Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Environ Microbiol ; 26(5): e16623, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715450

RESUMEN

Free-living amoebae (FLA) serve as hosts for a variety of endosymbionts, which are microorganisms that reside and multiply within the FLA. Some of these endosymbionts pose a pathogenic threat to humans, animals, or both. The symbiotic relationship with FLA not only offers these microorganisms protection but also enhances their survival outside their hosts and assists in their dispersal across diverse habitats, thereby escalating disease transmission. This review is intended to offer an exhaustive overview of the existing mathematical models that have been applied to understand the dynamics of FLA, especially concerning their interactions with bacteria. An extensive literature review was conducted across Google Scholar, PubMed, and Scopus databases to identify mathematical models that describe the dynamics of interactions between FLA and bacteria, as published in peer-reviewed scientific journals. The literature search revealed several FLA-bacteria model systems, including Pseudomonas aeruginosa, Pasteurella multocida, and Legionella spp. Although the published mathematical models account for significant system dynamics such as predator-prey relationships and non-linear growth rates, they generally overlook spatial and temporal heterogeneity in environmental conditions, such as temperature, and population diversity. Future mathematical models will need to incorporate these factors to enhance our understanding of FLA-bacteria dynamics and to provide valuable insights for future risk assessment and disease control measures.


Asunto(s)
Amoeba , Bacterias , Simbiosis , Amoeba/microbiología , Modelos Biológicos , Fenómenos Fisiológicos Bacterianos , Modelos Teóricos , Animales
2.
Int J Hyg Environ Health ; 258: 114345, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471337

RESUMEN

Free living amoeba (FLA) are among the organisms commonly found in wastewater and are well-established hosts for diverse microbial communities. Despite its clinical significance, there is little knowledge on the FLA microbiome and resistome, with previous studies relying mostly on conventional approaches. In this study we comprehensively analyzed the microbiome, antibiotic resistome and virulence factors (VFs) within FLA isolated from final treated effluents of two wastewater treatment plants (WWTPs) using shotgun metagenomics. Acanthamoeba has been identified as the most common FLA, followed by Entamoeba. The bacterial diversity showed no significant difference (p > 0.05) in FLA microbiomes obtained from the two WWTPs. At phylum level, the most dominant taxa were Proteobacteria, followed by Firmicutes and Actinobacteria. The most abundant genera identified were Enterobacter followed by Citrobacter, Paenibacillus, and Cupriavidus. The latter three genera are reported here for the first time in Acanthamoeba. In total, we identified 43 types of ARG conferring resistance to cephalosporins, phenicol, streptomycin, trimethoprim, quinolones, cephalosporins, tigecycline, rifamycin, and kanamycin. Similarly, a variety of VFs in FLA metagenomes were detected which included flagellar proteins, Type IV pili twitching motility proteins (pilH and rpoN), alginate biosynthesis genes AlgI, AlgG, AlgD and AlgW and Type VI secretion system proteins and general secretion pathway proteins (tssM, tssA, tssL, tssK, tssJ, fha, tssG, tssF, tssC and tssB, gspC, gspE, gspD, gspF, gspG, gspH, gspI, gspJ, gspK, and gspM). To the best of our knowledge, this is the first study of its kind to examine both the microbiomes and resistome in FLA, as well as their potential pathogenicity in treated effluents. Additionally, this study showed that FLA can host a variety of potentially pathogenic bacteria including Paenibacillus, and Cupriavidus that had not previously been reported, indicating that their relationship may play a role in the spread and persistence of antibiotic resistant bacteria (ARBs) and antibiotic resistance genes (ARGs) as well as the evolution of novel pathogens.


