Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.084
Filtrar
1.
Carbohydr Polym ; 339: 122264, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823928

RESUMEN

Normal rice starch consists of amylopectin and amylose, whose relative amounts and chain-length distributions (CLDs) are major determinants of the digestibility and rheology of cooked rice, and are related to metabolic health and consumer preference. Here, the mechanism of how molecular structural features of pure amylopectin (waxy) starches affect starch properties was explored. Following debranching, chain-length distributions of seven waxy varieties were measured using size-exclusion chromatography, and parameterized using biosynthesis-based models, which involve breaking up the chain-length distribution into contributions from five enzyme sets covering overlapping ranges of chain length; structure-property correlations involving the fifth set were found to be statistically significant. Digestibility was measured in vitro, and parameters for the slower and longer digestion phase quantified using non-linear least-squares fitting. The coefficient for the significant correlation involving amylopectin fine structure for the fifth set was -0.903, while the amounts of amylopectin short and long chains were found to dominate breakdown viscosity (correlation coefficients 0.801 and - 0.911, respectively). This provides a methodology for finding or developing healthier starch in terms of lower digestion rate, while also having acceptable palatability. As rice breeders can to some extent control CLDs, this can help the development of waxy rices with improved properties.


Asunto(s)
Amilopectina , Amilosa , Oryza , Oryza/química , Amilopectina/química , Viscosidad , Amilosa/química , Amilosa/análisis , Almidón/química , Digestión , Reología
2.
J Oleo Sci ; 73(6): 905-909, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825542

RESUMEN

Glucosylceramide (GlcCer), a major sphingolipid in plants, possesses various food functions, including improvement of intestinal impairments. This study evaluated rice cooking conditions and cultivars based on GlcCer levels transferred into the digestive juice using an in vitro digestion model to investigate the factors related to GlcCer availability. GlcCer levels transferred into the digestive juice were higher in rice gruel than in boiled rice. The GlcCer levels in the digestive juice of boiled rice varied based on the rice cultivar, whereas those in rice gruel had no difference. Thus, GlcCer in rice was not fully utilized via digestion. Further, bioaccessibility was related to the amylose ratio and added water content.


Asunto(s)
Culinaria , Digestión , Glucosilceramidas , Oryza , Oryza/química , Oryza/metabolismo , Glucosilceramidas/metabolismo , Culinaria/métodos , Disponibilidad Biológica , Agua , Amilosa/análisis
3.
Food Res Int ; 186: 114381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729735

RESUMEN

Lipid has crucial applications in improving the quality of starchy products during heat processing. Herein, the influence of lipid modification and thermal treatment on the physicochemical properties and starch digestibility of cooked rice prepared with varied addition manipulations was investigated. Rice bran oil (RO) and medium chain triglyceride oil (MO) manipulations were performed either before (BC) or after cooking (AC). GC-MS was applied to determine the fatty acid profiles. Nutritional quality was analyzed by quantifying total phenolics, atherogenic, and thrombogenic indices. All complexes exhibited higher surface firmness, a soft core, and less adhesive. FTIR spectrum demonstrated that the guest component affected some of the dense structural attributes of V-amylose. The kinetic constant was in the range between 0.47 and 0.86 min-1 wherein before mode presented a higher value. The lowest glucose release was observed in the RO_BC sample, whereas the highest complexing index was observed in the RO_AC sample, indicating that the dense molecular configuration of complexes that could resist enzymatic digestion was more critical than the quantity of complex formation. Despite the damage caused by mass and heat transfer, physical barrier, intact granule forms, and strengthened dense structure were the central contributors affecting the digestion characteristics of lipid-starch complexes.


