Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 566
Filtrar
1.
Sci Rep ; 14(1): 10539, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719941

RESUMEN

Abnormal angiogenesis leads to tumor progression and metastasis in colorectal cancer (CRC). This study aimed to elucidate the association between angiogenesis-related genes, including VEGF-A, ANGPT-1, and ANGPT-2 with both metastatic and microsatellite alterations at selected tetranucleotide repeats (EMAST) subtypes of CRC. We conducted a thorough assessment of the ANGPT-1, ANGPT-2, and VEGF-A gene expression utilizing publicly available RNA sequencing and microarray datasets. Then, the experimental validation was performed in 122 CRC patients, considering their disease metastasis and EMAST+/- profile by using reverse transcription polymerase chain reaction (RT-PCR). Subsequently, a competing endogenous RNA (ceRNA) network associated with these angiogenesis-related genes was constructed and analyzed. The expression level of VEGF-A and ANGPT-2 genes were significantly higher in tumor tissues as compared with normal adjacent tissues (P-value < 0.001). Nevertheless, ANGPT-1 had a significantly lower expression in tumor samples than in normal colon tissue (P-value < 0.01). We identified a significantly increased VEGF-A (P-value = 0.002) and decreased ANGPT-1 (P-value = 0.04) expression in EMAST+ colorectal tumors. Regarding metastasis, a significantly increased VEGF-A and ANGPT-2 expression (P-value = 0.001) and decreased ANGPT-1 expression (P-value < 0.05) were established in metastatic CRC patients. Remarkably, co-expression analysis also showed a strong correlation between ANGPT-2 and VEGF-A gene expressions. The ceRNA network was constructed by ANGPT-1, ANGPT-2, VEGF-A, and experimentally validated miRNAs (hsa-miR-190a-3p, hsa-miR-374c-5p, hsa-miR-452-5p, and hsa-miR-889-3p), lncRNAs (AFAP1-AS1, KCNQ1OT1 and MALAT1), and TFs (Sp1, E2F1, and STAT3). Network analysis revealed that colorectal cancer is amongst the 82 significant pathways. We demonstrated a significant differential expression of VEGF-A and ANGPT-1 in colorectal cancer patients exhibiting the EMAST+ phenotype. This finding provides novel insights into the molecular pathogenesis of colorectal cancer, specifically in EMAST subtypes. Yet, the generalization of in silico findings to EMAST+ colorectal cancer warrants future experimental investigations. In the end, this study proposes that the EMAST biomarker could serve as an additional perspective on CMS4 biology which is well-defined by activated angiogenesis and worse overall survival.


Asunto(s)
Angiopoyetina 1 , Angiopoyetina 2 , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Neovascularización Patológica , Factor A de Crecimiento Endotelial Vascular , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Metástasis de la Neoplasia , Anciano , Repeticiones de Microsatélite/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Angiogénesis
2.
Brain Inj ; 38(3): 194-201, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38297513

RESUMEN

AIM: To explore the potential role of microRNA miR-221-5p on the angiopoietin-1 (Ang-1)/Ang-2/Tie-2 signaling axis after subarachnoid hemorrhage (SAH) in a rat model. METHODS: Aspects of the rat's behavior were measured using the Kaoutzanis scoring system to test neurological responses. This included feeding behavior, body contraction, motor, and eye-opening responses. Brain sections were studied using transmission electron microscopy and Evans blue extravasation. Levels of Ang-1, Ang-2, and Tie-2 were determined by Western blot, while miR-221-5p was quantified using stem-loop real-time quantitative PCR (RT-qPCR). RESULTS: The SAH group responded worse to the neurological response test than the sham-operated group. The intercellular space was widened in the SAH group, but not in the sham-operated group. Evans blue dye leaked significantly more into brain tissue cells of the SAH group. Stem-loop qRT-PCR showed elevated miR-221-5p levels. Additionally, Ang-1 and Tie-2 were reduced but Ang-2 expression was increased after SAH. This led to a significant reduction of the Ang-1/Ang-2 ratio in the brain tissue, which was associated with the destruction of the blood-brain barrier. CONCLUSION: The data indicate that miR-221-5p might regulate blood-brain barrier dysfunction through the Ang-1/Ang-2/Tie-2 signaling axis, suggesting that it should be further investigated as a potential novel biomarker.