Asunto(s)
Amoeba , Microbiota , Aguas Residuales , Antibacterianos/farmacología , Amoeba/microbiología , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Microbiota/genética , Bacterias , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Cefalosporinas
3.
Proc Natl Acad Sci U S A ; 121(14): e2313203121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530891

RESUMEN

Consumers range from specialists that feed on few resources to generalists that feed on many. Generalism has the clear advantage of having more resources to exploit, but the costs that limit generalism are less clear. We explore two understudied costs of generalism in a generalist amoeba predator, Dictyostelium discoideum, feeding on naturally co-occurring bacterial prey. Both involve costs of combining prey that are suitable on their own. First, amoebas exhibit a reduction in growth rate when they switched to one species of prey bacteria from another compared to controls that experience only the second prey. The effect was consistent across all six tested species of bacteria. These switching costs typically disappear within a day, indicating adjustment to new prey bacteria. This suggests that these costs are physiological. Second, amoebas usually grow more slowly on mixtures of prey bacteria compared to the expectation based on their growth on single prey. There were clear mixing costs in three of the six tested prey mixtures, and none showed significant mixing benefits. These results support the idea that, although amoebas can consume a variety of prey, they must use partially different methods and thus must pay costs to handle multiple prey, either sequentially or simultaneously.


Asunto(s)
Amoeba , Dictyostelium , Animales , Dictyostelium/microbiología , Eucariontes , Dieta , Bacterias , Amoeba/microbiología , Conducta Predatoria , Cadena Alimentaria
4.
PLoS Pathog ; 19(11): e1011763, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956179

RESUMEN

The "Amoeboid Predator-Fungal Animal Virulence Hypothesis" posits that interactions with environmental phagocytes shape the evolution of virulence traits in fungal pathogens. In this hypothesis, selection to avoid predation by amoeba inadvertently selects for traits that contribute to fungal escape from phagocytic immune cells. Here, we investigate this hypothesis in the human fungal pathogens Cryptococcus neoformans and Cryptococcus deneoformans. Applying quantitative trait locus (QTL) mapping and comparative genomics, we discovered a cross-species QTL region that is responsible for variation in resistance to amoeba predation. In C. neoformans, this same QTL was found to have pleiotropic effects on melanization, an established virulence factor. Through fine mapping and population genomic comparisons, we identified the gene encoding the transcription factor Bzp4 that underlies this pleiotropic QTL and we show that decreased expression of this gene reduces melanization and increases susceptibility to amoeba predation. Despite the joint effects of BZP4 on amoeba resistance and melanin production, we find no relationship between BZP4 genotype and escape from macrophages or virulence in murine models of disease. Our findings provide new perspectives on how microbial ecology shapes the genetic architecture of fungal virulence, and suggests the need for more nuanced models for the evolution of pathogenesis that account for the complexities of both microbe-microbe and microbe-host interactions.


Asunto(s)
Amoeba , Criptococosis , Cryptococcus neoformans , Animales , Humanos , Ratones , Amoeba/microbiología , Metagenómica , Conducta Predatoria , Cryptococcus neoformans/genética , Criptococosis/genética , Criptococosis/microbiología
5.
ISME J ; 17(12): 2352-2361, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884792

RESUMEN

The soil amoeba Dictyostelium discoideum acts as both a predator and potential host for diverse bacteria. We tested fifteen Pseudomonas strains that were isolated from transiently infected wild D. discoideum for ability to escape predation and infect D. discoideum fruiting bodies. Three predation-resistant strains frequently caused extracellular infections of fruiting bodies but were not found within spores. Furthermore, infection by one of these species induces secondary infections and suppresses predation of otherwise edible bacteria. Another strain can persist inside of amoebae after being phagocytosed but is rarely taken up. We sequenced isolate genomes and discovered that predation-resistant isolates are not monophyletic. Many Pseudomonas isolates encode secretion systems and toxins known to improve resistance to phagocytosis in other species, as well as diverse secondary metabolite biosynthetic gene clusters that may contribute to predation resistance. However, the distribution of these genes alone cannot explain why some strains are edible and others are not. Each lineage may employ a unique mechanism for resistance.


