Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
Int J Biol Macromol ; 267(Pt 1): 131488, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615862

RESUMEN

This study aimed to reveal the underlying mechanisms of the differences in viscoelasticity and digestibility between mung bean starch (MBS) and proso millet starch (PMS) from the viewpoint of starch fine molecular structure. The contents of amylopectin B2 chains (14.94-15.09 %), amylopectin B3 chains (14.48-15.07 %) and amylose long chains (183.55-198.84) in MBS were significantly higher than PMS (10.45-10.76 %, 12.48-14.07 % and 70.59-88.03, respectively). MBS with higher amylose content (AC, 28.45-31.80 %) not only exhibited a lower weight-average molar mass (91,750.65-128,120.44 kDa) and R1047/1022 (1.1520-1.1904), but also was significantly lower than PMS in relative crystallinity (15.22-23.18 %, p < 0.05). MBS displayed a higher storage modulus (G') and loss modulus (G'') than PMS. Although only MBS-1 showed two distinct and discontinuous phases, MBS exhibited a higher resistant starch (RS) content than PMS (31.63-39.23 %), with MBS-3 having the highest RS content (56.15 %). Correlation analysis suggested that the amylopectin chain length distributions and AC played an important role in affecting the crystal structure, viscoelastic properties and in vitro starch digestibility of MBS and PMS. These results will provide a theoretical and scientific basis for the development of starch science and industrial production of low glycemic index starchy food.


Asunto(s)
Amilopectina , Amilosa , Almidón , Vigna , Amilosa/química , Amilosa/análisis , Amilopectina/química , Viscosidad , Vigna/química , Almidón/química , Almidón/metabolismo , Elasticidad , Digestión , Peso Molecular
2.
Food Chem ; 449: 139232, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581794

RESUMEN

To effectively inhibit the retrogradation of staple foods, the effects of maltotetraose-forming amylase(G4-amylase) on the short and long-term retrogradation of different staple starches such as rice starch (RS), wheat starch (WS), potato starch (PS) were studied. The results indicated that G4-amylase decreased the content of amylose. Amylose contents (21.09%) of WSG4 were higher than that (14.82%) of RSG4 and (13.13%) of PSG4. WS had the most obvious change in the chain length distribution of amylopectin. A chains decreased by 18.99% and the B1 chains decreased by 12.08% after G4-amylase treatment. Compared to RS (662 cP) and WS (693 cP), the setback viscosity of RSG4 (338 cP) and WSG4 (385 cP) decreased. Compared to RS (0.41), WS (0.45), and PS (0.51), the long-term retrogradation rate of RSG4 (0.33), WSG4 (0.31), and PSG4 (0.38) significantly reduced. It indicated that G4-amylase significantly inhibited the long-term retrogradation of WS, followed by RS and PS.


Asunto(s)
Amilasas , Maltosa/análogos & derivados , Oryza , Solanum tuberosum , Almidón , Triticum , Almidón/química , Amilasas/química , Amilasas/metabolismo , Triticum/química , Viscosidad , Solanum tuberosum/química , Oryza/química , Amilosa/química , Amilosa/análisis , Maltosa/química , Biocatálisis
3.
Int J Biol Macromol ; 260(Pt 1): 129421, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228206

RESUMEN

The quantitative analysis and spatial chemical visualization of amylopectin and amylose in different varieties of sweet potatoes were studied by merging spectral and image information. Three-dimensional (3D) hyperspectral images carrying 1D spectra and 2D images of hundreds of the samples (amylopectin, n = 644; amylose, n = 665) in near-infrared (NIR) range of 950-1650 nm (426 wavelengths) were acquired. The NIR spectra were mined to correlate with the values of the two indexes using a linear algorithm, generating a best performance with correlation coefficients and root mean square error of prediction (rP and RMSEP) of 0.983 and 0.847 g/100 mg for amylopectin, and 0.975 and 0.500 g/100 mg for amylose, respectively. Then, 14 % of the wavelengths (60 for amylopectin, 61 for amylopectin) were selected to simplify the prediction with rP and RMSEP of 0.970 and 1.103 g/100 mg for amylopectin, and 0.952 and 0.684 g/100 mg for amylose, respectively, comparable to those of full-wavelength models. By transferring the simplified model to original images, the color chemical maps were created and the differences of the two indexes in spatial distribution were visualized. The integration of NIR spectra and 2D image could be used for the more comprehensive evaluation of amylopectin and amylose concentrations in sweet potatoes.


