Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
Alzheimers Res Ther ; 16(1): 86, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654326

RESUMEN

BACKGROUND: Neurofilament light chain (NFL) is a biomarker for neuroaxonal damage and glial fibrillary acidic protein (GFAP) for reactive astrocytosis. Both processes occur in cerebral amyloid angiopathy (CAA), but studies investigating the potential of NFL and GFAP as markers for CAA are lacking. We aimed to investigate NFL and GFAP as biomarkers for neuroaxonal damage and astrocytosis in CAA. METHODS: For this cross-sectional study serum and cerebrospinal fluid (CSF) samples were collected between 2010 and 2020 from controls, (pre)symptomatic Dutch-type hereditary (D-CAA) mutation-carriers and participants with sporadic CAA (sCAA) from two prospective CAA studies at two University hospitals in the Netherlands. NFL and GFAP levels were measured with Simoa-assays. The association between NFL and GFAP levels and age, cognitive performance (MoCA), CAA-related MRI markers (CAA-CSVD-burden) and Aß40 and Aß42 levels in CSF were assessed with linear regression adjusted for confounders. The control group was divided in age < 55 and ≥55 years to match the specific groups. RESULTS: We included 187 participants: 28 presymptomatic D-CAA mutation-carriers (mean age 40 years), 29 symptomatic D-CAA participants (mean age 58 years), 59 sCAA participants (mean age 72 years), 33 controls < 55 years (mean age 42 years) and 38 controls ≥ 55 years (mean age 65 years). In presymptomatic D-CAA, only GFAP in CSF (7.7*103pg/mL vs. 4.4*103pg/mL in controls; P<.001) was increased compared to controls. In symptomatic D-CAA, both serum (NFL:26.2pg/mL vs. 12.5pg/mL; P=0.008, GFAP:130.8pg/mL vs. 123.4pg/mL; P=0.027) and CSF (NFL:16.8*102pg/mL vs. 7.8*102pg/mL; P=0.01 and GFAP:11.4*103pg/mL vs. 7.5*103pg/mL; P<.001) levels were higher than in controls and serum levels (NFL:26.2pg/mL vs. 6.7pg/mL; P=0.05 and GFAP:130.8pg/mL vs. 66.0pg/mL; P=0.004) were higher than in pre-symptomatic D-CAA. In sCAA, only NFL levels were increased compared to controls in both serum (25.6pg/mL vs. 12.5pg/mL; P=0.005) and CSF (20.0*102pg/mL vs 7.8*102pg/mL; P=0.008). All levels correlated with age. Serum NFL correlated with MoCA (P=0.008) and CAA-CSVD score (P<.001). NFL and GFAP in CSF correlated with Aß42 levels (P=0.01/0.02). CONCLUSIONS: GFAP level in CSF is an early biomarker for CAA and is increased years before symptom onset. NFL and GFAP levels in serum and CSF are biomarkers for advanced CAA.


Asunto(s)
Biomarcadores , Angiopatía Amiloide Cerebral , Proteína Ácida Fibrilar de la Glía , Proteínas de Neurofilamentos , Humanos , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Proteínas de Neurofilamentos/sangre , Proteína Ácida Fibrilar de la Glía/líquido cefalorraquídeo , Proteína Ácida Fibrilar de la Glía/sangre , Femenino , Masculino , Persona de Mediana Edad , Estudios Transversales , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Anciano , Angiopatía Amiloide Cerebral/líquido cefalorraquídeo , Angiopatía Amiloide Cerebral/sangre , Angiopatía Amiloide Cerebral/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/sangre , Adulto , Estudios Prospectivos , Imagen por Resonancia Magnética
2.
Acta Neuropathol Commun ; 11(1): 205, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115150

RESUMEN

BACKGROUND: Apolipoprotein E ε4 allele (APOE-ε4) is the main genetic risk factor for late-onset Alzheimer's disease (AD) and may impact cognitive function also via other neuropathological lesions. However, there is limited evidence available from diverse populations, as APOE associations with dementia seem to differ by race. Therefore, we aimed to evaluate the pathways linking APOE-ε4 to cognitive abilities through AD and non-AD neuropathology in an autopsy study with an admixed sample. METHODS: Neuropathological lesions were evaluated following international criteria using immunohistochemistry. Participants were classified into APOE-ε4 carriers (at least one ε4 allele) and non-carriers. Cognitive abilities were evaluated by the Clinical Dementia Rating Scale sum of boxes. Mediation analyses were conducted to assess the indirect association of APOE-ε4 with cognition through AD-pathology, lacunar infarcts, hyaline arteriosclerosis, cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), and TAR DNA-binding protein 43 (TDP-43). RESULTS: We included 648 participants (mean age 75 ± 12 years old, mean education 4.4 ± 3.7 years, 52% women, 69% White, and 28% APOE-ε4 carriers). The association between APOE-ε4 and cognitive abilities was mediated by neurofibrillary tangles (ß = 0.88, 95% CI = 0.45; 1.38, p < 0.001) and neuritic plaques (ß = 1.36, 95% CI = 0.86; 1.96, p < 0.001). Lacunar infarcts, hyaline arteriosclerosis, CAA, LBD, and TDP-43 were not mediators in the pathway from APOE-ε4 to cognition. CONCLUSION: The association between APOE-ε4 and cognitive abilities was partially mediated by AD-pathology. On the other hand, cerebrovascular lesions and other neurodegenerative diseases did not mediate the association between APOE-ε4 and cognition.