Asunto(s)
Amoeba , Dictyostelium , Animales , Conducta Predatoria , Dictyostelium/microbiología , Pseudomonas/genética , Amoeba/microbiología , Bacterias
6.
Parasitol Res ; 122(10): 2385-2392, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37561177

RESUMEN

Amoebae of the genus Vannella isolated from an ornamental fish aquarium were found to be infected with fungi. Upon plate culture, amoeba-trapping hyphal filaments were developed, and the amoeba trophozoites were found to harbour yeast-like parasites in their cytoplasm. Transfection of hyphae to a laboratory strain of Vannella resulted in the formation of conidia indicating the possible presence of zygomycetes of the genus Acaulopage, while efforts to culture the endoparasite remained unsuccessful. Biomolecular analysis based on rDNA revealed the presence of two distinct types of fungi, confirming the filamentous form as Acaulopage sp. (Zoopagomycota, Zoopagales) and identifying the yeast-like endoparasite as Cladosporium sp. (Ascomycota, Cladosporiales). To our knowledge, this is the first report of amoebae infected with Cladosporium.


Asunto(s)
Amoeba , Animales , Amoeba/microbiología , Saccharomyces cerevisiae , Hongos , Esporas Fúngicas
7.
Proc Biol Sci ; 290(2003): 20230977, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37464760

RESUMEN

The social amoeba Dictyostelium discoideum engages in a complex relationship with bacterial endosymbionts in the genus Paraburkholderia, which can benefit their host by imbuing it with the ability to carry prey bacteria throughout its life cycle. The relationship between D. discoideum and Paraburkholderia has been shown to take place across many strains and a large geographical area, but little is known about Paraburkholderia's potential interaction with other dictyostelid species. We explore the ability of three Paraburkholderia species to stably infect and induce bacterial carriage in other dictyostelid hosts. We found that all three Paraburkholderia species successfully infected and induced carriage in seven species of Dictyostelium hosts. While the overall behaviour was qualitatively similar to that previously observed in infections of D. discoideum, differences in the outcomes of different host/symbiont combinations suggest a degree of specialization between partners. Paraburkholderia was unable to maintain a stable association with the more distantly related host Polysphondylium violaceum. Our results suggest that the mechanisms and evolutionary history of Paraburkholderia's symbiotic relationships may be general within Dictyostelium hosts, but not so general that it can associate with hosts of other genera. Our work further develops an emerging model system for the study of symbiosis in microbes.


Asunto(s)
Amoeba , Burkholderiaceae , Dictyostelium , Bacterias , Amoeba/microbiología , Filogenia
8.
Front Cell Infect Microbiol ; 13: 1200478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274310

RESUMEN

Extracellular vesicles (EVs or exosomes) are well described for bacterial pathogens associated with our gastrointestinal system, and more recently as a novel mechanism for environmental persistence, dissemination and infection for human enteric viruses. However, the roles played by EVs in the ancient arms race that continues between amoebae and one of their prey, Legionella pneumophila, is poorly understood. At best we know of intracellular vesicles of amoebae containing a mix of bacterial prey species, which also provides an enhanced niche for bacteriophage infection/spread. Free-living amoeba-associated pathogens have recently been recognized to have enhanced resistance to disinfection and environmental stressors, adding to previously understood (but for relatively few species of) bacteria sequestered within amoebal cysts. However, the focus of the current work is to review the likely impacts of large numbers of respiratory-sized EVs containing numerous L. pneumophila cells studied in pure and biofilm systems with mixed prey species. These encapsulated pathogens are orders of magnitude more resistant to disinfection than free cells, and our engineered systems with residual disinfectants could promote evolution of resistance (including AMR), enhanced virulence and EV release. All these are key features for evolution within a dead-end human pathogen post lung infection. Traditional single-hit pathogen infection models used to estimate the probability of infection/disease and critical environmental concentrations via quantitative microbial risk assessments may also need to change. In short, recognizing that EV-packaged cells are highly virulent units for transmission of legionellae, which may also modulate/avoid human host immune responses. Key data gaps are raised and a previous conceptual model expanded upon to clarify where biofilm EVs could play a role promoting risk as well as inform a more wholistic management program to proactively control legionellosis.