Asunto(s)
MicroARNs , Hemorragia Subaracnoidea , Ratas , Animales , Barrera Hematoencefálica , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Azul de Evans/metabolismo , MicroARNs/metabolismo
3.
PLoS One ; 18(11): e0293673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37972011

RESUMEN

BACKGROUND: The endothelial angiopoietin/Tie2 system is an important regulator of endothelial permeability and targeting Tie2 reduces hemorrhagic shock-induced organ edema in males. However, sexual dimorphism of the endothelium has not been taken into account. This study investigated whether there are sex-related differences in the endothelial angiopoietin/Tie2 system and edema formation. METHODS: Adult male and female heterozygous Tie2 knockout mice (Tie2+/-) and wild-type controls (Tie2+/+) were included (n = 9 per group). Renal and pulmonary injury were determined by wet/dry weight ratio and H&E staining of tissue sections. Protein levels were studied in plasma by ELISA and pulmonary and renal mRNA expression levels by RT-qPCR. RESULTS: In Tie2+/+ mice, females had higher circulating angiopoietin-2 (138%, p<0.05) compared to males. Gene expression of angiopoietin-1 (204%, p<0.01), angiopoietin-2 (542%, p<0.001) were higher in females compared to males in kidneys, but not in lungs. Gene expression of Tie2, Tie1 and VE-PTP were similar between males and females in both organs. Renal and pulmonary wet/dry weight ratio did not differ between Tie2+/+ females and males. Tie2+/+ females had lower circulating NGAL (41%, p<0.01) compared to males, whereas renal NGAL and KIM1 gene expression was unaffected. Interestingly, male Tie2+/- mice had 28% higher renal wet/dry weight ratio (p<0.05) compared to Tie2+/+ males, which was not observed in females nor in lungs. Partial deletion of Tie2 did not affect circulating angiopoietin-1 or angiopoietin-2, but soluble Tie2 was 44% and 53% lower in males and females, respectively, compared to Tie2+/+ mice of the same sex. Renal and pulmonary gene expression of angiopoietin-1, angiopoietin-2, estrogen receptors and other endothelial barrier regulators was comparable between Tie2+/- and Tie2+/+ mice in both sexes. CONCLUSION: Female sex seems to protect against renal, but not pulmonary edema in heterozygous Tie2 knock-out mice. This could not be explained by sex dimorphism in the endothelial angiopoietin/Tie2 system.


Asunto(s)
Angiopoyetina 1 , Angiopoyetina 2 , Animales , Femenino , Masculino , Ratones , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Angiopoyetinas , Edema , Endotelio/metabolismo , Riñón/metabolismo , Lipocalina 2 , Receptor TIE-2/genética , Receptor TIE-2/metabolismo
4.
Gene ; 878: 147585, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37355149

RESUMEN

The endocannabinoid system receptors, cannabinoid receptors type-1 (CBR-1) and -2 (CBR-2), are implicated in several behavioral and cognitive processes. Many studies have indicated a correlation between cannabinoid receptors and angiogenesis. The current study aims to reveal the possible molecular signaling involved in brain angiogenesis induced by the activation of CBR-1 and CBR-2. We investigated whether the synthetic cannabinoid XLR-11, an agonist of CBR-1 and CBR-2, influences the mRNA and protein expression of vascular endothelial growth factor (VEGF), angiopoietin-1 (ANG1) and -2 (ANG2) in human brain microvascular endothelial cells (hBMVEs). Furthermore, we determined the phosphorylation of glycogen synthase kinase 3 beta (GSK3B) expression. Treatment of hBMVEs cells with XLR-11 elevated the mRNA levels of VEGF, ANG1, and ANG2. The secretion of these proangiogenic factors was increased in the media. Furthermore, the intracellular expression of VEGF, ANG1, ANG2, and GSK3B was significantly increased. This current research provides a new possible approach by targeting the cannabinoid receptors to control and regulate brain angiogenesis for treating a variety of angiogenesis-related diseases. This could be achived by using different agonists or antagonists of the cannabinoid receptors based on the nature of the diseases.


