Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.831
Filtrar
1.
Protein Sci ; 33(6): e5028, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38757396

RESUMEN

Prolyl-tRNA synthetase (ProRS), belonging to the family of aminoacyl-tRNA synthetases responsible for pairing specific amino acids with their respective tRNAs, is categorized into two distinct types: the eukaryote/archaeon-like type (E-type) and the prokaryote-like type (P-type). Notably, these types are specific to their corresponding cognate tRNAs. In an intriguing paradox, Thermus thermophilus ProRS (TtProRS) aligns with the E-type ProRS but selectively charges the P-type tRNAPro, featuring the bacterium-specific acceptor-stem elements G72 and A73. This investigation reveals TtProRS's notable resilience to the inhibitor halofuginone, a synthetic derivative of febrifugine emulating Pro-A76, resembling the characteristics of the P-type ProRS. Furthermore, akin to the P-type ProRS, TtProRS identifies its cognate tRNA through recognition of the acceptor-stem elements G72/A73, along with the anticodon elements G35/G36. However, in contrast to the P-type ProRS, which relies on a strictly conserved R residue within the bacterium-like motif 2 loop for recognizing G72/A73, TtProRS achieves this through a non-conserved sequence, RTR, within the otherwise non-interacting eukaryote-like motif 2 loop. This investigation sheds light on the adaptive capacity of a typically conserved housekeeping enzyme to accommodate a novel substrate.


Asunto(s)
Aminoacil-ARNt Sintetasas , Thermus thermophilus , Thermus thermophilus/enzimología , Thermus thermophilus/genética , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Especificidad por Sustrato , Evolución Molecular , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Quinazolinonas/química , Quinazolinonas/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Piperidinas
2.
Biomolecules ; 14(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38785925

RESUMEN

The principle of continuity posits that some central features of primordial biocatalytic mechanisms should still be present in the genetically dependent pathway of protein synthesis, a crucial step in the emergence of life. Key bimolecular reactions of this process are catalyzed by DNA-dependent RNA polymerases, aminoacyl-tRNA synthetases, and ribosomes. Remarkably, none of these biocatalysts contribute chemically active groups to their respective reactions. Instead, structural and functional studies have demonstrated that nucleotidic α-phosphate and ß-d-ribosyl 2' OH and 3' OH groups can help their own catalysis, a process which, consequently, has been called "substrate-assisted". Furthermore, upon binding, the substrates significantly lower the entropy of activation, exclude water from these catalysts' active sites, and are readily positioned for a reaction. This binding mode has been described as an "entropy trap". The combination of this effect with substrate-assisted catalysis results in reactions that are stereochemically and mechanistically simpler than the ones found in most modern enzymes. This observation is consistent with the way in which primordial catalysts could have operated; it may also explain why, thanks to their complementary reactivities, ß-d-ribose and phosphate were naturally selected to be the central components of early coding polymers.


Asunto(s)
Biosíntesis de Proteínas , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/genética , Biocatálisis , Ribosomas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química
3.
Kidney Int ; 105(5): 924-926, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642990

RESUMEN

Glutamyl-prolyl-transfer RNA synthetase 1 is an enzyme that connects glutamic acid and proline to transfer RNA during protein synthesis. In this issue, a study by Kang et al. examined the role of the immune cell glutamyl-prolyl-transfer RNA synthetase 1 in toxin-induced tubulointerstitial nephritis mice. The study demonstrated that blocking glutamyl-prolyl-transfer RNA synthetase 1 may be a therapeutic target to attenuate fibrosis after toxin-induced tubulointerstitial nephritis.


Asunto(s)
Aminoacil-ARNt Sintetasas , Nefritis Intersticial , Animales , Ratones , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Fibrosis , Nefritis Intersticial/genética , Nefritis Intersticial/prevención & control
4.
RNA Biol ; 21(1): 1-23, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38629491

RESUMEN

Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.