Asunto(s)
Amoeba , Vesículas Extracelulares , Legionella pneumophila , Legionella , Sepsis , Humanos , Legionella/genética , Agua , Amoeba/microbiología
9.
Front Cell Infect Microbiol ; 13: 1190631, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351181

RESUMEN

Hospital water systems are a significant source of Legionella, resulting in the potentially fatal Legionnaires' disease. One of the biggest challenges for Legionella management within these systems is that under unfavorable conditions Legionella transforms itself into a viable but non culturable (VBNC) state that cannot be detected using the standard methods. This study used a novel method (flow cytometry-cell sorting and qPCR [VFC+qPCR] assay) concurrently with the standard detection methods to examine the effect of temporary water stagnation, on Legionella spp. and microbial communities present in a hospital water system. Water samples were also analyzed for amoebae using culture and Vermamoeba vermiformis and Acanthamoeba specific qPCR. The water temperature, number and duration of water flow events for the hand basins and showers sampled was measured using the Enware Smart Flow® monitoring system. qPCR analysis demonstrated that 21.8% samples were positive for Legionella spp., 21% for L. pneumophila, 40.9% for V. vermiformis and 4.2% for Acanthamoeba. All samples that were Legionella spp. positive using qPCR (22%) were also positive for VBNC Legionella spp.; however, only 2.5% of samples were positive for culturable Legionella spp. 18.1% of the samples were positive for free-living amoebae (FLA) using culture. All samples positive for Legionella spp. were also positive for FLA. Samples with a high heterotrophic plate count (HPC ≥ 5 × 103 CFU/L) were also significantly associated with high concentrations of Legionella spp. DNA, VBNC Legionella spp./L. pneumophila (p < 0.01) and V. vermiformis (p < 0.05). Temporary water stagnation arising through intermittent usage (< 2 hours of usage per month) significantly (p < 0.01) increased the amount of Legionella spp. DNA, VBNC Legionella spp./L. pneumophila, and V. vermiformis; however, it did not significantly impact the HPC load. In contrast to stagnation, no relationship was observed between the microbes and water temperature. In conclusion, Legionella spp. (DNA and VBNC) was associated with V. vermiformis, heterotrophic bacteria, and stagnation occurring through intermittent usage. This is the first study to monitor VBNC Legionella spp. within a hospital water system. The high percentage of false negative Legionella spp. results provided by the culture method supports the use of either qPCR or VFC+qPCR to monitor Legionella spp. contamination within hospital water systems.


Asunto(s)
Acanthamoeba , Amoeba , Legionella pneumophila , Legionella , Legionella/genética , Amoeba/microbiología , Agua , Legionella pneumophila/genética , Acanthamoeba/microbiología , ADN , Hospitales , Microbiología del Agua
10.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37226596

RESUMEN

Bacterial endosymbionts can provide benefits for their eukaryotic hosts, but it is often unclear if endosymbionts benefit from these relationships. The social amoeba Dictyostelium discoideum associates with three species of Paraburkholderia endosymbionts, including P. agricolaris and P. hayleyella. These endosymbionts can be costly to the host but are beneficial in certain contexts because they allow D. discoideum to carry prey bacteria through the dispersal stage. In experiments where no other species are present, P. hayleyella benefits from D. discoideum while P. agricolaris does not. However, the presence of other species may influence this symbiosis. We tested if P. agricolaris and P. hayleyella benefit from D. discoideum in the context of resource competition with Klebsiella pneumoniae, the typical laboratory prey of D. discoideum. Without D. discoideum, K. pneumoniae depressed the growth of both Paraburkholderia symbionts, consistent with competition. P. hayleyella was more harmed by interspecific competition than P. agricolaris. We found that P. hayleyella was rescued from competition by D. discoideum, while P. agricolaris was not. This may be because P. hayleyella is more specialized as an endosymbiont; it has a highly reduced genome compared to P. agricolaris and may have lost genes relevant for resource competition outside of its host.