Asunto(s)
Cannabinoides , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Cannabinoides/farmacología , ARN Mensajero/metabolismo , Encéfalo/metabolismo , Receptores de Cannabinoides/metabolismo , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Receptor TIE-2/metabolismo
5.
Crit Care ; 27(1): 250, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365661

RESUMEN

BACKGROUND: Sepsis is associated with significant mortality. Yet, there are no efficacious therapies beyond antibiotics. PCSK9 loss-of-function (LOF) and inhibition, through enhanced low-density lipoprotein receptor (LDLR) mediated endotoxin clearance, holds promise as a potential therapeutic approach among adults. In contrast, we have previously demonstrated higher mortality in the juvenile host. Given the potential pleiotropic effects of PCSK9 on the endothelium, beyond canonical effects on serum lipoproteins, both of which may influence sepsis outcomes, we sought to test the influence of PCSK9 LOF genotype on endothelial dysfunction. METHODS: Secondary analyses of a prospective observational cohort of pediatric septic shock. Genetic variants of PCSK9 and LDLR genes, serum PCSK9, and lipoprotein concentrations were determined previously. Endothelial dysfunction markers were measured in day 1 serum. We conducted multivariable linear regression to test the influence of PCSK9 LOF genotype on endothelial markers, adjusted for age, complicated course, and low- and high-density lipoproteins (LDL and HDL). Causal mediation analyses to test impact of select endothelial markers on the association between PCSK9 LOF genotype and mortality. Juvenile Pcsk9 null and wildtype mice were subject to cecal slurry sepsis and endothelial markers were quantified. RESULTS: A total of 474 patients were included. PCSK9 LOF was associated with several markers of endothelial dysfunction, with strengthening of associations after exclusion of those homozygous for the rs688 LDLR variant that renders it insensitive to PCSK9. Serum PCSK9 was not correlated with endothelial dysfunction. PCSK9 LOF influenced concentrations of Angiopoietin-1 (Angpt-1) upon adjusting for potential confounders including lipoprotein concentrations, with false discovery adjusted p value of 0.042 and 0.013 for models that included LDL and HDL, respectively. Causal mediation analysis demonstrated that the effect of PCSK9 LOF on mortality was mediated by Angpt-1 (p = 0.0008). Murine data corroborated these results with lower Angpt-1 and higher soluble thrombomodulin among knockout mice with sepsis relative to the wildtype. CONCLUSIONS: We present genetic and biomarker association data that suggest a potential direct role of the PCSK9-LDLR pathway on Angpt-1 in the developing host with septic shock and warrant external validation. Further, mechanistic studies on the role of PCSK9-LDLR pathway on vascular homeostasis may lead to the development of pediatric-specific sepsis therapies.


Asunto(s)
Proproteína Convertasa 9 , Sepsis , Choque Séptico , Animales , Ratones , Angiopoyetina 1/genética , Biomarcadores , Genotipo , Lipoproteínas , Sepsis/genética , Choque Séptico/genética , Humanos , Niño , Proproteína Convertasa 9/genética , Mutación con Pérdida de Función
6.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1487-1495, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37162264

RESUMEN

Angiopoietin-1 (ANG1) is a pro-angiogenic regulator that contributes to the progression of solid tumors by stimulating the proliferation, migration and tube formation of vascular endothelial cells, as well as the renewal and stability of blood vessels. However, the functions and mechanisms of ANG1 in triple-negative breast cancer (TNBC) are unclear. The clinical sample database shows that a higher level of ANG1 in TNBC is associated with poor prognosis compared to non-TNBC. In addition, knockdown of ANG1 inhibits TNBC cell proliferation and induces cell cycle G1 phase arrest and apoptosis. Overexpression of ANG1 promotes tumor growth in nude mice. Mechanistically, ANG1 promotes TNBC by upregulating carboxypeptidase A4 (CPA4) expression. Overall, the ANG1-CPA4 axis can be a therapeutic target for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/metabolismo , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Ratones Desnudos , Células Endoteliales/metabolismo , Proliferación Celular/genética , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
7.
Colloids Surf B Biointerfaces ; 224: 113210, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36841206