Asunto(s)
Aminoacil-ARNt Sintetasas , Saccharomyces cerevisiae , Animales , Humanos , Saccharomyces cerevisiae/genética , Anticodón/genética , Leucina/genética , ARN de Transferencia de Leucina/genética , Código Genético , Codón , ARN de Transferencia/genética , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Alanina/genética , Mamíferos/genética
5.
Methods Mol Biol ; 2760: 219-251, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468092

RESUMEN

Expanding the genetic code beyond the 20 canonical amino acids enables access to a wide range of chemical functionality that is inaccessible within conventionally biosynthesized proteins. The vast majority of efforts to expand the genetic code have focused on the orthogonal translation systems required to achieve the genetically encoded addition of noncanonical amino acids (ncAAs) into proteins. There remain tremendous opportunities for identifying genetic and genomic factors that enhance ncAA incorporation. Here we describe genome-wide screening strategies to identify factors that enable more efficient addition of ncAAs to biosynthesized proteins. These unbiased screens can reveal previously unknown genes or mutations that can enhance ncAA incorporation and deepen our understanding of the translation apparatus.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Aminoácidos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas/química , Código Genético , Aminoacil-ARNt Sintetasas/metabolismo
6.
Nucleic Acids Res ; 52(7): 3938-3949, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38477328

RESUMEN

In the hypothetical RNA world, ribozymes could have acted as modern aminoacyl-tRNA synthetases (ARSs) to charge tRNAs, thus giving rise to the peptide synthesis along with the evolution of a primitive translation apparatus. We previously reported a T-boxzyme, Tx2.1, which selectively charges initiator tRNA with N-biotinyl-phenylalanine (BioPhe) in situ in a Flexible In-vitro Translation (FIT) system to produce BioPhe-initiating peptides. Here, we performed in vitro selection of elongation-capable T-boxzymes (elT-boxzymes), using para-azido-l-phenylalanine (PheAZ) as an acyl-donor. We implemented a new strategy to enrich elT-boxzyme-tRNA conjugates that self-aminoacylated on the 3'-terminus selectively. One of them, elT32, can charge PheAZ onto tRNA in trans in response to its cognate anticodon. Further evolution of elT32 resulted in elT49, with enhanced aminoacylation activity. We have demonstrated the translation of a PheAZ-containing peptide in an elT-boxzyme-integrated FIT system, revealing that elT-boxzymes are able to generate the PheAZ-tRNA in response to the cognate anticodon in situ of a custom-made translation system. This study, together with Tx2.1, illustrates a scenario where a series of ribozymes could have overseen aminoacylation and co-evolved with a primitive RNA-based translation system.


Asunto(s)
Anticodón , Biosíntesis de Proteínas , ARN Catalítico , Aminoacil-ARN de Transferencia , ARN Catalítico/metabolismo , ARN Catalítico/genética , Anticodón/genética , Aminoacil-ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/genética , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacilación de ARN de Transferencia , Aminoacilación , Extensión de la Cadena Peptídica de Translación
7.
Chimia (Aarau) ; 78(1-2): 22-31, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38430060

RESUMEN

Genetic code expansion (GCE) can enable the site-selective incorporation of non-canonical amino acids (ncAAs) into proteins. GCE has advanced tremendously in the last decade and can be used to create biorthogonal handles, monitor and control proteins inside cells, study post-translational modifications, and engineer new protein functions. Since establishing our laboratory, our research has focused on applications of GCE in protein and enzyme engineering using aminoacyl-tRNA synthetase/tRNA (aaRS/tRNA) pairs. This topic has been reviewed extensively, leaving little doubt that GCE is a powerful tool for engineering proteins and enzymes. Therefore, for this young faculty issue, we wanted to provide a more technical look into the methods we use and the challenges we think about in our laboratory. Since starting the laboratory, we have successfully engineered over a dozen novel aaRS/tRNA pairs tailored for various GCE applications. However, we acknowledge that the field can pose challenges even for experts. Thus, herein, we provide a review of methodologies in ncAA incorporation with some practical commentary and a focus on challenges, emerging solutions, and exciting developments.


Asunto(s)
Aminoacil-ARNt Sintetasas , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Código Genético , Ingeniería de Proteínas/métodos , Aminoácidos/genética , Aminoácidos/química , ARN de Transferencia/genética
8.
J Clin Invest ; 134(10)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512451

RESUMEN

Lactylation has been recently identified as a new type of posttranslational modification occurring widely on lysine residues of both histone and nonhistone proteins. The acetyltransferase p300 is thought to mediate protein lactylation, yet the cellular concentration of the proposed lactyl-donor, lactyl-coenzyme A, is about 1,000 times lower than that of acetyl-CoA, raising the question of whether p300 is a genuine lactyltransferase. Here, we report that alanyl-tRNA synthetase 1 (AARS1) moonlights as a bona fide lactyltransferase that directly uses lactate and ATP to catalyze protein lactylation. Among the candidate substrates, we focused on the Hippo pathway, which has a well-established role in tumorigenesis. Specifically, AARS1 was found to sense intracellular lactate and translocate into the nucleus to lactylate and activate the YAP-TEAD complex; and AARS1 itself was identified as a Hippo target gene that forms a positive-feedback loop with YAP-TEAD to promote gastric cancer (GC) cell proliferation. Consistently, the expression of AARS1 was found to be upregulated in GC, and elevated AARS1 expression was found to be associated with poor prognosis for patients with GC. Collectively, this work found AARS1 with lactyltransferase activity in vitro and in vivo and revealed how the metabolite lactate is translated into a signal of cell proliferation.