Asunto(s)
Enfermedad de Alzheimer , Arteriosclerosis , Angiopatía Amiloide Cerebral , Enfermedad por Cuerpos de Lewy , Accidente Vascular Cerebral Lacunar , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Alelos , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteínas E/metabolismo , Arteriosclerosis/genética , Autopsia , Angiopatía Amiloide Cerebral/genética , Cognición , Proteínas de Unión al ADN/genética , Genotipo , Enfermedad por Cuerpos de Lewy/genética , Accidente Vascular Cerebral Lacunar/genética
3.
J Neuroimmunol ; 382: 578150, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37467699

RESUMEN

Epidemiological studies showed that Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) frequently co-occur; however, the precise mechanism is not well understood. A unique animal model (Tg-SwDI mice) was developed to investigate the early-onset and robust accumulation of both parenchymal and vascular Aß in the brain. Tg-SwDI mice have been extensively used to study the mechanisms of cerebrovascular dysfunction, neuroinflammation, neurodegeneration, and cognitive decline observed in AD/CAA patients and to design biomarkers and therapeutic strategies. In the present study, we documented interesting new features in the thalamus of Tg-SwDI mice: 1) a sharp increase in the expression of ionized calcium-binding adapter molecule 1 (Iba-1) in microglia in 6-month-old animals; 2) microglia clustering at six months that disappeared in old animals; 3) N-truncated/modified AßN3(pE) peptide in 9-month-old female and 12-month-old male mice; 4) an age-dependent increase in translocator protein (TSPO) expression. These findings reinforce the versatility of this model for studying multiple pathological issues involved in AD and CAA.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Animales , Femenino , Masculino , Ratones , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía/metabolismo , Ácido Pirrolidona Carboxílico/metabolismo , Ácido Pirrolidona Carboxílico/uso terapéutico , Tálamo/metabolismo
4.
Brain ; 146(10): 3991-4014, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37280119

RESUMEN

Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-ß CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognized and may result from genetic or iatrogenic causes that warrant specific and focused investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-ß CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-ß CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognized iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Humanos , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/complicaciones , Péptidos beta-Amiloides/genética , Mutación , Mutación Missense , Enfermedad Iatrogénica , Enfermedad de Alzheimer/genética
5.
Alzheimers Res Ther ; 15(1): 93, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170141

RESUMEN

BACKGROUND: APP duplication is a rare genetic cause of Alzheimer disease and cerebral amyloid angiopathy (CAA). We aimed to evaluate the phenotypes of APP duplications carriers. METHODS: Clinical, radiological, and neuropathological features of 43 APP duplication carriers from 24 French families were retrospectively analyzed, and MRI features and cerebrospinal fluid (CSF) biomarkers were compared to 40 APP-negative CAA controls. RESULTS: Major neurocognitive disorders were found in 90.2% symptomatic APP duplication carriers, with prominent behavioral impairment in 9.7%. Symptomatic intracerebral hemorrhages were reported in 29.2% and seizures in 51.2%. CSF Aß42 levels were abnormal in 18/19 patients and 14/19 patients fulfilled MRI radiological criteria for CAA, while only 5 displayed no hemorrhagic features. We found no correlation between CAA radiological signs and duplication size. Compared to CAA controls, APP duplication carriers showed less disseminated cortical superficial siderosis (0% vs 37.5%, p = 0.004 adjusted for the delay between symptoms onset and MRI). Deep microbleeds were found in two APP duplication carriers. In addition to neurofibrillary tangles and senile plaques, CAA was diffuse and severe with thickening of leptomeningeal vessels in all 9 autopsies. Lewy bodies were found in substantia nigra, locus coeruleus, and cortical structures of 2/9 patients, and one presented vascular amyloid deposits in basal ganglia. DISCUSSION: Phenotypes associated with APP duplications were heterogeneous with different clinical presentations including dementia, hemorrhage, and seizure and different radiological presentations, even within families. No apparent correlation with duplication size was found. Amyloid burden was severe and widely extended to cerebral vessels as suggested by hemorrhagic features on MRI and neuropathological data, making APP duplication an interesting model of CAA.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/complicaciones , Amiloide/genética , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/complicaciones , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/genética , Hemorragia Cerebral/patología , Imagen por Resonancia Magnética , Fenotipo , Estudios Retrospectivos
6.
J Neurosci ; 43(24): 4541-4557, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37208174

