Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Cells ; 13(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38727313

RESUMEN

CD133, a cancer stem cell (CSC) marker in tumors, including melanoma, is associated with tumor recurrence, chemoresistance, and metastasis. Patient-derived melanoma cell lines were transduced with a Tet-on vector expressing CD133, generating doxycycline (Dox)-inducible cell lines. Cells were exposed to Dox for 24 h to induce CD133 expression, followed by RNA-seq and bioinformatic analyses, revealing genes and pathways that are significantly up- or downregulated by CD133. The most significantly upregulated gene after CD133 was amphiregulin (AREG), validated by qRT-PCR and immunoblot analyses. Induced CD133 expression significantly increased cell growth, percentage of cells in S-phase, BrdU incorporation into nascent DNA, and PCNA levels, indicating that CD133 stimulates cell proliferation. CD133 induction also activated EGFR and the MAPK pathway. Potential mechanisms highlighting the role(s) of CD133 and AREG in melanoma CSC were further delineated using AREG/EGFR inhibitors or siRNA knockdown of AREG mRNA. Treatment with the EGFR inhibitor gefitinib blocked CD133-induced cell growth increase and MAPK pathway activation. Importantly, siRNA knockdown of AREG reversed the stimulatory effects of CD133 on cell growth, indicating that AREG mediates the effects of CD133 on cell proliferation, thus serving as an attractive target for novel combinatorial therapeutics in melanoma and cancers with overexpression of both CD133 and AREG.


Asunto(s)
Antígeno AC133 , Anfirregulina , Proliferación Celular , Melanoma , Regulación hacia Arriba , Anfirregulina/metabolismo , Anfirregulina/genética , Humanos , Antígeno AC133/metabolismo , Antígeno AC133/genética , Melanoma/patología , Melanoma/metabolismo , Melanoma/genética , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Receptores ErbB/metabolismo
2.
J Ovarian Res ; 17(1): 97, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720330

RESUMEN

The epidermal growth factor (EGF)-like factors, comprising amphiregulin (AREG), betacellulin (BTC), and epiregulin (EREG), play a critical role in regulating the ovulatory process. Pentraxin 3 (PTX3), an essential ovulatory protein, is necessary for maintaining extracellular matrix (ECM) stability during cumulus expansion. The aim of this study was to investigate the impact of EGF-like factors, AREG, BTC, and EREG on the expression and production of PTX3 in human granulosa-lutein (hGL) cells and the molecular mechanisms involved. Our results demonstrated that AREG, BTC, and EREG could regulate follicular function by upregulating the expression and increasing the production of PTX3 in both primary (obtained from 20 consenting patients undergoing IVF treatment) and immortalized hGL cells. The upregulation of PTX3 expression was primarily facilitated by the activation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway, induced by these EGF-like factors. In addition, we found that the upregulation of PTX3 expression triggered by the EGF-like factors was completely reversed by either pretreatment with the epidermal growth factor receptor (EGFR) inhibitor, AG1478, or knockdown of EGFR, suggesting that EGFR is crucial for activating the ERK1/2 signaling pathway in hGL cells. Overall, our findings indicate that AREG, BTC, and EREG may modulate human cumulus expansion during the periovulatory stage through the upregulation of PTX3.


Asunto(s)
Anfirregulina , Betacelulina , Proteína C-Reactiva , Epirregulina , Células Lúteas , Componente Amiloide P Sérico , Regulación hacia Arriba , Femenino , Humanos , Anfirregulina/metabolismo , Anfirregulina/genética , Betacelulina/metabolismo , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/genética , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Epirregulina/metabolismo , Epirregulina/genética , Receptores ErbB/metabolismo , Células Lúteas/metabolismo , Sistema de Señalización de MAP Quinasas , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética
3.
Immunity ; 57(2): 303-318.e6, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38309273

RESUMEN

Production of amphiregulin (Areg) by regulatory T (Treg) cells promotes repair after acute tissue injury. Here, we examined the function of Treg cells in non-alcoholic steatohepatitis (NASH), a setting of chronic liver injury. Areg-producing Treg cells were enriched in the livers of mice and humans with NASH. Deletion of Areg in Treg cells, but not in myeloid cells, reduced NASH-induced liver fibrosis. Chronic liver damage induced transcriptional changes associated with Treg cell activation. Mechanistically, Treg cell-derived Areg activated pro-fibrotic transcriptional programs in hepatic stellate cells via epidermal growth factor receptor (EGFR) signaling. Deletion of Areg in Treg cells protected mice from NASH-dependent glucose intolerance, which also was dependent on EGFR signaling on hepatic stellate cells. Areg from Treg cells promoted hepatocyte gluconeogenesis through hepatocyte detection of hepatic stellate cell-derived interleukin-6. Our findings reveal a maladaptive role for Treg cell-mediated tissue repair functions in chronic liver disease and link liver damage to NASH-dependent glucose intolerance.