Asunto(s)
Culinaria , Digestión , Oryza , Aceite de Salvado de Arroz , Almidón , Triglicéridos , Oryza/química , Almidón/química , Aceite de Salvado de Arroz/química , Triglicéridos/química , Calor , Ácidos Grasos/análisis , Ácidos Grasos/química , Aceites de Plantas/química , Espectroscopía Infrarroja por Transformada de Fourier , Valor Nutritivo , Amilosa/química , Cromatografía de Gases y Espectrometría de Masas
4.
Nat Commun ; 15(1): 4493, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802342

RESUMEN

Abscisic acid (ABA) plays a crucial role in promoting plant stress resistance and seed dormancy. However, how ABA regulates rice quality remains unclear. This study identifies a key transcription factor SLR1-like2 (SLRL2), which mediates the ABA-regulated amylose content (AC) of rice. Mechanistically, SLRL2 interacts with NF-YB1 to co-regulate Wx, a determinant of AC and rice quality. In contrast to SLR1, SLRL2 is ABA inducible but insensitive to GA. In addition, SLRL2 exhibits DNA-binding activity and directly regulates the expression of Wx, bHLH144 and MFT2. SLRL2 competes with NF-YC12 for interaction with NF-YB1. NF-YB1 also directly represses SLRL2 transcription. Genetic validation supports that SLRL2 functions downstream of NF-YB1 and bHLH144 in regulating rice AC. Thus, an NF-YB1-SLRL2-bHLH144 regulatory module is successfully revealed. Furthermore, SLRL2 regulates rice dormancy by modulating the expression of MFT2. In conclusion, this study revealed an ABA-responsive regulatory cascade that functions in both rice quality and seed dormancy.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Oryza , Latencia en las Plantas , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Latencia en las Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Amilosa/metabolismo , Grano Comestible/metabolismo , Grano Comestible/genética , Plantas Modificadas Genéticamente
5.
Int J Biol Macromol ; 269(Pt 2): 132159, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719018

RESUMEN

In recent years, the focus has shifted towards carbohydrate-based hydrogels and their eco-friendly preparation methods. This study involved an investigation into the treatment of wheat starch using dielectric barrier discharge (DBD) plasma technology over varying time gradients (0, 2, 5, 10, 15, and 20 min). The objective was to systematically examine the impact of different treatment durations on the physicochemical properties of wheat starch and the suitability of its gels for 3D printing. Morphology of wheat starch remained intact after DBD treatment. However, it led to a reduction in the amylose content, molecular weight, and crystallinity. This subsequently resulted in a decrease in the pasting temperature and viscosity. Moreover, the gels of the DBD-treated starch exhibited superior 3D printing performance. After a 2-min DBD treatment, the 3D printed samples of the wheat starch gel showed no significant improvements, as broken bars were evident on the surface of the 3D printed graphic, whereas DBD-20 showed better printing accuracy and surface structure, compared to the original starch without slumping. These results suggested that DBD technology holds potential for developing new starch-based gels with impressive 3D printing properties.


Asunto(s)
Impresión Tridimensional , Almidón , Triticum , Triticum/química , Almidón/química , Amilosa/química , Viscosidad , Gases em Plasma/química , Peso Molecular , Fenómenos Químicos , Temperatura
6.
Int J Biol Macromol ; 269(Pt 2): 132183, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723826

RESUMEN

The current research in the food industry regarding enzymatic modification to enhance the freeze-thaw (FT) stability of starch is limited. The present study aimed to investigate the FT stability of normal corn starch (NCS) modified using 1,4-α-glucan branching enzyme (GBE) derived from Geobacillus thermoglucosidans STB02. Comprehensive analyses, including syneresis, scanning electron microscopy, and low-field nuclear magnetic resonance, collectively demonstrated the enhanced FT stability of GBE-modified corn starch (GT-NCS-30) in comparison to its native form. Its syneresis was 66.4 % lower than that of NCS after three FT cycles. Notably, GBE treatment induced changes in the pasting properties and thermal resistance of corn starch, while simultaneously enhancing the mechanical strength of the starch gel. Moreover, X-ray diffractograms and microstructural assessments of freeze-thawed gels indicated that GBE treatment effectively hindered the association of corn starch molecules, particularly amylose retrogradation. The enhanced FT stability of GBE-modified starch can be attributed to alterations in the starch structure induced by GBE. This investigation establishes a foundation for further exploration into the influence of GBE treatment on the FT stability of starch and provides a theoretical basis for further research in this area.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Congelación , Geles , Almidón , Zea mays , Almidón/química , Enzima Ramificadora de 1,4-alfa-Glucano/química , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Zea mays/química , Geles/química , Geobacillus/enzimología , Amilosa/química
7.
Int J Biol Macromol ; 268(Pt 2): 131996, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697417