RESUMEN

Vascular endothelial cells play an important role in maintaining brain health, but their contribution to Alzheimer's disease (AD) is obscured by limited understanding of the cellular heterogeneity in normal aged brain and in disease. To address this, we performed single nucleus RNAseq on tissue from 32 human AD and non-AD donors (19 female, 13 male) each with five cortical regions: entorhinal cortex, inferior temporal gyrus, prefrontal cortex, visual association cortex, and primary visual cortex. Analysis of 51,586 endothelial cells revealed unique gene expression patterns across the five regions in non-AD donors. Alzheimer's brain endothelial cells were characterized by upregulated protein folding genes and distinct transcriptomic differences in response to amyloid ß plaques and cerebral amyloid angiopathy. This dataset demonstrates previously unrecognized regional heterogeneity in the endothelial cell transcriptome in both aged non-AD and AD brain.SIGNIFICANCE STATEMENT In this work, we show that vascular endothelial cells collected from five different brain regions display surprising variability in gene expression. In the presence of Alzheimer's disease pathology, endothelial cell gene expression is dramatically altered with clear differences in regional and temporal changes. These findings help explain why certain brain regions appear to differ in susceptibility to disease-related vascular remodeling events that may impact blood flow.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Masculino , Femenino , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/genética , Placa Amiloide/patología , Núcleo Solitario/metabolismo , Corteza Entorrinal/metabolismo
7.
J Alzheimers Dis ; 93(2): 495-507, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038809

RESUMEN

BACKGROUND: Hippocampal atrophy in cerebral amyloid angiopathy (CAA) has been reported to be similar to that in Alzheimer's disease (AD). OBJECTIVE: To evaluate if CAA pathology partly mediates reduced hippocampal volume in patients with AD. METHODS: Patients with a clinical diagnosis of AD and neuropathological confirmation of AD+/-CAA in the National Alzheimer's Coordinating Center database were included in the study. The volumes of temporal lobe structures were calculated on T1-weighted imaging (T1-MRI) using automated FreeSurfer software, from images acquired on average 5 years prior to death. Multivariate regression analysis was performed to compare brain volumes in four CAA groups. The hippocampal volume on T1-MRI was correlated with Clinical Dementia Rating sum of boxes (CDRsb) score, apolipoprotein E (APOE) genotype, and hippocampal atrophy at autopsy. RESULTS: The study included 231 patients with no (n = 45), mild (n = 70), moderate (n = 67), and severe (n = 49) CAA. Among the four CAA groups, patients with severe CAA had a smaller mean left hippocampal volume (p = 0.023) but this was not significant when adjusted for APOE ɛ4 (p = 0.07). The left hippocampal volume on MRI correlated significantly with the hippocampal atrophy grading on neuropathology (p = 0.0003). Among patients with severe CAA, the left hippocampal volume on T1-MRI: (a) decreased with an increase in the number of APOE ɛ4 alleles (p = 0.04); but (b) had no evidence of correlation with CDRsb score (p = 0.57). CONCLUSION: Severe CAA was associated with smaller left hippocampal volume on T1-MRI up to five years prior to death among patients with neuropathologically confirmed AD. This relationship was dependent on APOE ɛ4 genotype.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/patología , Apolipoproteínas E/genética , Apolipoproteína E4/genética , Hipocampo/diagnóstico por imagen , Hipocampo/patología
8.
Int Immunopharmacol ; 117: 109614, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36878048

RESUMEN

Cerebral amyloid angiopathy (CAA) is characterized by the cerebrovascular amyloid-ß (Aß) accumulation, and always accompanied by Alzheimer's disease (AD). Mitochondrial dysfunction-associated cellular events including cell death, inflammation and oxidative stress are implicated in the progression of CAA. Unfortunately, the molecular mechanisms revealing CAA pathogenesis are still obscure, thus requiring further studies. Mitochondrial calcium uptake 3 (MICU3), a regulator of the mitochondrial Ca2+ uniporter (MCU), mediates various biological functions, but its expression and influence on CAA are largely unknown. In the present study, we found that MICU3 expression was gradually declined in cortex and hippocampus of Tg-SwDI transgenic mice. Using stereotaxic operation with AAV9 encoding MICU3, we showed that AAV-MICU3 improved the behavioral performances and cerebral blood flow (CBF) in Tg-SwDI mice, along with markedly reduced Aß deposition through mediating Aß metabolism process. Importantly, we found that AAV-MICU3 remarkably improved neuronal death and mitigated glial activation and neuroinflammation in cortex and hippocampus of Tg-SwDI mice. Furthermore, excessive oxidative stress, mitochondrial impairment and dysfunction, decreased ATP and mitochondrial DNA (mtDNA) were detected in Tg-SwDI mice, while being considerably ameliorated upon MICU3 over-expression. More importantly, our in vitro experiments suggested that MICU3-attenuated neuronal death, activation of glial cells and oxidative stress were completely abrogated upon PTEN induced putative kinase 1 (PINK1) knockdown, indicating that PINK1 was required for MICU3 to perform its protective effects against CAA. Mechanistic experiment confirmed an interaction between MICU3 and PINK1. Together, these findings demonstrated that MICU3-PINK1 axis may serve as a key target for CAA treatment mainly through improving mitochondrial dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Calcio/metabolismo , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/metabolismo , Angiopatía Amiloide Cerebral/patología , Inflamación/metabolismo , Ratones Transgénicos , Mitocondrias/metabolismo , Neuroglía/metabolismo , Proteínas Quinasas/metabolismo
9.
Mol Biol (Mosk) ; 57(1): 85-94, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-36976741