Asunto(s)
Amoeba , Burkholderiaceae , Dictyostelium , Dictyostelium/genética , Dictyostelium/microbiología , Amoeba/microbiología , Burkholderiaceae/genética , Bacterias , Ecología
11.
Environ Sci Technol ; 57(15): 6108-6118, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37026396

RESUMEN

Drinking water systems host a wide range of microorganisms essential for biosafety. However, one major group of waterborne pathogens, protozoa, is relatively neglected compared to bacteria and other microorganisms. Until now, little is known about the growth and fate of protozoa and their associated bacteria in drinking water systems. In this study, we aim to investigate how drinking water treatment affects the growth and fate of protozoa and their associated bacteria in a subtropical megacity. The results showed that viable protozoa were prevalent in the city's tap water, and amoebae were the major component of tap water protozoa. In addition, protozoan-associated bacteria contained many potential pathogens and were primarily enriched in amoeba hosts. Furthermore, this study showed that current drinking water disinfection methods have little effect on protozoa and their associated bacteria. Besides, ultrafiltration membranes unexpectedly served as an ideal growth surface for amoebae in drinking water systems, and they could significantly promote the growth of amoeba-associated bacteria. In conclusion, this study shows that viable protozoa and their associated bacteria are prevalent in tap water, which may present an emerging health risk in drinking water biosafety.


Asunto(s)
Amoeba , Agua Potable , Purificación del Agua , Microbiología del Agua , Bacterias , Ultrafiltración , Amoeba/microbiología
12.
Med Mycol ; 61(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708172

RESUMEN

Evolutionary selection pressures that resulted in microbes found within environmental reservoirs that can cause diseases in animals are unknown. One hypothesis is that predatory organisms select microbes able to counteract animal immune cells. Here, a non-pathogenic yeast, Sporobolomyces primogenomicus, was exposed to predation by Acanthamoeba castellanii. Strains emerged that were resistant to being killed by this amoeba. All these strains had altered morphology, growing as pseudohyphae. The mutation in one strain was identified: CNA1 encodes the calcineurin A subunit that is highly conserved in fungi and where it is essential for their virulence in hosts including mammals, insects, and plants.


One hypothesis why some microbes cause disease in humans is that they have been exposed to selection pressures in the environment, like predation by amoebae. This study selected yeast strains resistant to amoeba. One is due to the loss of calcineurin, a protein required for disease.


Asunto(s)
Acanthamoeba castellanii , Amoeba , Cryptococcus neoformans , Animales , Virulencia/genética , Amoeba/microbiología , Calcineurina/genética , Acanthamoeba castellanii/microbiología , Mamíferos
13.
PLoS One ; 17(12): e0278206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36584052

RESUMEN

"Candidatus Berkiella cookevillensis" (strain CC99) and "Candidatus Berkiella aquae" (strain HT99), belonging to the Coxiellaceae family, are gram-negative bacteria isolated from amoebae in biofilms present in human-constructed water systems. Both bacteria are obligately intracellular, requiring host cells for growth and replication. The intracellular bacteria-containing vacuoles of both bacteria closely associate with or enter the nuclei of their host cells. In this study, we analyzed the genome sequences of CC99 and HT99 to better understand their biology and intracellular lifestyles. The CC99 genome has a size of 2.9Mb (37.9% GC) and contains 2,651 protein-encoding genes (PEGs) while the HT99 genome has a size of 3.6Mb (39.4% GC) and contains 3,238 PEGs. Both bacteria encode high proportions of hypothetical proteins (CC99: 46.5%; HT99: 51.3%). The central metabolic pathways of both bacteria appear largely intact. Genes for enzymes involved in the glycolytic pathway, the non-oxidative branch of the phosphate pathway, the tricarboxylic acid pathway, and the respiratory chain were present. Both bacteria, however, are missing genes for the synthesis of several amino acids, suggesting reliance on their host for amino acids and intermediates. Genes for type I and type IV (dot/icm) secretion systems as well as type IV pili were identified in both bacteria. Moreover, both bacteria contain genes encoding large numbers of putative effector proteins, including several with eukaryotic-like domains such as, ankyrin repeats, tetratricopeptide repeats, and leucine-rich repeats, characteristic of other intracellular bacteria.