Asunto(s)
Intolerancia a la Glucosa , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Anfirregulina/genética , Anfirregulina/metabolismo , Receptores ErbB/metabolismo , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Linfocitos T Reguladores/metabolismo
4.
FASEB J ; 38(4): e23488, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38358359

RESUMEN

Myocardial infarction (MI) is defined as sudden ischemic death of myocardial tissue. Amphiregulin (Areg) regulates cell survival and is crucial for the healing of tissues after damage. However, the functions and mechanisms of Areg after MI remain unclear. Here, we aimed to investigate Areg's impact on myocardial remodeling. Mice model of MI was constructed and Areg-/- mice were used. Expression of Areg was analyzed using western blotting, RT-qPCR, flow cytometry, and immunofluorescence staining. Echocardiographic analysis, Masson's trichrome, and triphenyltetrazolium chloride staining were used to assess cardiac function and structure. RNA sequencing was used for unbiased analysis. Apoptosis and autophagy were determined by western blotting, TUNEL staining, electron microscopy, and mRFP-GFP-LC3 lentivirus. Lysosomal acidity was determined by Lysotracker staining. Areg was elevated in the infarct border zone after MI. It was mostly secreted by macrophages. Areg deficiency aggravated adverse ventricular remodeling, as reflected by worsening cardiac function, a lower survival rate, increased scar size, and interstitial fibrosis. RNA sequencing analyses showed that Areg related to the epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase/protein kinase B (PI3K-Akt), mammalian target of rapamycin (mTOR) signaling pathways, V-ATPase and lysosome pathways. Mechanistically, Areg exerts beneficial effects via increasing lysosomal acidity to promote autophagosome clearance, and activating the EGFR/PI3K/Akt/mTOR signaling pathway, subsequently inhibiting excessive autophagosome formation and apoptosis in cardiomyocytes. This study provides a novel evidence for the role of Areg in inhibiting ventricular remodeling after MI by regulating autophagy and apoptosis and identifies Areg as a potential therapeutic target in ventricular remodeling after MI.


Asunto(s)
Infarto del Miocardio , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Anfirregulina/genética , Apoptosis , Autofagia , Receptores ErbB , Mamíferos , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Remodelación Ventricular
5.
J Allergy Clin Immunol ; 153(4): 1095-1112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38092138

RESUMEN

BACKGROUND: IgG4-related disease (IgG4-RD), an example of a type I immune disease, is an immune-mediated fibrotic disorder characterized by dysregulated resolution of severe inflammation and wound healing. However, truly dominant or pathognomonic autoantibodies related to IgG4-RD are not identified. OBJECTIVE: We sought to perform single-cell RNA sequencing and T-cell receptor and B-cell receptor sequencing to obtain a comprehensive, unbiased view of tissue-infiltrating T and B cells. METHODS: We performed unbiased single-cell RNA-sequencing analysis for the transcriptome and T-cell receptor sequencing and B-cell receptor sequencing on sorted CD3+ T or CD19+ B cells from affected tissues of patients with IgG4-RD. We also conducted quantitative analyses of CD3+ T-cell and CD19+ B-cell subsets in 68 patients with IgG4-RD and 30 patients with Sjögren syndrome. RESULTS: Almost all clonally expanded T cells in these lesions were either Granzyme K (GZMK)-expressing CD4+ cytotoxic T cells or GZMK+CD8+ T cells. These GZMK-expressing cytotoxic T cells also expressed amphiregulin and TGF-ß but did not express immune checkpoints, and the tissue-infiltrating CD8+ T cells were phenotypically heterogeneous. MKI67+ B cells and IgD-CD27-CD11c-CXCR5- double-negative 3 B cells were clonally expanded and infiltrated affected tissue lesions. GZMK+CD4+ cytotoxic T cells colocalized with MKI67+ B cells in the extrafollicular area from affected tissue sites. CONCLUSIONS: The above-mentioned cells likely participate in T-B collaborative events, suggesting possible avenues for targeted therapies. Our findings were validated using orthogonal approaches, including multicolor immunofluorescence and the use of comparator disease groups, to support the central role of cytotoxic CD4+ and CD8+ T cells expressing GZMK, amphiregulin, and TGF-ß in the pathogenesis of inflammatory fibrotic disorders.