RESUMEN

This research investigated the effect of lecithin on the complexation of lauric acid with maize starch, potato starch, waxy maize starch, and high amylose maize starch. Rapid visco analysis showed that lecithin altered the setback pattern of potato starch-lauric acid and maize starch-lauric acid mixtures but not waxy maize starch-lauric acid. Further investigation, including differential scanning calorimetry, complex index, and X-ray diffraction, showed that lecithin enhanced the complexation of maize starch, potato starch, and high amylose maize starch with lauric acid. Fourier transform infrared and Raman spectroscopy revealed increasingly ordered structures formed in maize starch-lauric acid-lecithin, potato starch-lauric acid-lecithin, and high amylose maize starch-lauric acid-lecithin systems compared to corresponding binary systems. These highly ordered complexes of maize starch, potato starch, and high amylose maize starch also demonstrated greater resistance to in vitro enzymatic hydrolysis. Waxy maize starch complexation however remained unaffected by lecithin. The results of this study show that lecithin impacts complexation between fatty acids and native starches containing amylose, with the starch source being critical. Lecithin minimally impacted the complexation of low amylose starch and fatty acids.


Asunto(s)
Amilosa , Ácidos Láuricos , Lecitinas , Almidón , Zea mays , Ácidos Láuricos/química , Lecitinas/química , Almidón/química , Amilosa/química , Zea mays/química , Solanum tuberosum/química , Hidrólisis , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Rastreo Diferencial de Calorimetría
8.
Brief Funct Genomics ; 23(3): 193-213, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751352

RESUMEN

Starch is a significant ingredient of the seed endosperm with commercial importance in food and industry. Crop varieties with glutinous (waxy) grain characteristics, i.e. starch with high amylopectin and low amylose, hold longstanding cultural importance in some world regions and unique properties for industrial manufacture. The waxy character in many crop species is regulated by a single gene known as GBSSI (or waxy), which encodes the enzyme Granule Bound Starch Synthase1 with null or reduced activity. Several allelic variants of the waxy gene that contribute to varying levels of amylose content have been reported in different crop plants. Phylogenetic analysis of protein sequences and the genomic DNA encoding GBSSI of major cereals and recently sequenced millets and pseudo-cereals have shown that GBSSI orthologs form distinct clusters, each representing a separate crop lineage. With the rapidly increasing demand for waxy starch in food and non-food applications, conventional crop breeding techniques and modern crop improvement technologies such as gene silencing and genome editing have been deployed to develop new waxy crop cultivars. The advances in research on waxy alleles across different crops have unveiled new possibilities for modifying the synthesis of amylose and amylopectin starch, leading to the potential creation of customized crops in the future. This article presents molecular lines of evidence on the emergence of waxy genes in various crops, including their genesis and evolution, molecular structure, comparative analysis and breeding innovations.


Asunto(s)
Productos Agrícolas , Almidón Sintasa , Productos Agrícolas/genética , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amilosa/metabolismo , Amilosa/genética , Amilopectina/metabolismo , Amilopectina/genética , Filogenia , Almidón/metabolismo , Almidón/genética , Almidón/biosíntesis
9.
Chirality ; 36(5): e23679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38752268

RESUMEN

Each year, new psychoactive substances appear on the global drug market leading to constant changes. Most of these compounds with stimulating effect possess a chiral center, thus leading to two enantiomers with presumably different pharmacological properties. Among them, synthetic cathinones, often misleadingly traded as "bath salts," play an important role. There is little knowledge about the distinct effect of the enantiomers. The aim of this study was to test a commercially available Lux® i-Amylose-3 column by HPLC-UV for enantiorecognition of cathinone derivatives. Overall, 80 compounds were tested in normal phase mode, where 75 substances were separated under initial conditions. After method optimization, at least partial separation was achieved for the remaining compounds. The same set of substances was measured in polar-organic mode, where 63 analytes were resolved into their enantiomers under initial conditions with very short retention times. Both modes showed complementary results for the individual compounds. Furthermore, the tested methods proved to be suitable for differentiation of positional isomers, which can be useful for drug checking programs. All measurements were carried out under isocratic conditions, and intraday and interday repeatability tests were performed.