Asunto(s)
Amoeba , Coxiellaceae , Humanos , Genómica , Amoeba/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
14.
Parasitol Res ; 121(12): 3693-3699, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36149500

RESUMEN

The quality of many freshwater environments is impacted by human activities, so that many rivers may represent a vehicle for the transmission of health-related microorganisms. This work aimed to isolate and identify genetically free-living amoeba (FLA) of the genus Acanthamoeba from a recreational river in Salta, Argentina, and isolate, if possible, an endocytobiont. Sampling took place at four points (P1-P4) throughout the river in the winter and the summer seasons. Free-living amoebae and Acanthamoeba were recovered from 20-L water concentrated through an ultrafiltration system. Isolation was performed in agar plates, confirmation of Acanthamoeba genus by PCR, and fellow identification and classification based on their sequence analyses. High concentrations of indicator bacteria were found especially in P2, which is intensively used for recreation. Out of a total of 29 FLA isolations, 9 were identified as Acanthamoeba genotype T4 subtype A, the most frequent genotype found in nature and associated with causing human disease. From an axenic culture of Acanthamoeba spp. (KY751412), a bacterial endocytobiont was isolated, and identified as Stenotrophomonas maltophilia. The endocytobiont showed resistance and intermediate resistance to a wide range of widely used antibiotics. Results were in concordance with the cosmopolitan behavior of Acanthamoeba, and showed the importance of studying this group of amoebae and related microorganisms in recreational environments.


Asunto(s)
Acanthamoeba , Amoeba , Humanos , Amoeba/microbiología , Agua Dulce , Bacterias , Ríos
15.
mSystems ; 7(5): e0056222, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36098425

RESUMEN

The social amoeba Dictyostelium discoideum is a predatory soil protist frequently used for studying host-pathogen interactions. A subset of D. discoideum strains isolated from soil persistently carry symbiotic Paraburkholderia, recently formally described as P. agricolaris, P. bonniea, and P. hayleyella. The three facultative symbiont species of D. discoideum present a unique opportunity to study a naturally occurring symbiosis in a laboratory model protist. There is a large difference in genome size between P. agricolaris (8.7 million base pairs [Mbp]) versus P. hayleyella and P. bonniea (4.1 Mbp). We took a comparative genomics approach and compared the three genomes of D. discoideum symbionts to 12 additional Paraburkholderia genomes to test for genome evolution patterns that frequently accompany host adaptation. Overall, P. agricolaris is difficult to distinguish from other Paraburkholderia based on its genome size and content, but the reduced genomes of P. bonniea and P. hayleyella display characteristics indicative of genome streamlining rather than deterioration during adaptation to their protist hosts. In addition, D. discoideum-symbiont genomes have increased secretion system and motility genes that may mediate interactions with their host. Specifically, adjacent BurBor-like type 3 and T6SS-5-like type 6 secretion system operons shared among all three D. discoideum-symbiont genomes may be important for host interaction. Horizontal transfer of these secretion system operons within the amoeba host environment may have contributed to the unique ability of these symbionts to establish and maintain a symbiotic relationship with D. discoideum. IMPORTANCE Protists are a diverse group of typically single cell eukaryotes. Bacteria and archaea that form long-term symbiotic relationships with protists may evolve in additional ways than those in relationships with multicellular eukaryotes such as plants, animals, or fungi. Social amoebas are a predatory soil protist sometimes found with symbiotic bacteria living inside their cells. They present a unique opportunity to explore a naturally occurring symbiosis in a protist frequently used for studying host-pathogen interactions. We show that one amoeba-symbiont species is similar to other related bacteria in genome size and content, while the two reduced-genome-symbiont species show characteristics of genome streamlining rather than deterioration during adaptation to their host. We also identify sets of genes present in all three amoeba-symbiont genomes that are potentially used for host-symbiont interactions. Because the amoeba symbionts are distantly related, the amoeba host environment may be where these genes were shared among symbionts.


Asunto(s)
Amoeba , Burkholderiaceae , Dictyostelium , Animales , Amoeba/microbiología , Dictyostelium/genética , Eucariontes , Burkholderiaceae/genética , Bacterias/genética , Suelo
16.
Proc Natl Acad Sci U S A ; 119(36): e2205856119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037367