RESUMEN

Alzheimer's disease (AD) is the most common proteinopathy, which is accompanied by a steady decrease in the patient's cognitive functions with a simultaneous accumulation of amyloid plaques in brain tissues. Amyloid plaques are extracellular aggregates of amyloid ß (Aß) and are associated with neuroinflammation and neurodegeneration. Unlike humans and all other mammals, rats and mice do not reproduce AD-like pathology because there are three amino acid substitutions in their Aß. Amyloid plaques form in the brains of transgenic mice with overexpression of human Aß, and such mice are therefore possible to use in biomedicine to model the key features of AD. The transgenic mouse line APPswe/PS1dE9 is widely used as an animal model to study the molecular mechanisms of AD. A study was made to characterize the APPswe/PS1dE9/Blg subline, which was obtained by crossing APPswe/PS1dE9 mice on a CH3 genetic background with C57Bl6/Chg mice. No difference in offspring's survival and fertility was observed in the subline compared to wild-type control mice. Histological analysis of the brain in the APPswe/PS1dE9/Blg line confirmed the main neuromorphological features of AD and showed that amyloid plaques progressively increase in number and size during aging. The APPswe/PS1dE9/Blg line was assumed to provide a convenient model for developing therapeutic strategies to slow down AD progression.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Ratones , Humanos , Ratas , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Ratones Transgénicos , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/genética , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Mamíferos
10.
Eur J Pharmacol ; 939: 175446, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36470443

RESUMEN

Cerebral amyloid angiopathy (CAA) is characterized by the cerebrovascular amyloid-ß (Aß) accumulation, and always accompanied by Alzheimer's disease (AD). The mechanisms revealing CAA pathogenesis are still unclear, and it is challenging to develop an efficient therapeutic strategy for its treatment. Vascular endothelial growth factor (VEGF) and its receptors including VEGFR-1,-2,-3 activation are involved in Aß processing, and modulate numerous cellular events associated with central nervous system (CNS) diseases. In the present study, we attempted to explore the regulatory function of fruquintinib (also named as HMPL-013), a highly selective inhibitor of VEGFR-1,-2,-3 tyrosine kinases, on CAA progression in Tg-SwDI mice. Here, we found that HMPL-013-rich diet consumption for 12 months significantly improved the behavioral performances and cerebral blood flow (CBF) of Tg-SwDI mice compared with the vehicle group. Importantly, HMPL-013 administration considerably reduced Aß1-40 and Aß1-42 burden in cortex and hippocampus of Tg-SwDI mice through regulating Aß metabolism process. Congo red staining confirmed Aß deposition in vessel walls, reflecting CAA formation, which was, however, strongly ameliorated after HMPL-013 treatment. Neuron death, aberrant glial activation and pro-inflammatory response in brain tissues of Tg-SwDI mice were dramatically alleviated after HMPL-013 consumption. More studies showed that the protective effects of HMPL-013 against CAA might be partially attributed to its regulation on the expression of genes associated with blood vasculature. Intriguingly, VEGF and phosphorylated VEGFR-1,-2 protein expression levels were remarkably decreased by HMPL-013 in cortex and hippocampus of Tg-SwDI mice, which were validated in HMPL-013-treated brain vascular endothelial cells (BVECs) under hypoxia. Finally, we found that VEGF-induced human umbilical vein endothelial cells (HUVEC) proliferation and tube formation were strongly abolished upon HMPL-013 exposure. Collectively, all these findings demonstrated that oral administration of HMPL-013 had therapeutic potential against CAA by reducing Aß deposition, inflammation and neuron death via suppressing VEGF/VEGFR-1,-2 signaling.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Disfunción Cognitiva , Ratones , Humanos , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Ratones Transgénicos , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/tratamiento farmacológico , Angiopatía Amiloide Cerebral/genética , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo
11.
Stroke ; 54(1): 178-188, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453271