Asunto(s)
Transducción de Señal , Neoplasias Gástricas , Factores de Transcripción , Proteínas Señalizadoras YAP , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/enzimología , Humanos , Animales , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Ácido Láctico/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular
9.
Methods Mol Biol ; 2760: 209-217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468091

RESUMEN

Emerging microorganism Pseudomonas putida KT2440 is utilized for the synthesis of biobased chemicals from renewable feedstocks and for bioremediation. However, the methods for analyzing, engineering, and regulating the biosynthetic enzymes and protein complexes in this organism remain underdeveloped.Such attempts can be advanced by the genetic code expansion-enabled incorporation of noncanonical amino acids (ncAAs) into proteins, which also enables further controls over the strain's biological processes. Here, we give a step-by-step account of the incorporation of two ncAAs into any protein of interest (POI) in response to a UAG stop codon by two commonly used orthogonal archaeal tRNA synthetase and tRNA pairs. Using superfolder green fluorescent protein (sfGFP) as an example, this method lays down a solid foundation for future work to study and enhance the biological functions of KT2440.


Asunto(s)
Aminoacil-ARNt Sintetasas , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Código Genético , Aminoácidos/genética , Aminoácidos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo
10.
Trends Endocrinol Metab ; 35(4): 285-289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38307811

RESUMEN

Mitochondria play multiple critical roles in cellular activity. In particular, mitochondrial translation is pivotal in the regulation of mitochondrial and cellular homeostasis. In this forum article, we discuss human mitochondrial tRNA metabolism and highlight its tight connection with various mitochondrial diseases caused by mutations in aminoacyl-tRNA synthetases, tRNAs, and tRNA-modifying enzymes.


Asunto(s)
Aminoacil-ARNt Sintetasas , Mitocondrias , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
11.
Kidney Int ; 105(5): 997-1019, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38320721

RESUMEN

Toxin- and drug-induced tubulointerstitial nephritis (TIN), characterized by interstitial infiltration of immune cells, frequently necessitates dialysis for patients due to irreversible fibrosis. However, agents modulating interstitial immune cells are lacking. Here, we addressed whether the housekeeping enzyme glutamyl-prolyl-transfer RNA synthetase 1 (EPRS1), responsible for attaching glutamic acid and proline to transfer RNA, modulates immune cell activity during TIN and whether its pharmacological inhibition abrogates fibrotic transformation. The immunological feature following TIN induction by means of an adenine-mixed diet was infiltration of EPRS1high T cells, particularly proliferating T and γδ T cells. The proliferation capacity of both CD4+ and CD8+ T cells, along with interleukin-17 production of γδ T cells, was higher in the kidneys of TIN-induced Eprs1+/+ mice than in the kidneys of TIN-induced Eprs1+/- mice. This discrepancy contributed to the fibrotic amelioration observed in kidneys of Eprs1+/- mice. TIN-induced fibrosis was also reduced in Rag1-/- mice adoptively transferred with Eprs1+/- T cells compared to the Rag1-/- mice transferred with Eprs1+/+ T cells. The use of an EPRS1-targeting small molecule inhibitor (bersiporocin) under clinical trials to evaluate its therapeutic potential against idiopathic pulmonary fibrosis alleviated immunofibrotic aggravation in TIN. EPRS1 expression was also observed in human kidney tissues and blood-derived T cells, and high expression was associated with worse patient outcomes. Thus, EPRS1 may emerge as a therapeutic target in toxin- and drug-induced TIN, modulating the proliferation and activity of infiltrated T cells.