Asunto(s)
Ipomoea batatas , Solanum tuberosum , Amilopectina , Amilosa/análisis , Almidón , Algoritmos
4.
J Sci Food Agric ; 104(3): 1824-1832, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37884460

RESUMEN

BACKGROUND: Rice taste is closely associated with endosperm composition, which varies among different rice layers. Although clarifying the relationship between this difference and nutritional taste can guide rice breeding and cultivation practices, research on this topic is limited. RESULTS: Here, typical rice varieties having excellent and poor taste characteristics were selected to analyze the distribution characteristics and differences of their components. The varieties with excellent taste exhibited lower apparent amylose content (AAC) and protein content (PC), lesser short-chain (Fa) and long-chain (Fb3 ) amylopectin (AP) and more medium-chain (Fb1+2 ) AP, higher long-to-short chain ratio (Fa:Fb3 ), and higher nitrogen (N), magnesium (Mg) and calcium (Ca) content in layer 1 (L1) than the varieties with poor taste. Layer 2 (L2) played a key role in AAC and PC regulation in the varieties with excellent taste by reducing AAC and appropriately increasing PC, consequently improving rice taste. AP structure in layer 3 (L3) substantially affected the taste of the two types of varieties. The mineral content was the highest in L1, and increased potassium (K), Ca, and Mg content improved taste in all varieties. CONCLUSION: AAC in each layer contributes to rice taste. PC and minerals primarily act on L1 and L2, whereas AP acts on L2 and L3. Therefore, the endosperm formation process should be exploited for improving rice taste. Furthermore, key resources and cultivation should be identified and regulated, respectively, to improve rice taste. © 2023 Society of Chemical Industry.


Asunto(s)
Oryza , Oryza/química , Gusto , Fitomejoramiento , Amilopectina/química , Endospermo/química , Amilosa/análisis , Minerales/análisis , Magnesio/análisis , Almidón/química
5.
Carbohydr Res ; 535: 109008, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103463

RESUMEN

This work presents the characterization of a novel naturally phosphorylated starch extracted from an unconventional and non-utilized source, the seeds of the stone fruit Syzygium malaccense. The morphology and chemical characteristics of the extracted starch were examined by scanning electron microscopy, FTIR, 1H/13C/31P NMR and 13C-CP/MAS-NMR, HPAEC-PAD chromatography, XRD, DSC, and RVA. The extraction yielded a highly pure starch (95.6 %) with an average granule size of 13 µm. The analysis of the starch components revealed an amylose content of 28.1 % and a predominance (65 %) of B-chains (B1-B3 65 %) in the amylopectin, as shown through HPAEC-PAD chromatography. The X-ray diffractogram was compatible with B-type starch, which was confirmed by the deconvolution of the C1 peak in the 13C-CP/MAS-NMR. X-Ray diffractogram also showed that S. malaccense has 28.5 % of crystallinity. DSC analysis showed values of 82.6 °C and -12.41 J g-1 for Tc and ΔH, respectively, which is compatible with a highly ordered starch granule structure. The values observed for peak (4678 mPa•s), trough (3055 mPa•s), and final viscosity (6526 mPa•s) indicated that S. malaccense may be used as a thickener in hot food.


Asunto(s)
Malus , Syzygium , Almidón/química , Malasia , Amilosa/análisis , Amilopectina/química , Semillas/química
6.
J Agric Food Chem ; 72(1): 590-603, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38133624