Asunto(s)
Alcaloides , Estereoisomerismo , Cromatografía Líquida de Alta Presión/métodos , Alcaloides/química , Alcaloides/aislamiento & purificación , Amilosa/química , Amilosa/análogos & derivados , Pirrolidinas
10.
Food Res Int ; 183: 114186, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760125

RESUMEN

The rise of pre-diabetes at the global level has created a significant interest in developing low glycaemic index food products. The pearl millet is a cheaper source of starch and its germ contains significant amount of protein and fat. The complexing of pearl millet starch and germ by dry heat treatment (PMSGH) resulted an increase in the resistant starch content upto 45.09 % due to formation of amylose-glutelin-linoleic acid complex. The resulting pearl millet starch germ complex was incorporated into wheat bread at 20, 25, and 30 %. The PMSGH incorporated into bread at 30 % reduced the glycaemic index to 52.31. The PMSGH incorporated bread had significantly (p < 0.05)increased in the hardness with a reduction in springiness and cohesiveness. The structural attributes of the 30 % PMSGH incorporated bread revealed a significant (p < 0.05)increase in 1040/1020 cm-1 ratio and relative crystallinity. The consumption of functional bread incorporated with pearl millet starch germ complex reduced blood glucose levels and in vivo glycaemic index in healthy and pre-diabetic participants when compared to white bread. Hence, the study showed that the incorporation of pearl millet starch-germ complex into food products could be a potential new and healthier approach for improving dietary options in pre-diabetes care.


Asunto(s)
Glucemia , Pan , Índice Glucémico , Pennisetum , Estado Prediabético , Almidón , Humanos , Pan/análisis , Pennisetum/química , Almidón/química , Masculino , Adulto , Femenino , Valor Nutritivo , Método Simple Ciego , Adulto Joven , Persona de Mediana Edad , Amilosa/química
11.
Food Res Int ; 183: 114226, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760145

RESUMEN

Highland barley (HB) is an intriguing plateau cereal crop with high nutrition and health benefits. However, abundant dietary fiber and deficient gluten pose challenges to the processing and taste of whole HB products. Extrusion technology has been proved to be effective in overcoming these hurdles, but the association between the structure and physicochemical properties during extrusion remains inadequately unexplored. Therefore, this study aims to comprehensively understand the impact of extrusion conditions on the physicochemical properties of HB flour (HBF) and the multi-scale structure of starch. Results indicated that the nutritional value of HBF were significantly increased (soluble dietary fiber and ß-glucan increased by 24.05%, 19.85% respectively) after extrusion. Typical underlying mechanisms based on starch structure were established. High temperature facilitated starch gelatinization, resulting in double helices unwinding, amylose leaching, and starch-lipid complexes forming. These alterations enhanced the water absorption capacity, cold thickening ability, and peak viscosity of HBF. More V-type complexes impeded amylose rearrangement, thus enhancing resistance to retrogradation and thermal stability. Extrusion at high temperature and moisture exhibited similarities to hydrothermal treatment, partly promoting amylose rearrangement and enhancing HBF peak viscosity. Conversely, under low temperature and high moisture, well-swelled starch granules were easily broken into shorter branch-chains by higher shear force, which enhanced the instant solubility and retrogradation resistance of HBF as well as reduced its pasting viscosity and the capacity to form gel networks. Importantly, starch degradation products during this condition were experimentally confirmed from various aspects. This study provided some reference for profiting from extrusion for further development of HB functional food and "clean label" food additives.


Asunto(s)
Amilosa , Harina , Manipulación de Alimentos , Hordeum , Almidón , Hordeum/química , Almidón/química , Harina/análisis , Viscosidad , Amilosa/química , Manipulación de Alimentos/métodos , Valor Nutritivo , Fibras de la Dieta/análisis , Solubilidad , beta-Glucanos/química , Fenómenos Químicos , Calor
12.
Carbohydr Polym ; 338: 122208, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763729

RESUMEN

This study examines the impact and influence of amylose on the starch esterification reaction through partial extraction of amylose. Citric acid was added for the esterification reaction, and then the esterified starches' multiscale structure, physicochemical, and functional properties were evaluated. As the extraction time of amylose increased, the amylose content in the starch decreased. Higher concentrations of citric acid will lead to samples with a higher degree of substitution, with DS rising from 0.203 % (0 h) to 0.231 % (3.5 h) at CA3 treatment. While removing amylose had minimal effects on the crystal structure of starch granules, it did decrease the ratio of A and B1 chains and the molecular weight of amylose. Acid hydrolysis exacerbated these changes upon the addition of citric acid. Furthermore, removing amylose followed by citrate esterification resulted in lower pasting viscosity, enthalpy of gelatinization (from 13.37 J to 2.83 J), and degree of short-range ordering. Also, digestion shows a decrease caused by the increasing content of slow-digesting starch. The presence of amylose in starch granules does affect the formation of starch esters, and removing it before esterification modification may improve production efficiency and reduce costs to some extent.