RESUMEN

Reducing the cytotoxicity of cationic polymers is the major issue to their use as a gene delivery carrier. In this study, plasmids containing encoding vascular endothelial cell growth factor 165 and angiopoietin-1 were packaged with the conjugates of cationic fibroin (CSF) and polyethylenimine (PEI), instead of packaging pDNA with PEI alone, to prepare nanocomplexes (CSF+PEI)/pDNA. The complexes were loaded into a silk fibroin scaffold to enhance its function to induce microvascular network generation and dermal tissue regeneration. The results of transfecting EA.hy926 cells with the complexes in vitro showed that (CSF+PEI)/pDNA had a stronger transfection ability than PEI/pDNA. Importantly, compared with PEI as the gene carrier alone, the cell viability was significantly increased and the cytotoxicity was effectively reduced after the conjugate of CSF and PEI was used as the gene carrier. The results of angiogenesis in chick embryo chorioallantoic membranes showed that compared with scaffolds loaded with PEI/pDNA, the neovascularization ratio in scaffolds loaded with (CSF+PEI)/pDNA was significantly increased. In vivo experimental results of scaffolds implantation for full-thickness skin defects in SD rats showed that, compared with loading PEI/pDNA complex, loading (CSF+PEI)/pDNA complex in the scaffold more effectively promoted the formation of vascular network in the scaffold and accelerated the regeneration of dermal tissue. The gene delivery system established in this study has application potential not only in the regeneration of vascular-containing tissues, but also in tumor gene therapy.


Asunto(s)
Fibroínas , Polietileneimina , Ratas , Embrión de Pollo , Animales , Polietileneimina/farmacología , Fibroínas/farmacología , ADN/genética , Angiopoyetina 1/genética , Ratas Sprague-Dawley , Plásmidos/genética , Transfección , Técnicas de Transferencia de Gen
8.
Stem Cells ; 41(1): 93-104, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36368017

RESUMEN

While supplemental angiopoietin-1 (Ang1) improves hematopoiesis, excessive Ang1 induces bone marrow (BM) impairment, hematopoietic stem cell (HSC) senescence, and erythropoietic defect. Here, we examined how excessive Ang1 disturbs hematopoiesis and explored whether hematopoietic defects were related to its level using K14-Cre;c-Ang1 and Col2.3-Cre;c-Ang1 transgenic mice that systemically and locally overexpress cartilage oligomeric matrix protein-Ang1, respectively. We also investigated the impacts of Tie2 inhibitor and AMD3100 on hematopoietic development. Transgenic mice exhibited excessive angiogenic phenotypes, but K14-Cre;c-Ang1 mice showed more severe defects in growth and life span with higher presence of Ang1 compared with Col2.3-Cre;c-Ang1 mice. Dissimilar to K14-Cre;c-Ang1 mice, Col2.3-Cre;c-Ang1 mice did not show impaired BM retention or senescence of HSCs, erythropoietic defect, or disruption of the stromal cell-derived factor 1 (SDF-1)/CXCR4 axis. However, these mice exhibited a defect in platelet production depending on the expression of Tie2 and globin transcription factor 1 (GATA-1), but not GATA-2, in megakaryocyte progenitor (MP) cells. Treatment with Tie2 inhibitor recovered GATA-1 expression in MP cells and platelet production without changes in circulating RBC in transgenic mice. Consecutive AMD3100 administration not only induced irrecoverable senescence of HSCs but also suppressed formation of RBC, but not platelets, via correlated decreases in number of erythroblasts and their GATA-1 expression in B6 mice. Our results indicate that genetic overexpression of Ang1 impairs hematopoietic development depending on its level, in which megakaryopoiesis is preferentially impaired via activation of Ang1/Tie2 signaling, whereas erythropoietic defect is orchestrated by HSC senescence, inflammation, and disruption of the SDF-1/CXCR4 axis.


Asunto(s)
Anemia , Trombocitopenia , Ratones , Animales , Proteína de la Matriz Oligomérica del Cartílago/genética , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Ratones Transgénicos , Anemia/genética , Receptor TIE-2/genética , Receptor TIE-2/metabolismo
9.
Oncogene ; 42(2): 124-137, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36385374