RESUMEN

SBEIIb (Sobic.004G163700), SSSIIa (Sobic.010G093400), and GBSSI (Sobic.010G022600) genes that regulate starch synthesis in sorghum endosperm were transferred into Escherichia coli by transgenic technology. SBEIIb, SSSIIa, and GBSSI enzymes were separated and purified through a Ni column and analyzed by electrophoresis with molecular weights and activities of 91.57 84.57, and 66.89 kDa and 551 and 700 and 587 U/µL, respectively. Furthermore, they were applied to starch modification, yielding interesting findings: the A chain content increased from 25.79 to 89.55% for SBEIIb-treated waxy starch, while SSSIIa extended the A chain to form DPs of the B chain, with A chain content decreasing from 89.55 to 37.01%, whereas GBSSI was explicitly involved in the synthesis of B1 chain, with its content increasing from 9.59 to 48.45%. Modified starch was obtained, which could be accurately applied in various industries. For instance, we prepared a sample (containing 89.6% A chain content) with excellent antiaging and antidigestion properties through SBEIIb modification. Moreover, higher RS3 (34.25%) and SDS contents (15.75%) of starch were obtained through the joint modification of SBEIIb and SSSIIa. These findings provide valuable insights for developing sorghum starch synthesis-related enzymes and offer opportunities for improving starch properties through enzymatic approaches.


Asunto(s)
Sorghum , Almidón , Sorghum/genética , Escherichia coli/genética , Amilopectina , Endospermo/química , Amilosa/análisis
7.
Int J Biol Macromol ; 258(Pt 2): 129035, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158068

RESUMEN

In this study, Lycoris chinensis bulbs of four developmental stages were compared for starch characteristics. Based on correlation analysis and hierarchical cluster analysis, the relationships among 36 traits were discussed. Compared to commonly consumed starches, L. chinensis starch had higher amylose content (33.4-43.2 %) and weight-average molar mass (36410-82,781 kDa), lower gelatinization temperature (61.8-68.1 °C), gel hardness (19.0-39.5 g) and viscosities. Among developmental stages, starches varied significantly in characteristics. As compared to juvenile stage (S1), mature bulbs (S4) had higher amylose content, lower gelatinization temperature, weight-average molar mass and degree of polymorphism. Correlation analysis revealed that the molecular weight-related traits had significantly positive correlations to gelatinization temperature (Tp, p < 0.05), positive but weak correlations to traits of particle size distribution, significantly negative correlations to AAC and many parameters of viscosity properties (p < 0.05). Based on the results of correlation analysis and hierarchical cluster analysis, the 36 traits of starch characteristics were proposed to be divided into three groups: particle size-related traits, molecular weight-related traits and AAC-related traits. The information presented in the current study are useful for future studies on starches of Lycoris and other bulb species, and instructive for future studies in investigating the "Structure-Function" relationship in starch.


Asunto(s)
Amilosa , Lycoris , Amilosa/análisis , Almidón , Temperatura , Viscosidad
8.
Food Res Int ; 174(Pt 1): 113511, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986419

RESUMEN

Spray drying has been widely applied in food industry due to its efficiency and low cost. Exploring feasibility to prepare resistant starch (RS) via spray drying could open up new route to produce starch-based products with low glycemic index efficiently. In this study, effects of spray drying operating conditions on the structure and digestibility of recrystallized spray-dried corn starch (RSDCS) were explored. Apparent amylose content (AAC) and swelling power (SP) of the RSDCSs increased after the spray drying and recrystallization. Particle size of the RSDCSs decreased significantly with increase of compressed air flow and decrease of starch suspension concentration. Furthermore, the short-range order, long-range order, and content of RS in the RSDCSs decreased with increase of compressed air flow and starch suspension concentration. The Pearson's correlation analysis showed that digestive properties of the RSDCSs were mainly related to the short-range ordered structure and crystalline structure. Moreover, Mantel analysis revealed that operating conditions changed the digestibility of the RSDCSs through impacting crystalline structure, AAC and SP. The highest content of RS in the RSDCSs (23.08%) was increased near 2.6 times comparing to that of native corn starch (9.02%).


Asunto(s)
Almidón , Zea mays , Almidón/química , Zea mays/química , Amilosa/análisis , Digestión , Índice Glucémico
9.
Food Res Int ; 174(Pt 1): 113556, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986434