Asunto(s)
Amilosa , Ácido Cítrico , Solanum tuberosum , Almidón , Amilosa/química , Esterificación , Ácido Cítrico/química , Solanum tuberosum/química , Almidón/química , Viscosidad , Hidrólisis , Peso Molecular
13.
Carbohydr Polym ; 338: 122213, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763715

RESUMEN

The present research studies the impact of apparent amylose content (AAC) on the quality of fortified rice kernels (FRK), a health food designed to combat iron deficiency anemia by fortifying with iron, folic acid, and vitamin B12. Five FRK formulations with varying AAC (0.46-23.89 %) were prepared, and AAC influence on the extruder-system parameter and physicochemical, cooking, and textural properties of FRK was investigated. The torque, die-pressure, length, redness, and cooking time increased with an increase in AAC and were in the range of 12.55-22.81 Nm, 58.31-88.96 bar, 4.58-5.09 mm, 0.35-1.15, and 6.1-11.2 min, respectively. The other parameters, such as the breadth, whiteness index, and cooking loss decreased with an increase in AAC. Except for cohesiveness, all other textural properties of cooked FRK increased with an increase in AAC. These correlations of the FRK properties with AAC were confirmed through multivariate analysis. SEM, XRD, FTIR, and rheology supported the observed AAC trends in FRK properties. SEM showed a reduction in pores and cracks with an increase in AAC. The XRD and FTIR showed an increase in crystallinity with an increase in AAC due to better gelatinization leading to rapid retrogradation. This leads to better physical, cooking, and textural properties of FRK.


Asunto(s)
Amilosa , Culinaria , Oryza , Oryza/química , Amilosa/análisis , Amilosa/química , Alimentos Fortificados/análisis , Reología
14.
Carbohydr Polym ; 337: 122190, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710564

RESUMEN

Starch structure is often characterized by the chain-length distribution (CLD) of the linear molecules formed by breaking each branch-point. More information can be obtained by expanding into a second dimension: in the present case, the total undebranched-molecule size. This enables answers to questions unobtainable by considering only one variable. The questions considered here are: (i) are the events independent which control total size and CLD, and (ii) do ultra-long amylopectin (AP) chains exist (these chains cannot be distinguished from amylose chains using simple size separation). This was applied here to characterize the structures of one normal (RS01) wheat and two high-amylose (AM) mutant wheats (an SBEIIa knockout and an SBEIIa and SBEIIb knockout). Absolute ethanol was used to precipitate collected fractions, then size-exclusion chromatography for total molecular size and for the size of branches. The SBEIIa and SBEIIb mutations significantly increased AM and IC contents and chain length. The 2D plots indicated the presence of small but significant amounts of long-chain amylopectin, and the asymmetry of these plots shows that the corresponding mechanisms share some causal effects. These results could be used to develop plants producing improved starches, because different ranges of the chain-length distribution contribute independently to functional properties.


Asunto(s)
Amilopectina , Amilosa , Almidón Sintasa , Triticum , Triticum/metabolismo , Triticum/química , Triticum/genética , Amilopectina/química , Amilopectina/biosíntesis , Amilosa/química , Amilosa/biosíntesis , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Almidón Sintasa/química , Almidón/química , Almidón/biosíntesis , Almidón/metabolismo , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Carbohydr Polym ; 335: 122086, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616071