RESUMEN

Drug resistance from BCR-ABL tyrosine kinase inhibitors (TKIs) and other chemotherapeutics results in treatment failure and disease progression in chronic myeloid leukemia (CML). However, the mechanism is still uncertain. In this study, we investigated the role of angiopoietin-1 (ANG-1) as a potential prognostic factor for drug resistance in CML. Both intracellular and secretory ANG-1 (iANG-1 and sANG-1) were overexpressed in multidrug-resistant CML samples. The IC50 value was higher in primary CD34+ CD38- cells with more ANG-1. Silencing ANG-1significantly sensitized three TKI-resistant CML cell lines to imatinib (IM) while recombinant human ANG-1 failed to retain cell survival in vitro. This indicated the important role of iANG-1 as opposed to sANG-1 in CML drug resistance. Moreover, a similar effect was observed in xenograft mice models bearing ANG-1-silenced CML cells. Subsequently, pathway analysis and protein validation experiments showed activation of the JAK/STAT pathway and augmentation of STAT5a phosphorylation in ANG-1 restored CML cells. Upstream Src phosphorylation, which plays a crucial role in CML drug resistance, was also upregulated as a key event in iANG-1-related JAK/STAT pathway activation. In conclusion, our study elucidated a new BCR-ABL independent molecular mechanism induced by intracytoplasmic ANG-1 overexpression as a potential strategy for overcoming CML resistance.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Animales , Humanos , Ratones , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Angiopoyetina 1/farmacología , Apoptosis , Resistencia a Antineoplásicos , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Quinasas Janus , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo
10.
Diabetes ; 71(12): 2664-2676, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331122

RESUMEN

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease (ESKD). Prognostic biomarkers reflective of underlying molecular mechanisms are critically needed for effective management of DKD. A three-marker panel was derived from a proteomics analysis of plasma samples by an unbiased machine learning approach from participants (N = 58) in the Clinical Phenotyping and Resource Biobank study. In combination with standard clinical parameters, this panel improved prediction of the composite outcome of ESKD or a 40% decline in glomerular filtration rate. The panel was validated in an independent group (N = 68), who also had kidney transcriptomic profiles. One marker, plasma angiopoietin 2 (ANGPT2), was significantly associated with outcomes in cohorts from the Cardiovascular Health Study (N = 3,183) and the Chinese Cohort Study of Chronic Kidney Disease (N = 210). Glomerular transcriptional angiopoietin/Tie (ANG-TIE) pathway scores, derived from the expression of 154 ANG-TIE signaling mediators, correlated positively with plasma ANGPT2 levels and kidney outcomes. Higher receptor expression in glomeruli and higher ANG-TIE pathway scores in endothelial cells corroborated potential functional effects in the kidney from elevated plasma ANGPT2 levels. Our work suggests that ANGPT2 is a promising prognostic endothelial biomarker with likely functional impact on glomerular pathogenesis in DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Fallo Renal Crónico , Humanos , Angiopoyetina 1/genética , Receptor TIE-2/genética , Nefropatías Diabéticas/genética , Estudios de Cohortes , Células Endoteliales , Angiopoyetina 2/genética , Angiopoyetinas , Transducción de Señal , Biomarcadores , Progresión de la Enfermedad
11.
Invest Ophthalmol Vis Sci ; 63(11): 1, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36190459

RESUMEN

Purpose: Defects in the iridocorneal angle tissues, including the trabecular meshwork (TM) and Schlemm's canal (SC), impair aqueous humor flow and increase the intraocular pressure (IOP), eventually resulting in glaucoma. Activation of endothelial tyrosine kinase receptor Tie2 by angiopoietin-1 (Angpt1) has been demonstrated to be essential for SC formation, but roles of the other two Tie2 ligands, Angpt2 and Angpt4, have been controversial or not yet characterized, respectively. Methods: Angpt4 expression was investigated using genetic cell fate mapping and reporter mice. Congenital deletion of Angpt2 and Angpt4 and tamoxifen-inducible deletion of Angpt1 in mice were used to study the effects of Angpt4 deletion alone and in combination with the other angiopoietins. SC morphology was examined with immunofluorescent staining. IOP measurements, electron microscopy, and histologic evaluation were used to study glaucomatous changes. Results: Angpt4 was postnatally expressed in the TM. While Angpt4 deletion alone did not affect SC and Angpt4 deletion did not aggravate Angpt1 deletion phenotype, absence of Angpt4 combined with Angpt2 deletion had detrimental effects on SC morphology in adult mice. Consequently, Angpt2-/-;Angpt4-/- mice displayed glaucomatous changes in the eye. Mice with Angpt2 deletion alone showed only moderate SC defects, but Angpt2 was necessary for proper limbal vasculature development. Mechanistically, analysis of Tie2 phosphorylation suggested that Angpt2 and Angpt4 cooperate as agonistic Tie2 ligands in maintaining SC integrity. Conclusions: Our results indicated an additive effect of Angpt4 in SC maintenance and Tie2 activation and a spatiotemporally regulated interplay between the angiopoietins in the mouse iridocorneal angle.