Asunto(s)
Aminoacil-ARNt Sintetasas , Nefritis Intersticial , Insuficiencia Renal , Animales , Humanos , Ratones , Aminoacil-ARNt Sintetasas/metabolismo , Linfocitos T CD8-positivos , Proliferación Celular , Fibrosis , Proteínas de Homeodominio , Nefritis Intersticial/inducido químicamente , Nefritis Intersticial/genética , Nefritis Intersticial/tratamiento farmacológico
12.
ACS Synth Biol ; 13(1): 119-128, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38194520

RESUMEN

The tolerance of the translation apparatus toward noncanonical amino acids (ncAAs) has enabled the creation of diverse natural-product-like peptide libraries using mRNA display for use in drug discovery. Typical experiments testing for ribosomal ncAA incorporation involve radioactive end point assays to measure yield alongside mass spectrometry experiments to validate incorporation. These end point assays require significant postexperimental manipulation for analysis and prevent higher throughput analysis and optimization experiments. Continuous assays for in vitro translation involve the synthesis of fluorescent proteins which require the full complement of canonical AAs for function and are therefore of limited utility for testing of ncAAs. Here, we describe a new, continuous fluorescence assay for in vitro translation based on detection of a short peptide tag using an affinity clamp protein, which exhibits changes in its fluorescent properties upon binding. Using this assay in a 384-well format, we were able to validate the incorporation of a variety of ncAAs and also quickly test for the codon reading specificities of a variety of Escherichia coli tRNAs. This assay enables rapid assessment of ncAAs and optimization of translation components and is therefore expected to advance the engineering of the translation apparatus for drug discovery and synthetic biology.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Aminoácidos/metabolismo , Ingeniería de Proteínas/métodos , Proteínas/metabolismo , Péptidos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo
13.
Nature ; 625(7995): 603-610, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200312

RESUMEN

The genetic code of living cells has been reprogrammed to enable the site-specific incorporation of hundreds of non-canonical amino acids into proteins, and the encoded synthesis of non-canonical polymers and macrocyclic peptides and depsipeptides1-3. Current methods for engineering orthogonal aminoacyl-tRNA synthetases to acylate new monomers, as required for the expansion and reprogramming of the genetic code, rely on translational readouts and therefore require the monomers to be ribosomal substrates4-6. Orthogonal synthetases cannot be evolved to acylate orthogonal tRNAs with non-canonical monomers (ncMs) that are poor ribosomal substrates, and ribosomes cannot be evolved to polymerize ncMs that cannot be acylated onto orthogonal tRNAs-this co-dependence creates an evolutionary deadlock that has essentially restricted the scope of translation in living cells to α-L-amino acids and closely related hydroxy acids. Here we break this deadlock by developing tRNA display, which enables direct, rapid and scalable selection for orthogonal synthetases that selectively acylate their cognate orthogonal tRNAs with ncMs in Escherichia coli, independent of whether the ncMs are ribosomal substrates. Using tRNA display, we directly select orthogonal synthetases that specifically acylate their cognate orthogonal tRNA with eight non-canonical amino acids and eight ncMs, including several ß-amino acids, α,α-disubstituted-amino acids and ß-hydroxy acids. We build on these advances to demonstrate the genetically encoded, site-specific cellular incorporation of ß-amino acids and α,α-disubstituted amino acids into a protein, and thereby expand the chemical scope of the genetic code to new classes of monomers.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Escherichia coli , Código Genético , ARN de Transferencia , Acilación , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Código Genético/genética , Hidroxiácidos/química , Hidroxiácidos/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Especificidad por Sustrato , Ribosomas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo
14.
Hum Mol Genet ; 33(5): 435-447, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-37975900

RESUMEN

Mitochondrial aminoacyl-tRNA synthetase (mt-ARS) mutations cause severe, progressive, and often lethal diseases with highly heterogeneous and tissue-specific clinical manifestations. This study investigates the molecular mechanisms triggered by three different mt-ARS defects caused by biallelic mutations in AARS2, EARS2, and RARS2, using an in vitro model of human neuronal cells. We report distinct molecular mechanisms of mitochondrial dysfunction among the mt-ARS defects studied. Our findings highlight the ability of proliferating neuronal progenitor cells (iNPCs) to compensate for mitochondrial translation defects and maintain balanced levels of oxidative phosphorylation (OXPHOS) components, which becomes more challenging in mature neurons. Mutant iNPCs exhibit unique compensatory mechanisms, involving specific branches of the integrated stress response, which may be gene-specific or related to the severity of the mitochondrial translation defect. RNA sequencing revealed distinct transcriptomic profiles showing dysregulation of neuronal differentiation and protein translation. This study provides valuable insights into the tissue-specific compensatory mechanisms potentially underlying the phenotypes of patients with mt-ARS defects. Our novel in vitro model may more accurately represent the neurological presentation of patients and offer an improved platform for future investigations and therapeutic development.