Asunto(s)
Enfermedades del Sistema Inmune , Enfermedad Relacionada con Inmunoglobulina G4 , Humanos , Anfirregulina/genética , Linfocitos T CD8-positivos , Granzimas , Receptores de Antígenos de Linfocitos B , Receptores de Antígenos de Linfocitos T , Linfocitos T Citotóxicos , Factor de Crecimiento Transformador beta
6.
J Invest Dermatol ; 144(1): 142-151.e5, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37516309

RESUMEN

Ischemia-reperfusion (I/R) injury is a key player in the pathogeneses of pressure ulcer formation. Our previous work demonstrated that inducing the transcription factor SOX2 promotes cutaneous wound healing through EGFR signaling pathway enhancement. However, its protective effect on cutaneous I/R injury was not well-characterized. We aimed to assess the role of SOX2 in cutaneous I/R injury and the tissue-protective effect of SOX2 induction in keratinocytes (KCs) in cutaneous I/R injury. SOX2 was transiently expressed in KCs after cutaneous I/R injury. Ulcer formation was significantly suppressed in KC-specific SOX2-overexpressing mice. SOX2 in skin KCs significantly suppressed the infiltrating inflammatory cells, apoptotic cells, vascular damage, and hypoxic areas in cutaneous I/R injury. Oxidative stress-induced mRNA levels of inflammatory cytokine expression were suppressed, and antioxidant stress factors and amphiregulin were elevated by SOX2 induction in skin KCs. Recombinant amphiregulin administration suppressed pressure ulcer development after cutaneous I/R injury in mice and suppressed oxidative stress-induced ROS production and apoptosis in vitro. These findings support that SOX2 in KCs might regulate cutaneous I/R injury through amphiregulin production, resulting in oxidative stress suppression. Recombinant amphiregulin can be a potential therapeutic agent for cutaneous I/R injury.


Asunto(s)
Úlcera por Presión , Daño por Reperfusión , Animales , Ratones , Anfirregulina/genética , Anfirregulina/metabolismo , Apoptosis , Queratinocitos/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Piel/metabolismo
7.
Int J Biol Sci ; 19(16): 5174-5186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928274

RESUMEN

Chondrosarcoma is the second most common type of bone cancer. At present, the most effective clinical course of action is surgical resection. Cisplatin is the chemotherapeutic medication most widely used for the treatment of chondrosarcoma; however, its effectiveness is severely hampered by drug resistance. In the current study, we compared cisplatin-resistant chondrosarcoma SW1353 cells with their parental cells via RNA sequencing. Our analysis revealed that glutamine metabolism is highly activated in resistant cells but glucose metabolism is not. Amphiregulin (AR), a ligand of the epidermal growth factor receptor, enhances glutamine metabolism and supports cisplatin resistance in human chondrosarcoma by promoting NADPH production and inhibiting reactive oxygen species (ROS) accumulation. The MEK, ERK, and NrF2 signaling pathways were shown to regulate AR-mediated alanine-serine-cysteine transporter 2 (ASCT2; also called SLC1A5) and glutaminase (GLS) expression as well as glutamine metabolism in cisplatin-resistant chondrosarcoma. The knockdown of AR expression in cisplatin-resistant chondrosarcoma cells was shown to reduce the expression of SLC1A5 and GLS in vivo. These results indicate that AR and glutamine metabolism are worth pursuing as therapeutic targets in dealing with cisplatin-resistant human chondrosarcoma.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Anfirregulina/genética , Glutamina , Resistencia a Antineoplásicos/genética , Condrosarcoma/tratamiento farmacológico , Condrosarcoma/genética , Línea Celular Tumoral , Antígenos de Histocompatibilidad Menor , Sistema de Transporte de Aminoácidos ASC
8.
Sci Rep ; 13(1): 18653, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903947