Asunto(s)
Angiopoyetina 2 , Angiopoyetinas , Glaucoma , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Angiopoyetinas/genética , Animales , Humor Acuoso/metabolismo , Glaucoma/patología , Presión Intraocular , Ratones , Tamoxifeno , Malla Trabecular/metabolismo
12.
Biosci Biotechnol Biochem ; 86(11): 1506-1514, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36066914

RESUMEN

Isofurans (IsoFs) are a series of novel discovered lipid peroxidation products. This study focused on the investigation of the angiogenic property of IsoF. MTT stain assay indicated that 1 µm IsoF had the most bioactivity in rat brain endothelial cells (RBECs). IsoF significantly promoted cellular proliferation and migration and remarkably decreased staurosporine-induced apoptosis by TUNEL assay in the RBECs. It successfully up-regulated rat aortic vascularization and choroid explant sprouting, extracellular regulated protein kinases (ERK)1/2, and triggered calcium release. RT-PCR examination indicated that IsoF up-regulated tumor necrosis factor (TNF)α, angiopoietin-1 receptor (Tie2), and vascular endothelial growth factor (VEGF)-A, but did not interfere with caspase 2 and VEGF-C in the RBECs. IsoF has pro-angiogenic activity. Calcium release and ERK1/2 phosphorylation may be involved in the signaling of the IsoF-induced up-regulation of TNFα, Tie2, and VEGF-A, which could be the molecular mechanism of the pro-angiogenic activity of the IsoF.


Asunto(s)
Angiopoyetina 1 , Factor A de Crecimiento Endotelial Vascular , Ratas , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Angiopoyetina 1/genética , Factor C de Crecimiento Endotelial Vascular , Caspasa 2 , Células Endoteliales/metabolismo , Factor de Necrosis Tumoral alfa , Calcio/metabolismo , Estaurosporina , Neovascularización Fisiológica
13.
Arterioscler Thromb Vasc Biol ; 42(11): 1413-1427, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36172864

RESUMEN

BACKGROUND: The choroidal vasculature, including the choriocapillaris and vortex veins, is essential for providing nutrients to the metabolically demanding photoreceptors and retinal pigment epithelium. Choroidal vascular dysfunction leads to vision loss and is associated with age-related macular degeneration and the poorly understood pachychoroid diseases including central serous chorioretinopathy and polypoidal choroidal vasculopathy that are characterized by formation of dilated pachyvessels throughout the choroid. METHODS: Using neural crest-specific Angpt1 knockout mice, we show that Angiopoietin 1, a ligand of the endothelial receptor TEK (also known as Tie2) is essential for choriocapillaris development and vortex vein patterning. RESULTS: Lacking choroidal ANGPT1, neural crest-specific Angpt1 knockout eyes exhibited marked choriocapillaris attenuation and 50% reduction in number of vortex veins, with only 2 vortex veins present in the majority of eyes. Shortly after birth, dilated choroidal vessels resembling human pachyvessels were observed extending from the remaining vortex veins and displacing the choriocapillaris, leading to retinal pigment epithelium dysfunction and subretinal neovascularization similar to that seen in pachychoroid disease. CONCLUSIONS: Together, these findings identify a new role for ANGPT1 in ocular vascular development and demonstrate a clear link between vortex vein dysfunction, pachyvessel formation, and disease.