RESUMEN

Recently, attention has been paid to cellulose nanofibers, such as 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibers (TOCN), as new bio-based materials. In addition, hydrophobized surface on TOCNs can be expected to provide new applications. Based on our previous finding that partially 2-deoxygenated (P2D)-amylose, which was synthesized by GP-catalyzed enzymatic copolymerization of D-glucal with α-d-glucose 1-phosphate (Glc-1-P) as comonomers, was hydrophobic, in this study, hydrophobization of surfaces on TOCNs was investigated by the GP-catalyzed enzymatic grafting of P2D-amylose chains on TOCNs. After maltooligosaccharide primers were modified on TOCNs, the GP-catalyzed enzymatic copolymerization of D-glucal with Glc-1-P was performed for grafting of P2D-amylose chains. 1H NMR spectroscopic analysis confirmed the production of P2D-amylose-grafted TOCNs with different 2-deoxyglucose/Glc unit ratios. The powder X-ray diffraction profiles of the products indicated that the entire crystalline structures were strongly affected by the unit ratios and chain lengths of the grafted polysaccharides. The SEM images observed differences in nanofiber diameter in the reaction solutions and surface morphology after film formation, due to grafting of P2D-amylose chains from TOCNs. The water contact angle measurement of a cast film prepared from the product indicated its hydrophobicity.


Asunto(s)
Celulosa Oxidada , Nanofibras , Celulosa , Amilosa , Gluconato de Calcio
16.
Carbohydr Polym ; 335: 122070, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616092

RESUMEN

Starches are hydrolyzed into monosaccharides by mucosal α-glucosidases in the human small intestine. However, there are few studies assessing the direct digestion of starch by these enzymes. The objective of this study was to investigate the changes in the structure and enzyme binding of starches during in vitro hydrolysis by mammalian mucosal enzymes. Waxy maize (WMS), normal maize (NMS), high-amylose maize (HAMS), waxy potato (WPS), and normal potato (NPS) starches were examined. The order of the digestion rate was different compared with other studies using a mixture of pancreatic α-amylase and amyloglucosidase. NPS was digested more than other starches. WPS was more digestible than WMS. Hydrolyzed starch from NPS, NMS, WPS, WMS, and HAMS after 24 h was 66.4, 64.2, 61.7, 58.7, and 46.2 %, respectively. Notably, a significant change in the morphology, reduced crystallinity, and a decrease in the melting enthalpy of the three starches (NPS, NMS, and WPS) after 24 h of hydrolysis were confirmed by microscopy, X-ray diffraction, and differential scanning calorimetry, respectively. The bound enzyme fraction of NPS, NMS, and WPS increased as hydrolysis progressed. In contrast, HAMS was most resistant to hydrolysis by mucosal α-glucosidases in terms of digestibility, changes in morphology, crystallinity, and thermal properties.


Asunto(s)
Almidón , alfa-Glucosidasas , Humanos , Animales , Hidrólisis , Amilosa , Rastreo Diferencial de Calorimetría , Ceras , Zea mays , Mamíferos
17.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612852

RESUMEN

Salinity is an environmental stress that severely impacts rice grain yield and quality. However, limited information is available on the molecular mechanism by which salinity reduces grain quality. In this study, we investigated the milling, appearance, eating and cooking, and nutritional quality among three japonica rice cultivars grown either under moderate salinity with an electrical conductivity of 4 dS/m or under non-saline conditions in a paddy field in Dongying, Shandong, China. Moderate salinity affected rice appearance quality predominantly by increasing chalkiness rate and chalkiness degree and affected rice eating and cooking and nutritional quality predominantly by decreasing amylose content and increasing protein content. We compared the expression levels of genes determining grain chalkiness, amylose content, and protein content in developing seeds (0, 5, 10, 15, and 20 days after flowering) of plants grown under saline or non-saline conditions. The chalkiness-related gene Chalk5 was up-regulated and WHITE-CORE RATE 1 was repressed. The genes Nuclear factor Y and Wx, which determine amylose content, were downregulated, while protein-content-associated genes OsAAP6 and OsGluA2 were upregulated by salinity in the developing seeds. These findings suggest some target genes that may be utilized to improve the grain quality under salinity stress conditions via gene-pyramiding breeding approaches.