RESUMEN

Protists are important regulators of microbial communities and key components in food webs with impact on nutrient cycling and ecosystem functioning. In turn, their activity is shaped by diverse intracellular parasites, including bacterial symbionts and viruses. Yet, bacteria-virus interactions within protists are poorly understood. Here, we studied the role of bacterial symbionts of free-living amoebae in the establishment of infections with nucleocytoplasmic large DNA viruses (Nucleocytoviricota). To investigate these interactions in a system that would also be relevant in nature, we first isolated and characterized a giant virus (Viennavirus, family Marseilleviridae) and a sympatric potential Acanthamoeba host infected with bacterial symbionts. Subsequently, coinfection experiments were carried out, using the fresh environmental isolates as well as additional amoeba laboratory strains. Employing fluorescence in situ hybridization and qPCR, we show that the bacterial symbiont, identified as Parachlamydia acanthamoebae, represses the replication of the sympatric Viennavirus in both recent environmental isolates as well as Acanthamoeba laboratory strains. In the presence of the symbiont, virions are still taken up, but viral factory maturation is inhibited, leading to survival of the amoeba host. The symbiont also suppressed the replication of the more complex Acanthamoeba polyphaga mimivirus and Tupanvirus deep ocean (Mimiviridae). Our work provides an example of an intracellular bacterial symbiont protecting a protist host against virus infections. The impact of virus-symbiont interactions on microbial population dynamics and eventually ecosystem processes requires further attention.


Asunto(s)
Amoeba , Virus Gigantes , Mimiviridae , Simbiosis , Amoeba/microbiología , Amoeba/virología , Ecosistema , Virus Gigantes/genética , Hibridación Fluorescente in Situ , Mimiviridae/genética
17.
Environ Sci Technol ; 56(17): 12347-12357, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35916900

RESUMEN

Amoebae are protists that are commonly found in water, soil, and other habitats around the world and have complex interactions with other microorganisms. In this work, we investigated how host-endosymbiont interactions between amoebae and bacteria impacted the retention behavior of amoeba spores in porous media. A model amoeba species, Dictyostelium discoideum, and a representative bacterium, Burkholderia agricolaris B1qs70, were used to prepare amoeba spores that carried bacteria. After interacting with B. agricolaris, the retention of D. discoideum spores was enhanced compared to noninfected spores. Diverse proteins, especially proteins contributing to the looser exosporium structure and cell adhesion functionality, are secreted in higher quantities on the exosporium surface of infected spores compared to that of noninfected ones. Comprehensive examinations using a quartz crystal microbalance with dissipation (QCM-D), a parallel plate chamber, and a single-cell force microscope present coherent evidence that changes in the exosporium of D. discoideum spores due to infection by B. agricolaris enhance the connections between spores in the suspension and the spores that were previously deposited on the collector surface, thus resulting in more retention compared to the uninfected ones in porous media. This work provides novel insight into the retention of amoeba spores after bacterial infection in porous media and suggests that the host-endosymbiont relationship regulates the fate of biocolloids in drinking water systems, groundwater, and other porous environments.


Asunto(s)
Amoeba , Dictyostelium , Amoeba/microbiología , Dictyostelium/metabolismo , Dictyostelium/microbiología , Porosidad , Esporas Bacterianas , Simbiosis
18.
Appl Environ Microbiol ; 88(18): e0128522, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36043858

RESUMEN

The relationship between the social amoeba Dictyostelium discoideum and its endosymbiotic bacteria Paraburkholderia provides a model system for studying the development of symbiotic relationships. Laboratory experiments have shown that any of three species of the Paraburkholderia symbiont allow D. discoideum food bacteria to persist through the amoeba life cycle and survive in amoeba spores rather than being fully digested. This phenomenon is termed "farming," as it potentially allows spores dispersed to food-poor locations to grow their own. The occurrence and impact of farming in natural populations, however, have been a challenge to measure. Here, we surveyed natural D. discoideum populations and found that only one of the three symbiont species, Paraburkholderia agricolaris, remained prevalent. We then explored the effect of Paraburkholderia on the amoeba microbiota, expecting that by facilitating bacterial food carriage, it would diversify the microbiota. Contrary to our expectations, Paraburkholderia tended to infectiously dominate the D. discoideum microbiota, in some cases decreasing diversity. Similarly, we found little evidence for Paraburkholderia facilitating the carriage of particular food bacteria. These findings highlight the complexities of inferring symbiont function in nature and suggest the possibility that Paraburkholderia could be playing multiple roles for its host. IMPORTANCE The functions of symbionts in natural populations can be difficult to completely discern. The three Paraburkholderia bacterial farming symbionts of the social amoeba Dictyostelium discoideum have been shown in the laboratory environment to allow the amoebas to carry, rather than fully digest, food bacteria. This potentially provides a fitness benefit to the amoebas upon dispersal to food-poor environments, as they could grow their food. We expected that meaningful food carriage would manifest as a more diverse microbiota. Surprisingly, we found that Paraburkholderia tended to infectiously dominate the D. discoideum microbiota rather than diversifying it. We determined that only one of the three Paraburkholderia symbionts has increased in prevalence in natural populations in the past 20 years, suggesting that this symbiont may be beneficial, however. These findings suggest that Paraburkholderia may have an alternative function for its host, which drives its prevalence in natural populations.


