in the extraction solution allowed for the successful removal of interferences from arsenosugars by causing degradation to an unretained arsenosugar species, and a recovery of 99 ± 9% was obtained for iAs in Hijiki 7405-b when compared with the certified value. The method was found to be suitable for high-throughput analysis of iAs in a range of food and feed matrices including Asparagopsis taxiformis seaweed, grass silage, and insect proteins, and offers a cost-effective, fast, and robust option for routine analysis that requires minimal sample preparation. The method may be limited with regards to the quantification of dimethylarsenate (DMA) in seaweed, as the acidic extraction may lead to overestimation of this analyte by causing degradation of lipid species that are typically more abundant in seaweed than other marine matrices (i.e. arsenophospholipids). However, the concentrations of DMA quantified using this method may provide a better estimation with regard to exposure after ingestion and subsequent digestion of seaweed.


Asunto(s)
Arseniatos , Arsénico , Espectrometría de Masas , Algas Marinas , Algas Marinas/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Arsénico/análisis , Contaminación de Alimentos/análisis , Límite de Detección , Monosacáridos/análisis
19.
Sci Rep ; 14(1): 6214, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486008

RESUMEN

Fucoidan has attracted considerable attention from scientists and pharmaceutical companies due to its antioxidant, anticoagulant, anti-inflammatory, anti-tumor, and health-enhancing properties. However, the extraction of fucoidan from seaweeds often involves the use of harsh chemicals, which necessitates the search for alternative solvents. Additionally, the high viscosity and low cell permeability of high molecular weight (Mw) fucoidan can limit its effectiveness in drug action, while lower Mw fractions exhibit increased biological activity and are also utilized as dietary supplements. The study aimed to (1) extract fucoidan from the seaweed Fucus vesiculosus (FV) using an environmentally friendly solvent and compare it with the most commonly used extraction solvent, hydrochloric acid, and (2) assess the impact of ultrasound-assisted depolymerization on reducing the molecular weight of the fucoidan extracts and examine the cytotoxic effect of different molecular weight fractions. The findings indicated that the green depolymerization solvent, in conjunction with a brief ultrasound treatment, effectively reduced the molecular weight. Moreover, a significant decrease in cell viability was observed in selected samples, indicating potential anticancer properties. As a result, ultrasound was determined to be an effective method for depolymerizing crude fucoidan from Fucus Vesiculosus seaweed.


Asunto(s)
Fucus , Polisacáridos , Algas Marinas , Algas Marinas/química , Fucus/química , Anticoagulantes , Solventes
20.
Int J Biol Macromol ; 266(Pt 1): 131147, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537857

RESUMEN

Seaweed, a diverse group of marine macroalgae, has emerged as a rich source of bioactive compounds with numerous health-promoting properties. Among these, phenolic compounds have garnered significant attention for their diverse therapeutic applications. This review examines the methodologies employed in the extraction and purification of phenolic compounds from seaweed, emphasizing their importance in unlocking the full potential of these oceanic treasures. The article provides a comprehensive overview of the structural diversity and biological activities of seaweed-derived phenolics, elucidating their antioxidant, anti-inflammatory, and anticancer properties. Furthermore, it explores the impact of extraction techniques, including conventional methods and modern green technologies, on the yield and quality of phenolic extracts. The purification strategies for isolating specific phenolic compounds are also discussed, shedding light on the challenges and advancements in this field. Additionally, the review highlights the potential applications of seaweed-derived phenolics in various industries, such as pharmaceuticals, cosmetics, and functional foods, underscoring the economic value of these compounds. Finally, future perspectives and research directions are proposed to encourage continued exploration of seaweed phenolics, fostering a deeper understanding of their therapeutic potential and promoting sustainable practices in the extraction and purification processes. This comprehensive review serves as a valuable resource for researchers, industry professionals, and policymakers interested in harnessing the untapped potential of phenolic compounds from seaweed for the betterment of human health and environmental sustainability.


Asunto(s)
Antioxidantes , Fenoles , Algas Marinas , Algas Marinas/química , Fenoles/aislamiento & purificación , Fenoles/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Humanos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Fraccionamiento Químico/métodos , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...