Asunto(s)
Angiopoyetina 1 , Coriorretinopatía Serosa Central , Humanos , Ratones , Animales , Angiopoyetina 1/genética , Ligandos , Tomografía de Coherencia Óptica , Coroides/irrigación sanguínea , Estudios Retrospectivos
14.
Reprod Domest Anim ; 57(12): 1554-1563, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36005750

RESUMEN

We investigated the structural features of arterial blood vessels in yak uterine caruncle and the effects of the expression of vascular regulation-related factors on angiogenesis in pregnant and non-pregnant yak uterus. Three-dimensional specimens of the uterine artery of non-pregnant and pregnant yaks were produced to observe and measure the distribution characteristics and number of arterial vessels in the uterus and caruncle in the two periods. The uterine caruncle structure was observed and analysed by haematoxylin-eosin staining. The expression features of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) in the uterine caruncle were detected with immunohistochemistry, quantitative real-time PCR (qRT-PCR) and western blotting. The length and number of blood vessels in the caruncle were increased, the degree of curvature was decreased, and the folding was more complicated during pregnancy as compared with that during non-pregnancy. The immunohistochemical results demonstrated that VEGF and Ang-1 were mainly expressed strongly in the mucosal epithelial cytoplasm. The glandular lumen of the uterine gland, lymphocytes and the media and adventitia of blood vessels are widely distributed, and they are all positive. VEGF and Ang-1 mRNA and protein levels were highest in pregnancy, followed by that in the luteal phase and in the follicular phase, and three stages were significantly different (p < .05). These findings provide an anatomical reference and theoretical basis for improving the diagnosis and treatment of yak reproductive disorders and other diseases in high-altitude and low-oxygen environments.


Asunto(s)
Angiopoyetina 1 , Factor A de Crecimiento Endotelial Vascular , Femenino , Bovinos , Animales , Angiopoyetina 1/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Útero/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Arteria Uterina
15.
Exp Mol Med ; 54(8): 1133-1145, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35931736

RESUMEN

Retinal angiogenesis was delayed in VSMC-specific Akt1-deficient mice (Akt1∆SMC) but not in Akt2∆SMC mice. The proliferation of ECs, recruitment of pericytes, and coverage of VSMCs to the endothelium were defective in Akt1∆SMC. The silencing of Akt1 in VSMCs led to the downregulation of angiopoietin 1 (Ang1) and the upregulation of Ang2. The activation of Notch3 in VSMCs was significantly reduced in the retinas of Akt1∆SMC mice. Silencing Akt1 suppressed the activation of Notch3. Moreover, the silencing of Notch3 downregulated Ang1, whereas the overexpression of Notch3 intracellular domain (NICD3) enhanced Ang1 expression. The nuclear localization and transcriptional activity of yes-associated protein (YAP) were affected by the expression level of Akt1. Silencing YAP downregulated Ang2 expression, whereas overexpression of YAP showed the opposite results. Ang1 antibody and Ang2 suppressed endothelial sprouting of wild-type aortic tissues, whereas the Ang2 antibody and Ang1 facilitated the endothelial sprouting of aortic tissues from Akt1∆SMC mice. Finally, severe hemorrhage was observed in Akt1∆SMC mice, which was further facilitated under streptozotocin (STZ)-induced diabetic conditions. Therefore, the Akt1-Notch3/YAP-Ang1/2 signaling cascade in VSMCs might play an essential role in the paracrine regulation of endothelial function.


Asunto(s)
Angiopoyetina 1/metabolismo , Angiopoyetina 2/metabolismo , Músculo Liso Vascular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Angiopoyetina 1/genética , Animales , Ratones , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo , Transducción de Señal
16.
Pol J Pathol ; 73(1): 6-13, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35848475

RESUMEN

Tumor cells stimulate local angiogenesis, resulting in their further multiplication and spread. Angiogenesis is a multifaceted process in which angiopoietins parti- cipate. Angiopoietin-1 (Ang-1) through its receptor Tie2 stimulates endothelial cell survival and the maintenance of the endothelial barrier. These phenomena can support tumour growth by promoting angiogenesis. On the other hand, overproduction of Ang-1 triggers endothelium stability and can lead to angiogenesis inhibition. Because of the ambiguous role of Ang-1, we decided to determine its clinical significance in patients with resectable NSCLC. In a group of 47 patients, tumours and the adjacent non-cancerous tissues were assessed for ANG-1 mRNA expression (using Q-RT-PCR analysis) and Ang-1 concentration (by enzyme-linked immunosorbent assay) together with clinical parameters and the five-year survival rate. ANG-1 expression and Ang-1 concentration were higher in tumour-free tissue, showing no differences between histological types of NSCLC, clinical stage or grading and seemed not to determine the five-year survival. ANG-1 expression and Ang-1 concentration in tumour and tumour-free tissues in patients with NSCLC seem not to be useful as factors supporting either diagnostics or prognosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Angiopoyetina 1/genética , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neovascularización Patológica , Pronóstico , Receptor TIE-2/genética , Receptor TIE-2/metabolismo
17.
J Pharmacol Exp Ther ; 382(3): 266-276, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779860