RESUMEN

Conventional immunosuppressive functions of CD4+Foxp3+ regulatory T cells (Tregs) in type 1 diabetes (T1D) pathogenesis have been well described, but whether Tregs have additional non-immunological functions supporting tissue homeostasis in pancreatic islets is unknown. Within the last decade novel tissue repair functions have been ascribed to Tregs. One function is production of the epidermal growth factor receptor (EGFR) ligand, amphiregulin, which promotes tissue repair in response to inflammatory or mechanical tissue injury. However, whether such pathways are engaged during autoimmune diabetes and promote tissue repair is undetermined. Previously, we observed that upregulation of amphiregulin at the transcriptional level was associated with functional Treg populations in the non-obese diabetic (NOD) mouse model of T1D. From this we postulated that amphiregulin promoted islet tissue repair and slowed the progression of diabetes in NOD mice. Here, we report that islet-infiltrating Tregs have increased capacity to produce amphiregulin, and that both Tregs and beta cells express EGFR. Moreover, we show that amphiregulin can directly modulate mediators of endoplasmic reticulum stress in beta cells. Despite this, NOD amphiregulin deficient mice showed no acceleration of spontaneous autoimmune diabetes. Taken together, the data suggest that the ability for amphiregulin to affect the progression of autoimmune diabetes is limited.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Animales , Ratones , Anfirregulina/genética , Anfirregulina/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Islotes Pancreáticos/metabolismo , Ratones Endogámicos NOD , Linfocitos T Reguladores
9.
J Oral Pathol Med ; 52(10): 1004-1012, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37817274

RESUMEN

BACKGROUND: Compelling evidence implicates diabetes-associated hyperglycemia as a promoter of tumor progression in oral potentially malignant disorders (OPMD). Yet, information on hyperglycemia-induced cell signaling networks in oral oncology remains limited. Our group recently reported that glucose-rich conditions significantly enhance oral dysplastic keratinocyte viability and migration through epidermal growth factor receptor (EGFR) activation, a pathway strongly linked to oral carcinogenesis. Here, we investigated the basal metabolic phenotype in these cells and whether specific glucose-responsive EGFR ligands mediate these responses. METHODS: Cell energy phenotype and lactate concentration were evaluated via commercially available assays. EGFR ligands in response to normal (5 mM) or high (20 mM) glucose were analyzed by quantitative real-time PCR, ELISA, and western blotting. Cell viability and migration assays were performed in the presence of pharmacological inhibitors or RNA interference. RESULTS: When compared to normal keratinocytes, basal glycolysis in oral dysplastic keratinocytes was significantly elevated. In highly glycolytic cells, high glucose-activated EGFR increasing viability and migration. Notably, we identified amphiregulin (AREG) as the predominant glucose-induced EGFR ligand. Indeed, enhanced cell migration in response to high glucose was blunted by EGFR inhibitor cetuximab and AREG siRNA. Conversely, AREG treatment under normal glucose conditions significantly increased cell viability, migration, lactate levels, and expression of glycolytic marker pyruvate kinase M2. CONCLUSION: These novel findings point to AREG as a potential high glucose-induced EGFR activating ligand in highly glycolytic oral dysplastic keratinocytes. Future studies are warranted to gain more insight into the role of AREG in hyperglycemia-associated OPMD tumor progression.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Neoplasias , Humanos , Anfirregulina/genética , Anfirregulina/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Ligandos , Receptores ErbB/metabolismo , Familia de Proteínas EGF/metabolismo , Queratinocitos/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Carcinogénesis/metabolismo , Lactatos/metabolismo
10.
Mol Psychiatry ; 28(11): 4655-4665, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37730843

RESUMEN

Social hierarchy has a profound impact on social behavior, reward processing, and mental health. Moreover, lower social rank can lead to chronic stress and often more serious problems such as bullying victims of abuse, suicide, or attack to society. However, its underlying mechanisms, particularly their association with glial factors, are largely unknown. In this study, we report that astrocyte-derived amphiregulin plays a critical role in the determination of hierarchical ranks. We found that astrocytes-secreted amphiregulin is directly regulated by cAMP response element-binding (CREB)-regulated transcription coactivator 3 (CRTC3) and CREB. Mice with systemic and astrocyte-specific CRTC3 deficiency exhibited a lower social rank with reduced functional connectivity between the prefrontal cortex, a major social hierarchy center, and the parietal cortex. However, this effect was reversed by astrocyte-specific induction of amphiregulin expression, and the epidermal growth factor domain was critical for this action of amphiregulin. These results provide evidence of the involvement of novel glial factors in the regulation of social dominance and may shed light on the clinical application of amphiregulin in the treatment of various psychiatric disorders.