RESUMEN

BACKGROUND: There are limited data regarding the prevalence of distinct clinical, neuroimaging and genetic markers among patients diagnosed with cerebral amyloid angiopathy-related inflammation (CAA-ri). We sought to determine the prevalence of clinical, radiological, genetic and cerebrospinal fluid biomarker findings in patients with CAA-ri. METHODS: A systematic review and meta-analysis of published studies including patients with CAA-ri was conducted to determine the prevalence of clinical, neuroimaging, genetic and cerebrospinal fluid biomarker findings. Subgroup analyses were performed based on (1) prospective or retrospective study design and (2) CAA-ri diagnosis with or without available biopsy. We pooled the prevalence rates using random-effects models and assessed the heterogeneity using Cochran-Q and I2-statistics. RESULTS: We identified 4 prospective and 17 retrospective cohort studies comprising 378 patients with CAA-ri (mean age, 71.5 years; women, 52%). The pooled prevalence rates were as follows: cognitive decline at presentation 70% ([95% CI, 54%-84%]; I2=82%), focal neurological deficits 55% ([95% CI, 40%-70%]; I2=82%), encephalopathy 54% ([95% CI, 39%-68%]; I2=43%), seizures 37% ([95% CI, 27%-49%]; I2=65%), headache 31% ([95% CI, 22%-42%]; I2=58%), T2/fluid-attenuated inversion recovery-hyperintense white matter lesions 98% ([95% CI, 93%-100%]; I2=44%), lobar cerebral microbleeds 96% ([95% CI, 92%-99%]; I2=25%), gadolinium enhancing lesions 54% ([95% CI, 42%-66%]; I2=62%), cortical superficial siderosis 51% ([95% CI, 34%-68%]; I2=77%) and lobar macrohemorrhage 40% ([95% CI, 11%-73%]; I2=88%). The prevalence rate of the ApoE (Apolipoprotein E) ε4/ε4 genotype was 34% ([95% CI, 17%-53%]; I2=76%). Subgroup analyses demonstrated no differences in these prevalence rates based on study design and diagnostic strategy. CONCLUSIONS: Cognitive decline was the most common clinical feature. Hyperintense T2/fluid-attenuated inversion recovery white matter lesions and lobar cerebral microbleeds were by far the most prevalent neuroimaging findings. Thirty-four percent of patients with CAA-ri have homozygous ApoE ε4/ε4 genotype and scarce data exist regarding the cerebrospinal fluid biomarkers and its significance in these patients.


Asunto(s)
Angiopatía Amiloide Cerebral , Hemorragia Cerebral , Humanos , Femenino , Anciano , Estudios Retrospectivos , Marcadores Genéticos , Estudios Prospectivos , Hemorragia Cerebral/patología , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/patología , Neuroimagen , Inflamación/diagnóstico por imagen , Inflamación/genética , Inflamación/patología , Imagen por Resonancia Magnética/métodos
12.
Int J Neurosci ; 133(2): 222-231, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34913811

RESUMEN

Purpose: To explored Relationship between uric acid and cerebral amyloid angiopathy; Materials and methods: ZO-1 and RAGE in HBMECs were detected by western blotting, and then, we analyzed ZO-1, occludin, and RAGE mRNA expression levels in different treatment groups using RTPCR. Cell counts and the relative αSMA fluorescence intensity were measured in order to evaluate the protective effect of uric acid against injury to HBVSMCs. Analysis of variance showed that LDH leakage rate was used to verify the uric acid protective effect on the injury induced by Aß1-40. After that, the level of uric acid in serum and Aß1-40 in brain tissue was analyzed by western blotting and immunohistochemistry to evaluate the protective effect of uric acid in the brain of APP23 mice. Meanwhile, Occludin, ZO-1, and RAGE protein levels were measured by western blotting; Results: Uric acid reduced the negative effects of Aß on the vascular endothelium and smooth muscle cells and protected the vascular wall in vitro. In APP23 mice, Aß1-40 and Aß1-42 levels were significantly elevated in brain tissues and further increased after uric acid concentration was decreased. In APP23 mice, ZO-1 and occludin expression levels were both significantly lower than those in wild-type animals. After uric acid concentration was lowered in APP23 mice, ZO-1 and occludin expression levels were significantly lower than those in untreated animals; Conclusions: Uric acid in the blood protects the blood vessels from CAA damage to the blood vessel wall, and reduces the occurrence of cerebral hemorrhage.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Ratones , Animales , Ácido Úrico , Ocludina/metabolismo , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Hemorragia Cerebral/metabolismo , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos
13.
Amyloid ; 30(1): 109-118, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36178174

RESUMEN

BACKGROUND: Cerebral amyloid angiopathy (CAA) is becoming the most common and serious complications in long-lived hereditary ATTR amyloidosis patients. It is therefore imperative to elucidate the characteristics of ATTR-type CAA and develop useful biomarkers. METHODS: We enrolled 34 ATTRv amyloidosis patients with the V30M (p.V50M) variant for analysis with three-dimensional stereotactic surface projection z score imaging of Pittsburgh compound B (PiB)-PET. RESULTS: Eight patients exhibited central nervous system (CNS) symptoms. Seven patients suffered transient focal neurologic episodes, and 2 patients each experienced cerebellar haemorrhages or cognitive decline. The amount of 11C-PiB accumulation increased as a function of disease duration. 11C-PiB-PET abnormalities were seen at 8 years from onset and were associated with CNS manifestations from 12 years. The annual increase rate of the standardised uptake value ratio (SUVR) in female patients was significantly higher than in male patients. CNS amyloid deposition started in the upper middle surface of the cerebellar cortex, and then spread out over the entire surface of the cerebellum, Sylvian fissure, and anterior part of the longitudinal fissure of the cerebrum. CONCLUSIONS: PiB-PET is a useful biomarker for the early detection and treatment evaluation of ATTR-type CAA. Female gender is associated with more rapid progression of ATTR-type CAA.