RESUMEN

Short germination is a process that can improve bioactive compounds in rice. This work aimed investigate the physical properties, phenolic compounds (PC), antioxidant activity and amino acids composition of husk + bran, brown and milled rice with high amylose content after short germination (16 h). α-amylase activity (Falling Number, FN) and enthalpy (ΔH) were unchanged (p < 0.05). RVA curve profiles were similar, even though after short germination and milling. Globally, metabolomics analysis identified 117 PC, in which 111 (bound), 104 (free) and 21 revealed in both extracts. p-Coumaric, trans-ferulic and ferulic acids were the most abundant PC revealed in all fractions. The portion husk + bran showed the highest level of total antioxidant activity (709.90 µmol TE) in both free and bound fractions. In terms of total amino acids, there was no statistical difference (p < 0.05) among non-germinated and germinated samples, contrary to free amino acids content. Glutamic acid (Glu) presented the highest values combining short germination and milling (1725-1900 mg/100 g) consequently, leads to higher value of GABA (12.21 mg/100 g). The combination of short germination and milling demonstrated a good strategy to improve the nutritional quality of rice, unless the thermal and pasting properties have been altered, contribute to potential health benefits on human nutrition.


Asunto(s)
Aminoácidos , Oryza , Humanos , Aminoácidos/análisis , Antioxidantes/análisis , Amilosa/análisis , Oryza/química , Fenoles/análisis , Ácido Glutámico/análisis , Semillas/química
10.
Food Res Int ; 173(Pt 1): 113243, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803556

RESUMEN

The physicochemical properties of starch vary depending on the botanical sources, thereby influencing the gelatinisation/retrogradation properties and subsequently affecting the hydrogels characteristics. This study aimed to assess the influence of botanical sources influence on starch and hydrogel properties using non-conventional starch derived from guabiju, pinhão, and uvaia seeds. Hydrogels were prepared by starch gelatinisation followed by 6 h ageing period at room temperature (20 ± 2 °C) and subjected to five freeze-thaw cycles. Pinhão starch exhibited a higher viscosity peak and breakdown, along with a lower final viscosity and setback, compared to guabiju and uvaia starches. The significantly different pasting properties influenced the porous microstructure, water absorption (p-value: 0.01), and resistance of the hydrogels (p-value: 0.01). The guabiju starch hydrogels showed a uniform pore structure without cavities, whereas pinhão and uvaia starch hydrogels exhibited agglomerated and spongy pore structures. Furthermore, the guabiju starch hydrogel demonstrated the lowest water absorption (4.56 g/g) and the highest compression resistance (1448.50 g) among all the studied starch hydrogels. In contrast, the pinhão starch hydrogel showed the highest water absorption (7.43 g/; p-value: 0.01) among all studied starch hydrogels. The hardness of uvaia starch hydrogel did not differ significantly from the guabiju and pinhão starch hydrogel. The different non-conventional starches reveal important variations in the hydrogels characteristics. This provides insights into how amylose and amylopectin interact and present alternatives for using these unique starch-based hydrogels in diverse applications.


Asunto(s)
Hidrogeles , Almidón , Almidón/química , Amilosa/análisis , Semillas/química , Agua/química
11.
Braz J Biol ; 84: e269844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37436205

RESUMEN

Starches from some legume grown in Cameroon were evaluated for their granule structure and size, turbidity, firmness and gel strength, thermal and freeze-thaw properties. Amylose contents were in the range of 26.21%-44.85%. Morphological analysis of the starch granules showed bimodal distribution, multiple sizes and shapes from small spherical to the bigger kidney shape. Significant differences were observed among starch in light transmittance, firmness and gel strength. The thermal parameters of starches were evaluated using differential scanning calorimeter and significant differences were observed. The peak gelatinisation temperature was positively correlated to starch granule size but the amylose content showed no evidence of their impact on legume starch properties studied. The data reported can be useful to facilitate the selection of variety of legume and conditions closer to the desired application.


Asunto(s)
Amilosa , Fabaceae , Amilosa/análisis , Amilosa/química , Camerún , Almidón/química , Temperatura , Verduras
12.
Int J Biol Macromol ; 247: 125746, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37437674