Asunto(s)
Transducción de Señal , Factores de Transcripción , Animales , Ratones , Anfirregulina/genética , Ratones Noqueados , Predominio Social , Factores de Transcripción/metabolismo
11.
Toxicol Lett ; 384: 128-135, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567419

RESUMEN

Dimethylarsinic acid (DMA) is a major metabolite in the urine of humans and rats exposed to inorganic arsenicals, and is reported to induce rat bladder carcinogenesis. In the present study, we focused on early pathways of carcinogenesis triggered by DMA that were also active in tumors. RNA expression in the bladder urothelium of rats treated with 0 and 200 ppm DMA in the drinking water for 4 weeks and in bladder tumors of rats treated with 200 ppm DMA for 2 years was initially examined using microarray analysis and Ingenuity Pathway Analysis (IPA). Expression of 160 genes was altered in both the urothelium of rats treated for 4 weeks with DMA and in DMA-induced tumors. IPA associated 36 of these genes with liver tumor diseases. IPA identified the amphiregulin (Areg)-regulated pathway as a Top Regulator Effects Network. Therefore, we focused on Areg and 6 of its target genes: cyclin A2, centromere protein F, marker of proliferation Ki-67, protein regulator of cytokinesis 1, ribonucleotide reductase M2, and topoisomerase II alpha. We confirmed high mRNA expression of Areg and its 6 target genes in both the urothelium of rats treated for 4 weeks with DMA and in DMA-induced tumors. RNA interference of human amphiregulin (AREG) expression in human urinary bladder cell lines T24 and UMUC3 decreased expression of AREG and its 6 target genes and decreased cell proliferation. These data suggest that Areg has an important role in DMA-induced rat bladder carcinogenesis.


Asunto(s)
Ácido Cacodílico , Vejiga Urinaria , Animales , Ratas , Anfirregulina/genética , Anfirregulina/metabolismo , Ácido Cacodílico/toxicidad , Carcinogénesis , Ratas Endogámicas F344
12.
Sci Adv ; 9(34): eadd7399, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37611111

RESUMEN

Regulatory T (Treg) cells and cancer-associated fibroblasts (CAFs) jointly promote tumor immune tolerance and tumorigenesis. The molecular apparatus that drives Treg cell and CAF coordination in the tumor microenvironment (TME) remains elusive. Interleukin 33 (IL-33) has been shown to enhance fibrosis and IL1RL1+ Treg cell accumulation during tumorigenesis and tissue repair. We demonstrated that IL1RL1 signaling in Treg cells greatly dampened the antitumor activity of both IL-33 and PD-1 blockade. Whole tumor single-cell RNA sequencing (scRNA-seq) analysis and blockade experiments revealed that the amphiregulin (AREG)-epidermal growth factor receptor (EGFR) axis mediated cross-talk between IL1RL1+ Treg cells and CAFs. We further demonstrated that the AREG/EGFR axis enables Treg cells to promote a profibrotic and immunosuppressive functional state of CAFs. Moreover, AREG mAbs and IL-33 concertedly inhibited tumor growth. Our study reveals a previously unidentified AREG/EGFR-mediated Treg/CAF coupling that controls the bifurcation of fibroblast functional states and is a critical barrier for cancer immunotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Linfocitos T Reguladores , Humanos , Anfirregulina/genética , Interleucina-33 , Carcinogénesis , Transformación Celular Neoplásica , Receptores ErbB , Microambiente Tumoral , Proteína 1 Similar al Receptor de Interleucina-1
13.
Mol Cell Endocrinol ; 576: 112038, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544354