Asunto(s)
Neuropatías Amiloides Familiares , Amiloidosis Familiar , Angiopatía Amiloide Cerebral , Humanos , Masculino , Femenino , Neuropatías Amiloides Familiares/diagnóstico por imagen , Neuropatías Amiloides Familiares/genética , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Angiopatía Amiloide Cerebral/genética , Tomografía de Emisión de Positrones , Hemorragia Cerebral
14.
Alzheimers Res Ther ; 14(1): 154, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224605

RESUMEN

BACKGROUND: Considerable overlap exists between the risk factors of dementia and cerebral small vessel disease (SVD). However, studies remain limited to older cohorts wherein pathologies of both dementia (e.g. amyloid) and SVD (e.g. white matter hyperintensities) already co-exist. In younger asymptomatic adults, we investigated differential associations and interactions of modifiable and non-modifiable inherited risk factors of (future) late-life dementia to (present-day) mid-life SVD. METHODS: Cognitively healthy middle-aged adults (aged 40-59; mean 51.2 years) underwent 3T MRI (n = 630) as part of the PREVENT-Dementia study. To assess SVD, we quantified white matter hyperintensities, enlarged perivascular spaces, microbleeds, lacunes, and computed composite scores of SVD burden and subtypes of hypertensive arteriopathy and cerebral amyloid angiopathy (CAA). Non-modifiable (inherited) risk factors were APOE4 status and parental family history of dementia. Modifiable risk factors were derived from the 2020 Lancet Commission on dementia prevention (early/midlife: education, hypertension, obesity, alcohol, hearing impairment, head injuries). Confirmatory factor analysis (CFA) was used to evaluate the latent variables of SVD and risk factors. Structural equation modelling (SEM) of the full structural assessed associations of SVD with risk factors and APOE4*risk interaction. RESULTS: In SEM, the latent variable of global SVD related to the latent variable of modifiable midlife risk SVD (ß = 0.80, p = .009) but not non-modifiable inherited risk factors of APOE4 or family history of dementia. Interaction analysis demonstrated that the effect of modifiable risk on SVD was amplified in APOE4 non-carriers (ß = - 0.31, p = .009), rather than carriers. These associations and interaction effects were observed in relation to the SVD subtype of hypertensive arteriopathy, rather than CAA. Sensitivity analyses using separate general linear models validated SEM results. CONCLUSIONS: Established modifiable risk factors of future (late-life) dementia related to present-day (mid-life) SVD, suggesting that early lifestyle modifications could potentially reduce rates of vascular cognitive impairment attributed to SVD, a major 'silent' contributor to global dementia cases. This association was amplified in APOE4 non-carriers, suggesting that lifestyle modifications could be effective even in those with genetic predisposition to dementia.


Asunto(s)
Angiopatía Amiloide Cerebral , Enfermedades de los Pequeños Vasos Cerebrales , Demencia , Hipertensión , Adulto , Apolipoproteína E4/genética , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Angiopatía Amiloide Cerebral/epidemiología , Angiopatía Amiloide Cerebral/genética , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Demencia/epidemiología , Demencia/genética , Demencia/prevención & control , Humanos , Hipertensión/epidemiología , Imagen por Resonancia Magnética , Persona de Mediana Edad , Factores de Riesgo
15.
J Neurochem ; 163(3): 233-246, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36102248