RESUMEN

Agro-industrial residues can increase environmental pollution owing to poor knowledge of the use of some components, such as dietary fiber, protein, starch, minerals, and bioactive compounds, which can be used in the food industry. This study compared the molecular, physicochemical, and digestibility characteristics of three avocado seed starches (Criolla, Fuerte, and Hass). Starch was extracted through successive washing and sedimentation. The morphology, size distribution, thermal properties, pasting properties, infrared spectra with Fourier transform, size distribution of amylopectin chains, and digestibility of the three avocado seed strains were analyzed. The starch grains were oval and spherical in shape. The average size of Criolla avocado starch (24.55 µm) was the largest, followed by Hass and Fuerte starches (21.37 µm). Higher gelatinization enthalpy (8.55 J/g), gelatinization temperature (75.28 °C), and pasting temperature (75.57 °C) were observed for Fuerte avocado starch, followed by Hass and Criolla starches. Hass avocado starch exhibited higher maximum (836.27 mPa.s), final (1407.37 mPa.s), setback (588.78 mPa.s), and breakdown (17.68 mPa.s) viscosities than Criolla and Fuerte avocado starches. In addition, the probed avocado starches exhibited high content of resistant starch (60.06-68.90%). Therefore, it was demonstrated that differences in the chemical composition and structure of avocado starch can affect the digestibility of native starch.


Asunto(s)
Persea , Almidón , Almidón/química , Amilopectina/química , Semillas/química , Viscosidad , Amilosa/análisis
13.
J Sci Food Agric ; 103(13): 6605-6615, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37252745

RESUMEN

BACKGROUND: Chestnut has recently attracted attention because of its exceptional functional properties, which are mainly influenced by the structural properties of chestnut starch (CS). In this study, ten varieties of chestnut from the northern, southern, eastern, and western regions of China were selected, and their functional properties, including thermal properties, pasting properties, in vitro digestibility, and multi-scale structural characteristics were characterized. The relationship between structure and functional properties was clarified. RESULTS: In the varieties that were studied, the pasting temperature of CS was in the range of 67.2-75.2 °C and the pastes displayed diverse viscosity characteristics. Slowly digestible starch (SDS), and resistant starch (RS) of CS were in the range of 17.17-28.78% and 61.19-76.10%, respectively. Chestnut starch from north-eastern China exhibited the highest RS content of 74.43-76.10%. Structural correlation analysis revealed that smaller size distribution, fewer B2 chains, and thinner lamellae thickness contributed to higher RS content. Meanwhile, CS with smaller granules, more B2 chains, and thicker amorphous lamellae displayed lower peak viscosities, stronger resistance to shear, and higher thermal stability. CONCLUSION: Overall, this study clarified the relationship between the functional properties and the multi-scale structure of CS, revealing the structural contributions to its high RS content. These findings provide significant information and basic data for use in the creation of nutritional chestnut food. © 2023 Society of Chemical Industry.


Asunto(s)
Almidón Resistente , Almidón , Almidón/química , Amilosa/análisis , Digestión , Temperatura , Viscosidad
14.
J Sci Food Agric ; 103(11): 5253-5260, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37005329

RESUMEN

BACKGROUND: Non-conventional starch sources are promising alternative food ingredients. Different bean varieties with agronomic improvements are constantly being developed and cultivated in the Northwestern Argentinean region (NOA) to increase yields and obtain high-quality seeds. However, the main attributes of their starches have not been studied. In this work, starches from four agronomic-improved bean cultivars were isolated and their structure and physicochemical properties were evaluated. RESULTS: High-purity starches were obtained, as shown by their low protein and ash content. Starch granules presented smooth surfaces with spherical to oval shapes, with a marked 'Maltese cross' and heterogeneous sizes. Their amylose content revealed a mean value of 318 g kg-1 and all presented resistant > slowly digestible > rapidly digestible starch fractions. Their Fourier transform infrared spectra were similar and X-ray diffraction analysis showed a CA -type pattern in all cases despite their different sources. Among thermal properties, Escarlata starch showed the lowest gelatinization peak temperature (69.5 °C) and Anahí starch the highest (71.3 °C). Starch pasting temperature varied from 74.6 to 76.9 °C, whereas peak viscosity and final viscosity showed a similar tendency, with Leales B30 < Anahí < Escarlata < Cegro 99/11-2 and Leales B30 < Anahí = Escarlata < Cegro 99/11-2, respectively. CONCLUSION: This study provides the basis for a better understanding of the characteristics of agronomic-improved NOA bean starches, enabling their use in product formulation as an alternative to starches from conventional sources. © 2023 Society of Chemical Industry.