Asunto(s)
Metanfetamina , Oryza , Oryza/genética , Amilosa , Fitomejoramiento , Estrés Salino , Semillas/genética , Carbonato de Calcio , Grano Comestible/genética
18.
Plant Mol Biol ; 114(3): 50, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656412

RESUMEN

Amylose biosynthesis is strictly associated with granule-bound starch synthase I (GBSSI) encoded by the Waxy gene. Mutagenesis of single bases in the Waxy gene, which induced by CRISPR/Cas9 genome editing, caused absence of intact GBSSI protein in grain of the edited line. The amylose and amylopectin contents of waxy mutants were zero and 31.73%, while those in the wild type were 33.50% and 39.00%, respectively. The absence of GBSSI protein led to increase in soluble sugar content to 37.30% compared with only 10.0% in the wild type. Sucrose and ß-glucan, were 39.16% and 35.40% higher in waxy mutants than in the wild type, respectively. Transcriptome analysis identified differences between the wild type and waxy mutants that could partly explain the reduction in amylose and amylopectin contents and the increase in soluble sugar, sucrose and ß-glucan contents. This waxy flour, which showed lower final viscosity and setback, and higher breakdown, could provide more option for food processing.


Asunto(s)
Amilosa , Edición Génica , Hordeum , Proteínas de Plantas , Almidón Sintasa , Amilosa/metabolismo , Hordeum/genética , Hordeum/metabolismo , Edición Génica/métodos , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Amilopectina/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , beta-Glucanos/metabolismo , Plantas Modificadas Genéticamente , Solubilidad
19.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675624

RESUMEN

We prepared network polysaccharide nanoscopic hydrogels by crosslinking water-soluble chitosan (WSCS) with a carboxylate-terminated maltooligosaccharide crosslinker via condensation. In this study, the enzymatic elongation of amylose chains on chitosan-based network polysaccharides by glucan phosphorylase (GP) catalysis was performed to obtain assembly materials. Maltoheptaose (Glc7) primers for GP-catalyzed enzymatic polymerization were first introduced into WSCS by reductive amination. Crosslinking of the product with the above-mentioned crosslinker by condensation was then performed to produce Glc7-modified network polysaccharides. The GP-catalyzed enzymatic polymerization of the α-d-glucose 1-phosphate monomer from the Glc7 primers on the network polysaccharides was conducted, where the elongated amylose chains formed double helices. Enzymatic disintegration of the resulting network polysaccharide assembly successfully occurred by α-amylase-catalyzed hydrolysis of the double helical amyloses. The encapsulation and release of a fluorescent dye, Rhodamine B, using the CS-based network polysaccharides were also achieved by means of the above two enzymatic approaches.


Asunto(s)
Quitosano , Colorantes Fluorescentes , Glucanos , Polisacáridos , Quitosano/química , Colorantes Fluorescentes/química , Polisacáridos/química , Rodaminas/química , Hidrogeles/química , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Hidrólisis , Amilosa/química , Polimerizacion , Oligosacáridos/química , Glucofosfatos/química , Glucofosfatos/metabolismo
20.
Food Chem ; 449: 139232, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581794

RESUMEN

To effectively inhibit the retrogradation of staple foods, the effects of maltotetraose-forming amylase(G4-amylase) on the short and long-term retrogradation of different staple starches such as rice starch (RS), wheat starch (WS), potato starch (PS) were studied. The results indicated that G4-amylase decreased the content of amylose. Amylose contents (21.09%) of WSG4 were higher than that (14.82%) of RSG4 and (13.13%) of PSG4. WS had the most obvious change in the chain length distribution of amylopectin. A chains decreased by 18.99% and the B1 chains decreased by 12.08% after G4-amylase treatment. Compared to RS (662 cP) and WS (693 cP), the setback viscosity of RSG4 (338 cP) and WSG4 (385 cP) decreased. Compared to RS (0.41), WS (0.45), and PS (0.51), the long-term retrogradation rate of RSG4 (0.33), WSG4 (0.31), and PSG4 (0.38) significantly reduced. It indicated that G4-amylase significantly inhibited the long-term retrogradation of WS, followed by RS and PS.


Asunto(s)
Amilasas , Maltosa/análogos & derivados , Oryza , Solanum tuberosum , Almidón , Triticum , Almidón/química , Amilasas/química , Amilasas/metabolismo , Triticum/química , Viscosidad , Solanum tuberosum/química , Oryza/química , Amilosa/química , Amilosa/análisis , Maltosa/química , Biocatálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...