RESUMEN

Familial British dementia (FBD) and familial Danish dementia (FDD) are autosomal dominant forms of dementia caused by mutations in the integral membrane protein 2B (ITM2B, also known as BRI2) gene. Secretase processing of mutant BRI2 leads to secretion and deposition of BRI2-derived amyloidogenic peptides, ABri and ADan that resemble APP/ß-amyloid (Aß) pathology, which is characteristic of Alzheimer's disease (AD). Amyloid pathology in FBD/FDD manifests itself predominantly in the microvasculature by ABri/ADan containing cerebral amyloid angiopathy (CAA). While ABri and ADan peptide sequences differ only in a few C-terminal amino acids, CAA in FDD is characterized by co-aggregation of ADan with Aß, while in contrast no Aß deposition is observed in FBD. The fact that FDD patients display an earlier and more severe disease onset than FBD suggests a potential role of ADan and Aß co-aggregation that promotes a more rapid disease progression in FDD compared to FBD. It is therefore critical to delineate the chemical signatures of amyloid aggregation in these two vascular dementias. This in turn will increase the knowledge on the pathophysiology of these diseases and the pathogenic role of heterogenous amyloid peptide interactions and deposition, respectively. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in combination with hyperspectral, confocal microscopy based on luminescent conjugated oligothiophene probes (LCO) to delineate the structural traits and associated amyloid peptide patterns of single CAA in postmortem brain tissue of patients with FBD, FDD as well as sporadic CAA without AD (CAA+) that show pronounced CAA without parenchymal plaques. The results show that CAA in both FBD and FDD consist of N-terminally truncated- and pyroglutamate-modified amyloid peptide species (ADan and ABri), but that ADan peptides in FDD are also extensively C-terminally truncated as compared to ABri in FBD, which contributes to hydrophobicity of ADan species. Further, CAA in FDD showed co-deposition with Aß x-42 and Aß x-40 species. CAA+ vessels were structurally more mature than FDD/FBD CAA and contained significant amounts of pyroglutamated Aß. When compared with FDD, Aß in CAA+ showed more C-terminal and less N-terminally truncations. In FDD, ADan showed spatial co-localization with Aß3pE-40 and Aß3-40 but not with Aßx-42 species. This suggests an increased aggregation propensity of Aß in FDD that promotes co-aggregation of both Aß and ADan. Further, CAA maturity appears to be mainly governed by Aß content based on the significantly higher 500/580 patterns observed in CAA+ than in FDD and FBD, respectively. Together this is the first study of its kind on comprehensive delineation of Bri2 and APP-derived amyloid peptides in single vascular plaques in both FDD/FBD and sporadic CAA that provides new insight in non-AD-related vascular amyloid pathology. Cover Image for this issue: https://doi.org/10.1111/jnc.15424.


Asunto(s)
Enfermedad de Alzheimer , Neuropatías Amiloides Familiares , Angiopatía Amiloide Cerebral , Demencia , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Angiopatía Amiloide Cerebral/genética , Demencia/patología , Dinamarca , Glicoproteínas de Membrana/metabolismo , Placa Amiloide , Inglaterra
16.
J Alzheimers Dis ; 90(1): 381-388, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120778

RESUMEN

BACKGROUND: Deep medullary vein (DMV) changes occur in cerebral small vessel diseases (SVD) and in Alzheimer's disease. Cerebral amyloid angiopathy (CAA) is a common SVD that has a high co-morbidity with Alzheimer's disease. So far, DMVs have not been evaluated in CAA. OBJECTIVE: To evaluate DMVs in Dutch-type hereditary CAA (D-CAA) mutation carriers and controls, in relation to MRI markers associated with D-CAA. METHODS: Quantitative DMV parameters length, tortuosity, inhomogeneity, and density were quantified on 7 Tesla 3D susceptibility weighted MRI in pre-symptomatic D-CAA mutation carriers (n = 8), symptomatic D-CAA mutation carriers (n = 8), and controls (n = 25). Hemorrhagic MRI markers (cerebral microbleeds, intracerebral hemorrhages, cortical superficial siderosis, convexity subarachnoid hemorrhage), non-hemorrhagic MRI markers (white matter hyperintensities, enlarged perivascular spaces, lacunar infarcts, cortical microinfarcts), cortical grey matter perfusion, and diffusion tensor imaging parameters were assessed in D-CAA mutation carriers. Univariate general linear analysis was used to determine associations between DMV parameters and MRI markers. RESULTS: Quantitative DMV parameters length, tortuosity, inhomogeneity, and density did not differ between pre-symptomatic D-CAA mutation carriers, symptomatic D-CAA mutation carriers, and controls. No associations were found between DMV parameters and MRI markers associated with D-CAA. CONCLUSION: This study indicates that vascular amyloid-ß deposition does not affect DMV parameters. In patients with CAA, DMVs do not seem to play a role in the pathogenesis of MRI markers associated with CAA.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral Familiar , Angiopatía Amiloide Cerebral , Humanos , Angiopatía Amiloide Cerebral Familiar/diagnóstico por imagen , Angiopatía Amiloide Cerebral Familiar/genética , Enfermedad de Alzheimer/complicaciones , Imagen de Difusión Tensora , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/complicaciones , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/genética , Hemorragia Cerebral/complicaciones
17.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35806110