Asunto(s)
Phaseolus , Phaseolus/química , Almidón/química , Amilosa/análisis , Viscosidad , Semillas/química , Difracción de Rayos X
15.
J Sci Food Agric ; 103(12): 5747-5753, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37079446

RESUMEN

BACKGROUND: Biochar can play a key role in improving paddy soil and productivity. However, there is limited information on the effects of biochar on rice quality and starch gelatinization. In this study, four rice straw biochar dosage treatments (0, 20, 40 and 60 g kg-1 ; CK, C20, C40 and C60, respectively) were set up to investigate rice yield components, rice processing, appearance and cooking quality, and starch gelatinization. RESULTS: Addition of biochar increased the effective panicle, grain number per panicle and seed setting rate. However, it decreased the 1000-grain weight, resulting in an increase in yield. In 2019, all the biochar treatments improved the head rice rate (9.13-11.42%), whereas in 2020 only the C20 treatment improved. Low biochar dosage had little effect on grain appearance. High biochar dosage significantly decreased the chalky rice rate by 21.47% and chalkiness by 19.44% in 2019. However, it significantly increased the chalky rice rate and chalkiness by 118.95% and 85.45% in 2020, respectively. Biochar significantly lowered the amylose content except for the C20 and C40 treatments in 2020, and the gel consistency. The C40 and C60 treatments significantly increased the peak and breakdown viscosities and decreased the setback viscosity compared with CK. Correlation analysis showed that starch gelatinization characteristics were significantly correlated with the head rice rate, chalky rate and amylose content. CONCLUSION: A lower biochar dosage can improve the yield and milled rice rate and maintain a higher quality of appearance, whereas a higher biochar dosage can significantly improve starch gelatinization. © 2023 Society of Chemical Industry.


Asunto(s)
Oryza , Almidón , Almidón/química , Amilosa/análisis , Oryza/química , Viscosidad , Grano Comestible/química
16.
Int J Biol Macromol ; 239: 124315, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023877

RESUMEN

This review focuses on the structure and genetic regulation of starch formation in sorghum (Sorghum bicolor (L.) Moench) endosperm. Sorghum is an important cereal crop that is well suited to grow in regions with high temperatures and limited water resources due to its C4 metabolism. The endosperm of sorghum kernels is a rich source of starch, which is composed of two main components: amylose and amylopectin. The synthesis of starch in sorghum endosperm involves multiple enzymatic reactions, which are regulated by complex genetic and environmental factors. Recent research has identified several genes involved in the regulation of starch synthesis in sorghum endosperm. In addition, the structure and properties of sorghum starch can also be influenced by environmental factors such as temperature, water availability, and soil nutrients. A better understanding of the structure and genetic regulation of starch formation in sorghum endosperm can have important implications for the development of sorghum-based products with improved quality and nutritional value. This review provides a comprehensive summary of the current knowledge on the structure and genetic regulation of starch formation in sorghum endosperm and highlights the potential for future research to further improve our understanding of this important process.


Asunto(s)
Endospermo , Sorghum , Endospermo/genética , Endospermo/metabolismo , Grano Comestible/química , Sorghum/química , Almidón/química , Amilosa/análisis
17.
Int J Biol Macromol ; 236: 123972, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906208

RESUMEN

Heavy haze-induced decreases in solar radiation represent an important factor that affects the structural properties of starch macromolecules. However, the relationship between the photosynthetic light response of flag leaves and the structural properties of starch remains unclear. In this study, we investigated the impact of light deprivation (60 %) during the vegetative-growth or grain-filling stage on the leaf light response, starch structure, and biscuit-baking quality of four wheat cultivars with contrasting shade tolerance. Shading decreased the apparent quantum yield and maximum net photosynthetic rate of flag leaves, resulting in a lower grain-filling rate and starch content and higher protein content. Shading decreased the starch, amylose, and small starch granule amount and swelling power but increased the larger starch granule amount. Under shade stress, the lower amylose content decreased the resistant starch content while increasing the starch digestibility and estimated glycemic index. Shading during the vegetative-growth stage increased starch crystallinity, 1045/1022 cm-1 ratio, starch viscosity, and the biscuit spread ratio, while shading during the grain-filling stage decreased these values. Overall, this study indicated that low light affects the starch structure and biscuit spread ratio by regulating the photosynthetic light response of flag leaves.