RESUMEN

The invasion of human extravillous trophoblast (EVT) cells is a critical event required for a successful pregnancy. Amphiregulin, a ligand of the epidermal growth factor receptor (EGFR), has been shown to stimulate cell invasion in an immortalized human EVT cell line, HTR-8/SVneo. The with-no-lysine kinase 1 (WNK1) is involved in regulating cell invasion. It is known that WNK1 is expressed in the human placenta, but its role in human EVT cells remains unknown. In the present study, we show that AREG treatment phosphorylated WNK1 at Thr60 in both HTR-8/SVneo and primary human EVT cells. The stimulatory effect of AREG on WNK1 phosphorylation was mediated by the activation of PI3K/AKT, but not the ERK1/2 signaling pathway. AREG upregulated matrix metalloproteinase 9 (MMP9) but not MMP2. In addition, cell invasiveness was increased in response to the treatment of AREG. Using the siRNA-mediated knockdown approach, our results showed that the knockdown of WNK1 attenuated the AREG-induced upregulation of MMP9 expression and cell invasion. Moreover, the expression of WNK1 was downregulated in the placentas with preeclampsia, a disease resulting from insufficiency of EVT cell invasion during pregnancy. This study discovers the physiological function of WNK1 in human EVT cells and provides important insights into the regulation of MMP9 and cell invasion in human EVT cells.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Trofoblastos , Proteína Quinasa Deficiente en Lisina WNK 1 , Femenino , Humanos , Embarazo , Anfirregulina/genética , Anfirregulina/metabolismo , Movimiento Celular , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Primer Trimestre del Embarazo/metabolismo , Trofoblastos/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo
14.
Clin Cancer Res ; 29(20): 4021-4023, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37594733

RESUMEN

Overexpression of the EGFR ligands amphiregulin (AREG)/epiregulin (EREG) may be a surrogate of EGFR dependency regardless of sidedness in metastatic colorectal cancer. High AREG/EREG may be coupled with negative hyper-selection (i.e., lack of genomic drivers of primary resistance beyond RAS and BRAF) to identify patients with right-sided tumors and potential sensitivity to EGFR blockade. See related article by Williams et al., p. 4153.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias del Recto , Humanos , Anfirregulina/genética , Epirregulina/genética , Multiómica , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Receptores ErbB/genética , Péptidos y Proteínas de Señalización Intercelular , Anticuerpos , Inteligencia Artificial
15.
Blood ; 142(18): 1529-1542, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37584437

RESUMEN

The cross talk between extrinsic niche-derived and intrinsic hematopoietic stem cell (HSC) factors controlling HSC maintenance remains elusive. Here, we demonstrated that amphiregulin (AREG) from bone marrow (BM) leptin receptor (LepR+) niche cells is an important factor that mediates the cross talk between the BM niche and HSCs in stem cell maintenance. Mice deficient of the DNA repair gene Brca2, specifically in LepR+ cells (LepR-Cre;Brca2fl/fl), exhibited increased frequencies of total and myeloid-biased HSCs. Furthermore, HSCs from LepR-Cre;Brca2fl/fl mice showed compromised repopulation, increased expansion of donor-derived, myeloid-biased HSCs, and increased myeloid output. Brca2-deficient BM LepR+ cells exhibited persistent DNA damage-inducible overproduction of AREG. Ex vivo treatment of wild-type HSCs or systemic treatment of C57BL/6 mice with recombinant AREG impaired repopulation, leading to HSC exhaustion. Conversely, inhibition of AREG by an anti-AREG-neutralizing antibody or deletion of the Areg gene in LepR-Cre;Brca2fl/fl mice rescued HSC defects caused by AREG. Mechanistically, AREG activated the phosphoinositide 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, promoted HSC cycling, and compromised HSC quiescence. Finally, we demonstrated that BM LepR+ niche cells from other DNA repair-deficient and aged mice also showed persistent DNA damage-associated overexpression of AREG, which exerts similar negative effects on HSC maintenance. Therefore, we identified an important factor that regulates HSCs function under conditions of DNA repair deficiency and aging.


Asunto(s)
Trastornos por Deficiencias en la Reparación del ADN , Receptores de Leptina , Ratones , Animales , Anfirregulina/genética , Anfirregulina/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Ratones Endogámicos C57BL , Células Madre Hematopoyéticas/metabolismo , Envejecimiento/genética , Trastornos por Deficiencias en la Reparación del ADN/metabolismo , Nicho de Células Madre/genética , Mamíferos/metabolismo
16.
Hepatology ; 78(4): 1035-1049, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078450