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia and the leading risk factor, after age, is possession of the apolipoprotein E epsilon 4 allele (APOE4). Approximately 50% of AD patients carry one or two copies of APOE4 but the mechanisms by which it confers risk are still unknown. APOE4 carriers are reported to demonstrate changes in brain structure, cognition, and neuropathology, but findings have been inconsistent across studies. In the present study, we used multi-modal data to characterise the effects of APOE4 on the brain, to investigate whether AD pathology manifests differently in APOE4 carriers, and to determine if AD pathomechanisms are different between carriers and non-carriers. Brain structural differences in APOE4 carriers were characterised by applying machine learning to over 2000 brain MRI measurements from 33,384 non-demented UK biobank study participants. APOE4 carriers showed brain changes consistent with vascular dysfunction, such as reduced white matter integrity in posterior brain regions. The relationship between APOE4 and AD pathology was explored among the 1260 individuals from the Religious Orders Study and Memory and Aging Project (ROSMAP). APOE4 status had a greater effect on amyloid than tau load, particularly amyloid in the posterior cortical regions. APOE status was also highly correlated with cerebral amyloid angiopathy (CAA). Bulk tissue brain transcriptomic data from ROSMAP and a similar dataset from the Mount Sinai Brain Bank showed that differentially expressed genes between the dementia and non-dementia groups were enriched for vascular-related processes (e.g., "angiogenesis") in APOE4 carriers only. Immune-related transcripts were more strongly correlated with AD pathology in APOE4 carriers with some transcripts such as TREM2 and positively correlated with pathology severity in APOE4 carriers, but negatively in non-carriers. Overall, cumulative evidence from the largest neuroimaging, pathology, and transcriptomic studies available suggests that vascular dysfunction is key to the development of AD in APOE4 carriers. However, further studies are required to tease out non-APOE4-specific mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E/metabolismo , Angiopatía Amiloide Cerebral , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/patología , Heterocigoto , Humanos
18.
Aging Cell ; 21(8): e13503, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35851991

RESUMEN

ß-amyloid (Aß) deposits in brain blood vessel walls underlie the vascular pathology of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). Growing evidence has suggested the involvement of cerebrovascular dysfunction in the initiation and progression of cognitive impairment in AD and CAA patients. Therefore, in this study, we assessed the brain vasculome in a mouse model in order to identify cerebrovascular pathways that may be involved in AD and CAA vascular pathogenesis in the context of aging. Brain endothelial cells were isolated from young and old wild-type mice, and young and old transgenic mice expressing Swedish mutation in amyloid precursor protein and exon 9 deletion in presenilin 1 (APPswe/PSEN1dE9). Microarray profiling of these endothelial transcriptomes demonstrated that accumulation of vascular Aß in the aging APPswe/PSEN1dE9 mouse is associated with impaired endothelial expression of neurotransmitter receptors and calcium signaling transductors, while the genes involved in cell cycle and inflammation were upregulated. These results suggest that the vascular pathology of AD and CAA may involve the disruption of neurovascular coupling, reactivation of cell cycle in quiescent endothelial cells, and enhanced inflammation. Further dissection of these endothelial mechanisms may offer opportunities to pursue therapies to ameliorate vascular dysfunction in the aging brain of AD and CAA patients.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/patología , Células Endoteliales/metabolismo , Inflamación/metabolismo , Ratones , Ratones Transgénicos
19.
Biochemistry ; 61(12): 1181-1198, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35666749

RESUMEN

Two distinct diseases are associated with the deposition of fibrillar amyloid-ß (Aß) peptides in the human brain in an age-dependent fashion. Alzheimer's disease is primarily associated with parenchymal plaque deposition of Aß42, while cerebral amyloid angiopathy (CAA) is associated with amyloid formation of predominantly Aß40 in the cerebral vasculature. In addition, familial mutations at positions 22 and 23 of the Aß sequence can enhance vascular deposition in the two major subtypes of CAA. The E22Q (Dutch) mutation is associated with CAA type 2, while the D23N (Iowa) mutation is associated with CAA type 1. Here we investigate differences in the formation and structure of fibrils of these mutant Aß peptides in vitro to gain insights into their biochemical and physiological differences in the brain. Using Fourier transform infrared and nuclear magnetic resonance spectroscopy, we measure the relative propensities of Aß40-Dutch and Aß40-Iowa to form antiparallel structure and compare these propensities to those of the wild-type Aß40 and Aß42 isoforms. We find that both Aß40-Dutch and Aß40-Iowa have strong propensities to form antiparallel ß-hairpins in the first step of the fibrillization process. However, there is a marked difference in the ability of these peptides to form elongated antiparallel structures. Importantly, we find marked differences in the stability of the protofibril or fibril states formed by the four Aß peptides. We discuss these differences with respect to the mechanisms of Aß fibril formation in CAA.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Amiloide , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/patología , Humanos , Iowa , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Placa Amiloide/patología
20.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35742924

RESUMEN

Intracerebral hemorrhage (ICH) is a complex and heterogeneous disease, and there is no effective treatment. Spontaneous ICH represents the final manifestation of different types of cerebral small vessel disease, usually categorized as: lobar (mostly related to cerebral amyloid angiopathy) and nonlobar (hypertension-related vasculopathy) ICH. Accurate phenotyping aims to reflect these biological differences in the underlying mechanisms and has been demonstrated to be crucial to the success of genetic studies in this field. This review summarizes how current knowledge on genetics and epigenetics of this devastating stroke subtype are contributing to improve the understanding of ICH pathophysiology and their potential role in developing therapeutic strategies.


Asunto(s)
Angiopatía Amiloide Cerebral , Hipertensión , Accidente Cerebrovascular , Angiopatía Amiloide Cerebral/genética , Hemorragia Cerebral/genética , Hemorragia Cerebral/terapia , Epigénesis Genética , Humanos , Hipertensión/genética , Accidente Cerebrovascular/genética , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...