Asunto(s)
Almidón , Triticum , Almidón/metabolismo , Triticum/química , Amilosa/análisis , Fotosíntesis/fisiología , Grano Comestible/química , Hojas de la Planta/metabolismo
18.
Food Res Int ; 164: 112320, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737913

RESUMEN

Late-season indica rice frequently encounters low temperature (LT) along with low light (LL) after heading in southern China, which deteriorates the grain quality by altering starch quality. However, the detailed effects on starch properties of these stressors remain unclear. Herein, two indica rice cultivars with good and poor grain quality were grown under control (CK), LT, and LT + LL conditions after heading and the structural and physicochemical properties of their starch were evaluated. Compared with CK, LT and LT + LL worsened thermal and pasting properties of starch in the two cultivars, mainly because they increased branch chain branching and A chain (DP ≤12), and decreased average branch chain length and crystallinity. Compared with LT, LT + LL deteriorated the pasting properties of the poor-quality cultivar, such as reducing breakdown (BD), final and peak viscosity, which mainly owing to decreasing the starch branching and crystallinity degrees, and increasing the small starch granules (d < 10 µm). Gelatinization enthalpy and BD both had significant and positive correlations with amylose content, the ratio of amylose and amylopectin, B3 chain and crystallinity. Taken together, these results suggest that LT and LT + LL during grain filling can deteriorate the physicochemical properties of starch in late-season indica rice cultivars by disrupting starch multilevel structure, especially upon LT + LL. In particular, while poor-quality cultivar had poorer physicochemical properties, the good-quality cultivar had poorer thermal properties under LT + LL.


Asunto(s)
Oryza , Almidón , Almidón/química , Amilosa/análisis , Oryza/química , Temperatura , Estaciones del Año , Grano Comestible/química , China
19.
J Sci Food Agric ; 103(8): 3850-3859, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36308756

RESUMEN

BACKGROUND: Euryale ferox Salisb. is widely grown in China and Southeast Asia as a grain crop and medicinal plant. The composition, morphology, structure, physicochemical properties, thermal properties, and in vitro digestibility of North Euryale ferox seeds starch (NEFS), hybrid Euryale ferox seeds starch (HEFS), and South Euryale ferox seeds starch (SEFS) were studied. RESULT: Of the varieties that were studied, the amylose content of NEFS (23.03%) was the highest. Starch granules of each variety were smooth, sharp, small, and had an average diameter of 2 µm. All three varieties were A-type crystals with crystallinity ranging from 26.42% to 28.17%. The degree of double helix and the short-range order ranged from 1.9006 to 2.5324 and 1.4294 to 1.6006, respectively. The high proportion of C1 region in NEFS (17.74%) and HEFS (17.66%) were found. Thermodynamic properties in North Euryale ferox seeds included the highest onset temperature (To ) (71.43 °C), peak temperature (Tp ) (76.60 °C), conclusion temperature (Tc ) (82.77 °C), enthalpy of gelatinization (ΔH) (12.64 J g-1 ), and peak viscosity (1514 mPa·s). All three varieties maintained a low level of in vitro digestibility, with the highest resistant starch (RS) content (29.57%), the lowest rapidly digestible starch (RDS) content (27.07%), and the slowest hydrolysis kinetic constant (0.0303) in NEFS. CONCLUSION: The results revealed that the low digestibility of NEFS was attributable to compact granules, high crystallinity, high degree of order, and strong thermal stability. These digestive, physicochemical, and thermodynamic properties provide information for the future application of Euryale ferox seed starch in the food industry. © 2022 Society of Chemical Industry.


Asunto(s)
Nymphaeaceae , Almidón , Amilosa/análisis , Nymphaeaceae/química , Semillas/química , Almidón/química , Temperatura , Viscosidad , Fenómenos Químicos
20.
Methods Mol Biol ; 2566: 281-290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152260

RESUMEN

Starch is important material in plant tissues, especially for storage tissues. Starches from different plant resources or tissues vary in morphology, content, and physicochemical properties. Starch and iodine can bind specifically to present the shapes and sizes of starch granules in plant tissues. Here, we describe some methods for staining starch in leaf, pollen grain, and starchy seeds with iodine solution. In addition, the isolated starch can also be stained with iodine solution to exhibit its shape and size.


Asunto(s)
Yodo , Almidón , Amilosa/análisis , Yodo/análisis , Plantas , Polen , Semillas/química , Coloración y Etiquetado , Almidón/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...