Asunto(s)
Aminoacil-ARNt Sintetasas , Humanos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Neuronas/metabolismo , ARN de Transferencia/metabolismo
15.
Trends Mol Med ; 30(1): 89-105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949787

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) are enzymes that catalyze the ligation of amino acids to tRNAs for translation. Beyond their traditional role in translation, ARSs have acquired regulatory functions in various biological processes (epi-translational functions). With their dual-edged activities, aberrant expression, secretion, and mutations of ARSs are associated with human diseases, including cancer, autoimmune diseases, and neurological diseases. The increasing numbers of newly unveiled activities and disease associations of ARSs have spurred interest in novel drug development, targeting disease-related catalytic and noncatalytic activities of ARSs as well as harnessing ARSs as sources for biological therapeutics. This review speculates how the translational and epi-translational activities of ARSs can be related and describes how their activities can be linked to diseases and drug discovery.


Asunto(s)
Aminoacil-ARNt Sintetasas , Humanos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
16.
Nucleic Acids Res ; 52(2): 558-571, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38048305

RESUMEN

How genetic information gained its exquisite control over chemical processes needed to build living cells remains an enigma. Today, the aminoacyl-tRNA synthetases (AARS) execute the genetic codes in all living systems. But how did the AARS that emerged over three billion years ago as low-specificity, protozymic forms then spawn the full range of highly-specific enzymes that distinguish between 22 diverse amino acids? A phylogenetic reconstruction of extant AARS genes, enhanced by analysing modular acquisitions, reveals six AARS with distinct bacterial, archaeal, eukaryotic, or organellar clades, resulting in a total of 36 families of AARS catalytic domains. Small structural modules that differentiate one AARS family from another played pivotal roles in discriminating between amino acid side chains, thereby expanding the genetic code and refining its precision. The resulting model shows a tendency for less elaborate enzymes, with simpler catalytic domains, to activate amino acids that were not synthesised until later in the evolution of the code. The most probable evolutionary route for an emergent amino acid type to establish a place in the code was by recruiting older, less specific AARS, rather than adapting contemporary lineages. This process, retrofunctionalisation, differs from previously described mechanisms through which amino acids would enter the code.


Asunto(s)
Aminoacil-ARNt Sintetasas , Evolución Molecular , Código Genético , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Bacterias/enzimología , Bacterias/genética , Filogenia , Archaea/enzimología , Archaea/genética , Eucariontes/enzimología , Eucariontes/genética
17.
Nucleic Acids Res ; 52(2): 513-524, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38100361

RESUMEN

Protein translation is orchestrated through tRNA aminoacylation and ribosomal elongation. Among the highly conserved structure of tRNAs, they have distinguishing features which promote interaction with their cognate aminoacyl tRNA synthetase (aaRS). These key features are referred to as identity elements. In our study, we investigated the tRNA:aaRS pair that installs the 22nd amino acid, pyrrolysine (tRNAPyl:PylRS). Pyrrolysyl-tRNA synthetases (PylRSs) are naturally encoded in some archaeal and bacterial genomes to acylate tRNAPyl with pyrrolysine. Their large amino acid binding pocket and poor recognition of the tRNA anticodon have been instrumental in incorporating >200 noncanonical amino acids. PylRS enzymes can be divided into three classes based on their genomic structure. Two classes contain both an N-terminal and C-terminal domain, however the third class (ΔpylSn) lacks the N-terminal domain. In this study we explored the tRNA identity elements for a ΔpylSn tRNAPyl from Candidatus Methanomethylophilus alvus which drives the orthogonality seen with its cognate PylRS (MaPylRS). From aminoacylation and translation assays we identified five key elements in ΔpylSn tRNAPyl necessary for MaPylRS activity. The absence of a base (position 8) and a G-U wobble pair (G28:U42) were found to affect the high-resolution structure of the tRNA, while molecular dynamic simulations led us to acknowledge the rigidity imparted from the G-C base pairs (G3:C70 and G5:C68).


Enzymes known as PylRS offer the remarkable ability to expand the natural genetic code of a living cell with unnatural amino acids. Currently, over 200 unnatural amino acids can be genetically encoded with the help of PylRS and its partner tRNAPyl, enabling us to endow proteins with novel properties, or regulate protein activity using light or inducible cross-linking. One intriguing feature of PylRS enzymes is their ability to avoid cross-reactivity when two PylRS homologs from different organisms-such as those from the archaea Methanosarcina mazei and Methanomethylophilus alvus-are co-expressed in a single cell. This makes it possible to simultaneously encode two unnatural amino acids in a single protein. This study illuminates the elusive mechanism of PylRS specificity by using cryo-electron microscopy, biochemistry and molecular simulations. The interaction of PylRS from M. alvus with its tRNAPyl is best described as two pieces of a jigsaw puzzle; in which PylRS recognizes the unique shape of its cognate tRNA instead of specific nucleotides in the tRNA sequence like other tRNA-binding enzymes. This finding may streamline the rational design of tools for simultaneous genetic incorporation of multiple unnatural amino acids, thereby facilitating the development of valuable proteins for research, medicine, and biotechnology.