Asunto(s)
Amoeba , Burkholderiaceae , Dictyostelium , Microbiota , Amoeba/microbiología , Bacterias , Dictyostelium/microbiología , Esporas , Simbiosis
19.
Curr Opin Biotechnol ; 77: 102766, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35944344

RESUMEN

The identification of novel platform organisms for the production and discovery of small molecules is of high interest for the pharmaceutical industry. In particular, the structural complexity of most natural products with therapeutic potential restricts an industrial production since chemical syntheses often require complex multistep routes. The amoeba Dictyostelium discoideum can be easily cultivated in bioreactors due to its planktonic growth behavior and contains numerous polyketide and terpene synthase genes with only a few compounds being already elucidated. Hence, the amoeba both bears a wealth of hidden natural products and allows for the development of new bioprocesses for existing pharmaceuticals. In this mini review, we present D. discoideum as a novel platform for the production of complex secondary metabolites and discuss its suitability for industrial processes. We also provide initial insights into future bioprocesses, both involving bacterial coculture setups and for the production of plant-based pharmaceuticals.


Asunto(s)
Amoeba , Productos Biológicos , Dictyostelium , Amoeba/microbiología , Bacterias , Productos Biológicos/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Preparaciones Farmacéuticas/metabolismo
20.
Front Cell Infect Microbiol ; 12: 858979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711659

RESUMEN

Acanthamoeba castellanii (Ac) is a species of free-living amoebae (FLAs) that has been widely applied as a model for the study of host-parasite interactions and characterization of environmental symbionts. The sharing of niches between Ac and potential pathogens, such as fungi, favors associations between these organisms. Through predatory behavior, Ac enhances fungal survival, dissemination, and virulence in their intracellular milieu, training these pathogens and granting subsequent success in events of infections to more evolved hosts. In recent studies, our group characterized the amoeboid mannose binding proteins (MBPs) as one of the main fungal recognition pathways. Similarly, mannose-binding lectins play a key role in activating antifungal responses by immune cells. Even in the face of similarities, the distinct impacts and degrees of affinity of fungal recognition for mannose receptors in amoeboid and animal hosts are poorly understood. In this work, we have identified high-affinity ligands for mannosylated fungal cell wall residues expressed on the surface of amoebas and macrophages and determined the relative importance of these pathways in the antifungal responses comparing both phagocytic models. Mannose-purified surface proteins (MPPs) from both phagocytes showed binding to isolated mannose/mannans and mannosylated fungal cell wall targets. Although macrophage MPPs had more intense binding when compared to the amoeba receptors, the inhibition of this pathway affects fungal internalization and survival in both phagocytes. Mass spectrometry identified several MPPs in both models, and in silico alignment showed highly conserved regions between spotted amoeboid receptors (MBP and MBP1) and immune receptors (Mrc1 and Mrc2) and potential molecular mimicry, pointing to a possible convergent evolution of pathogen recognition mechanisms.


Asunto(s)
Acanthamoeba castellanii , Amoeba , Acanthamoeba castellanii/microbiología , Amoeba/microbiología , Animales , Antifúngicos , Pared Celular/metabolismo , Macrófagos/metabolismo , Manosa/química , Ratones , Trofozoítos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...