RESUMEN

BACKGROUND AND AIMS: Although a dysregulated type 1 immune response is integral to the pathogenesis of biliary atresia, studies in both humans and mice have uncovered a type 2 response, primarily driven by type 2 innate lymphoid cells. In nonhepatic tissues, natural type 2 innate lymphoid cell (nILC2s) regulate epithelial proliferation and tissue repair, whereas inflammatory ILC2s (iIlC2s) drive tissue inflammation and injury. The aim of this study is to determine the mechanisms used by type 2 innate lymphoid cell (ILC2) subpopulations to regulate biliary epithelial response to an injury. APPROACH AND RESULTS: Using Spearman correlation analysis, nILC2 transcripts, but not those of iILC2s, are positively associated with cholangiocyte abundance in biliary atresia patients at the time of diagnosis. nILC2s are identified in the mouse liver through flow cytometry. They undergo expansion and increase amphiregulin production after IL-33 administration. This drives epithelial proliferation dependent on the IL-13/IL-4Rα/STAT6 pathway as determined by decreased nILC2s and reduced epithelial proliferation in knockout strains. The addition of IL-2 promotes inter-lineage plasticity towards a nILC2 phenotype. In experimental biliary atresia induced by rotavirus, this pathway promotes epithelial repair and tissue regeneration. The genetic loss or molecular inhibition of any part of this circuit switches nILC2s to inflammatory type 2 innate lymphoid cell-like, resulting in decreased amphiregulin production, decreased epithelial proliferation, and the full phenotype of experimental biliary atresia. CONCLUSIONS: These findings identify a key function of the IL-13/IL-4Rα/STAT6 pathway in ILC2 plasticity and an alternate circuit driven by IL-2 to promote nILC2 stability and amphiregulin expression. This pathway induces epithelial homeostasis and repair in experimental biliary atresia.


Asunto(s)
Atresia Biliar , Humanos , Animales , Ratones , Atresia Biliar/patología , Inmunidad Innata , Interleucina-13/metabolismo , Interleucina-2/metabolismo , Linfocitos , Anfirregulina/genética , Anfirregulina/metabolismo
17.
CNS Neurosci Ther ; 29(10): 2925-2939, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37101388

RESUMEN

BACKGROUND: Levodopa (L-DOPA) is considered the most reliable drug for treating Parkinson's disease (PD) clinical symptoms. Regrettably, long-term L-DOPA therapy results in the emergence of drug-induced abnormal involuntary movements (AIMs) in most PD patients. The mechanisms underlying motor fluctuations and dyskinesia induced by L-DOPA (LID) are still perplexing. METHODS: Here, we first performed the analysis on the microarray data set (GSE55096) from the gene expression omnibus (GEO) repository and identified the differentially expressed genes (DEGs) using linear models for microarray analysis (Limma) R packages from the Bioconductor project. 12 genes (Nr4a2, Areg, Tinf2, Ptgs2, Pdlim1, Tes, Irf6, Tgfb1, Serpinb2, Lipg, Creb3l1, Lypd1) were found to be upregulated. Six genes were validated on quantitative polymerase chain reaction and subsequently, Amphiregulin (Areg) was selected (based on log2 fold change) for further experiments to unravel its involvement in LID. Areg LV_shRNA was used to knock down Areg to explore its therapeutic role in the LID model. RESULTS: Western blotting and immunofluorescence results show that AREG is significantly expressed in the LID group relative to the control. Dyskinetic movements in LID mice were alleviated by Areg knockdown, and the protein expression of delta FOSB, the commonly attributable protein in LID, was decreased. Moreover, Areg knockdown reduced the protein expression of P-ERK. In order to ascertain whether the inhibition of the ERK pathway (a common pathway known to mediate levodopa-induced dyskinesia) could also impede Areg, the animals were injected with an ERK inhibitor (PD98059). Afterward, the AIMs, AREG, and ERK protein expression were measured relative to the control group. A group treated with ERK inhibitor had a significant decrease of AREG and phosphorylated ERK protein expression relative to the control group. CONCLUSION: Taken together, our results indicate unequivocal involvement of Areg in levodopa-induced dyskinesia, thus a target for therapy development.


Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Ratones , Animales , Levodopa/efectos adversos , Enfermedad de Parkinson/tratamiento farmacológico , Oxidopamina/toxicidad , Antiparkinsonianos/uso terapéutico , Anfirregulina/genética , Anfirregulina/uso terapéutico , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/genética , Discinesia Inducida por Medicamentos/metabolismo , Modelos Animales de Enfermedad
18.
Science ; 379(6636): 1023-1030, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36893254

RESUMEN

Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.