Asunto(s)
Aminoacil-ARNt Sintetasas , Archaea , Microbioma Gastrointestinal , Humanos , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/aislamiento & purificación , Aminoacil-ARNt Sintetasas/metabolismo , Archaea/enzimología , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Aminoacilación de ARN de Transferencia
18.
Bioconjug Chem ; 34(12): 2243-2254, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38047550

RESUMEN

Quantitative labeling of biomolecules is necessary to advance areas of antibody-drug conjugation, super-resolution microscopy imaging of molecules in live cells, and determination of the stoichiometry of protein complexes. Bio-orthogonal labeling to genetically encodable noncanonical amino acids (ncAAs) offers an elegant solution; however, their suboptimal reactivity and stability hinder the utility of this method. Previously, we showed that encoding stable 1,2,4,5-tetrazine (Tet)-containing ncAAs enables rapid, complete conjugation, yet some expression conditions greatly limited the quantitative reactivity of the Tet-protein. Here, we demonstrate that reduction of on-protein Tet ncAAs impacts their reactivity, while the leading cause of the unreactive protein is near-cognate suppression (NCS) of UAG codons by endogenous aminoacylated tRNAs. To overcome incomplete conjugation due to NCS, we developed a more catalytically efficient tRNA synthetase and developed a series of new machinery plasmids harboring the aminoacyl tRNA synthetase/tRNA pair (aaRS/tRNA pair). These plasmids enable robust production of homogeneously reactive Tet-protein in truncation-free cell lines, eliminating the contamination caused by NCS and protein truncation. Furthermore, these plasmid systems utilize orthogonal synthetic origins, which render these machinery vectors compatible with any common expression system. Through developing these new machinery plasmids, we established that the aaRS/tRNA pair plasmid copy-number greatly affects the yields and quality of the protein produced. We then produced quantitatively reactive soluble Tet-Fabs, demonstrating the utility of this system for rapid, homogeneous conjugations of biomedically relevant proteins.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Aminoácidos/química , Proteínas/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Código Genético , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo
19.
ACS Synth Biol ; 12(12): 3771-3777, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38050859

RESUMEN

The incorporation of unnatural amino acids is an attractive method for improving or bringing new and novel functions in peptides and proteins. Cell-free protein synthesis using the Protein Synthesis Using Recombinant Elements (PURE) system is an attractive platform for efficient unnatural amino acid incorporation. In this work, we further adapted and modified the One Pot PURE to obtain a robust and modular system for enzymatic single-site-specific incorporation of an unnatural amino acid. We demonstrated the flexibility of this system through the introduction of two different orthogonal aminoacyl tRNA synthetase:tRNA pairs that suppressed two distinctive stop codons in separate reaction mixtures.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Aminoácidos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Codón de Terminación/genética
20.
Biochem Soc Trans ; 51(6): 2127-2141, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38108455

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that serve a foundational role in the efficient and accurate translation of genetic information from messenger RNA to proteins. These proteins play critical, non-canonical functions in a multitude of cellular processes. Multiple viruses are known to hijack the functions of aaRSs for proviral outcomes, while cells modify antiviral responses through non-canonical functions of certain synthetases. Recent findings have revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronaviral disease 19 (COVID-19), utilizes canonical and non-canonical functions of aaRSs, establishing a complex interplay of viral proteins, cellular factors and host aaRSs. In a striking example, an unconventional multi-aaRS complex consisting of glutamyl-prolyl-, lysyl-, arginyl- and methionyl-tRNA synthetases interact with a previously unknown RNA-element in the 3'-end of SARS-CoV-2 genomic and subgenomic RNAs. This review aims to highlight the aaRS-SARS-CoV-2 interactions identified to date, with possible implications for the biology of host aaRSs in SARS-CoV-2 infection.


Asunto(s)
Aminoacil-ARNt Sintetasas , COVID-19 , Humanos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , SARS-CoV-2/genética , Genoma , ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...