Asunto(s)
Anfirregulina , Astrocitos , Comunicación Autocrina , Pruebas Genéticas , Técnicas Analíticas Microfluídicas , Microglía , Astrocitos/fisiología , Pruebas Genéticas/métodos , Ensayos Analíticos de Alto Rendimiento , Técnicas Analíticas Microfluídicas/métodos , Microglía/fisiología , Anfirregulina/genética , Comunicación Autocrina/genética , Expresión Génica , Humanos
19.
Mol Cell Endocrinol ; 561: 111826, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36462647

RESUMEN

The secreted protein acidic and rich in cysteine (SPARC) is a secreted glycoprotein and the expression of ovarian SPARC peaks during ovulation and luteinization. Besides, SPARC expression was induced by human chorionic gonadotropin (hCG) in rat granulosa cells. Amphiregulin (AREG) is the most abundant epidermal growth factor receptor (EGFR) ligand expressed in human granulosa cells and follicular fluid. AREG mediates the physiological functions of luteinizing hormone (LH)/hCG in the ovary. However, to date, the biological function of SPARC in the human ovary remains undetermined, and whether AREG regulates SPARC expression in human granulosa cells is unknown. In this study, we show that AREG upregulated SPARC expression via EGFR in a human granulosa-like tumor cell line, KGN. Treatment of AREG activated ERK1/2, JNK, p38 MAPK, and PI3K/AKT signaling pathways and all of them were required for the AREG-induced SPARC expression. Using RNA-sequencing, we identified that steroidogenic acute regulatory protein (StAR) was a downstream target gene of SPARC. In addition, we demonstrated that SPARC mRNA levels were positively correlated with the levels of StAR mRNA in the primary culture of human granulosa cells. Moreover, SPARC protein levels were positively correlated with progesterone levels in follicular fluid of in vitro fertilization patients. This study provides the regulatory role of AREG on the expression of SPARC and reveals the novel function of SPARC in progesterone production in granulosa cells.


Asunto(s)
Cisteína , Osteonectina , Femenino , Humanos , Ratas , Animales , Anfirregulina/genética , Anfirregulina/metabolismo , Cisteína/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Progesterona/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células de la Granulosa/metabolismo , Gonadotropina Coriónica/farmacología , Gonadotropina Coriónica/metabolismo , Receptores ErbB/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Biomol Biomed ; 23(1): 63-72, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36154925

RESUMEN

Amphiregulin (AREG)/epidermal growth factor receptor (EGFR) signaling induces hypoxia-inducible factor-1α (HIF-1α), leading to promotion of T helper 9 (Th9) differentiation and anti-tumor functions. However, the role of the AREG/EGFR/HIF-1α pathway in regulating interleukin-9 (IL-9) production by T cells in adult patients with infectious mononucleosis (IM) has not been fully elucidated. Fifty IM patients and 20 controls were enrolled. The percentages of Th9 and T cytotoxic 9 (Tc9) cells, the mRNA relative expressions of the transcription factors of IL-9-secreting T cells, purine-rich nucleic acid binding protein 1 (PU.1) and forkhead box protein O1 (FOXO1), and the levels of IL-9, AREG, EGFR, and HIF-1α were measured. Peripheral blood mononuclear cells from IM patients were stimulated with EGFR inhibitor or exogenous AREG in the presence or absence of anti-HIF-1α. Regulation of the AREG/EGFR/HIF-1α pathway to IL-9 production by T cells was assessed. The percentages of Th9 and Tc9 cells, plasma IL-9 levels, and PU.1 and FOXO1 mRNA expressions were elevated in IM patients. Plasma levels of AREG and HIF-1α were also increased in IM patients. AREG levels correlated positively with the percentages of Th9 and Tc9 cells in IM patients. Inhibition of EGFR suppressed IL-9-producing T cell differentiation and HIF-1α production. Exogenous AREG stimulation not only induced EGFR and HIF-1α expression but also promoted IL-9-secreting T cell differentiation. Neutralization of HIF-1α abrogated AREG/EGFR-induced Th9 and Tc9 differentiation in IM patients. The current data suggested that the AREG/EGFR/HIF-1α pathway contributed to the elevation of Th9 and Tc9 differentiation in IM patients.


Asunto(s)
Mononucleosis Infecciosa , Interleucina-9 , Humanos , Adulto , Anfirregulina/genética , Interleucina-9/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Leucocitos Mononucleares/metabolismo , Receptores ErbB/genética , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...