RESUMEN

Diabetic nephropathy is a leading cause of end-stage renal disease, characterized by endothelial dysfunction and a compromised glomerular permeability barrier. Dysregulation of the angiopoietin 1 (ANGPT1)/angiopoietin 2 (ANGPT2) signaling axis is implicated in disease progression. We recently described the discovery of an IgG1 antibody, O010, with therapeutic potential to elevate circulating endogenous ANGPT1, a tyrosine kinase with Ig and epidermal growth factor (EGF) homology domains-2 (TIE2) agonist. Studies are described that detail the effect of various ANGPT1-elevating strategies to limit progression of renal dysfunction in diabetic-obese (db/db) mice. Results demonstrate that adeno-associated virus- or DNA minicircle-directed overexpression of ANGPT1 elicits a reduction in albuminuria (56%-73%) and an improvement in histopathology score (18% reduction in glomerulosclerosis). An improved acetylcholine response in isolated aortic rings was also observed indicative of a benefit on vascular function. In separate pharmacokinetic studies, an efficacious dose of the ANGPT1 DNA minicircle increased circulating levels of the protein by >80%, resulting in a concomitant suppression of ANGPT2. At a dose of O010-producing maximal elevation of circulating ANGPT1 achievable with the molecule (60% increase), no suppression of ANGPT2 was observed in db/db mice, suggesting insufficient pathway engagement; no reduction in albuminuria or improvement in histopathological outcomes were observed. To pinpoint the mechanism resulting in lack of efficacy, we demonstrate, using confocal microscopy, an interference with TIE2 translocation to adherens junctions, resulting in a loss of protection against vascular permeability normally conferred by ANGPT1. Results demonstrated the essential importance of ANGPT1 to maintain the glomerular permeability barrier, and, due to interference of O010 with this process, led to the discontinuation of the molecule for clinical development. SIGNIFICANCE STATEMENT: This body of original research demonstrates that elevation of systemic angiopoietin 1 (ANGPT1) is protective against diabetic nephropathy. However, using a novel biotherapeutic approach to elevate systemic ANGPT1 renoprotection was not observed; we demonstrate that protection was lost due to interference of the therapeutic with ANGPT1/ tyrosine kinase with Ig and EGF homology domains-2 translocation to adherens junctions. Thus, the clinical development of the antibody was terminated.


Asunto(s)
Angiopoyetina 1 , Diabetes Mellitus , Nefropatías Diabéticas , Albuminuria , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Factor de Crecimiento Epidérmico , Ratones , Ratones Obesos , Proteínas Tirosina Quinasas
18.
PLoS One ; 17(1): e0261498, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35025920

RESUMEN

BACKGROUND: A paracrine mechanism is thought to mediate the proangiogenic capacity of adipose-derived stromal/stem cells (ASCs). However, the precise mechanism by which ASCs promote the formation of blood vessels by endothelial progenitor cells (EPCs) is unclear. METHODS: The EPCs-ASCs cocultures prepared in different ratios were subjected to tube formations assay to verify whether ASCs could directly participate in the tube genesis. The supernatant from cultured ASCs was used to stimulate EPCs to evaluate the effects on the angiogenic property of EPCs, as well as capacity for migration and invasion. A coculture model with transwell chamber were used to explore the regulation of angiogenesis markers expression in EPCs by ASCs. We then mixed ASCs with EPCs and transplanted them with adipose tissue into nude mice to evaluate the effects on angiogenesis in adipose tissue grafts. RESULTS: In the EPCs-ASCs cocultures, the tube formation was significantly decreased as the relative abundance of ASCs increased, while the ASCs was found to migrate and integrated into the agglomerates formed by EPCs. The supernatant from ASCs cultures promoted the migration and invasion of EPCs and the ability to form capillary-like structures. The expression of multiple angiogenesis markers in EPCs were significantly increased when cocultured with ASCs. In vivo, ASCs combined with EPC promoted vascularization in the fat transplant. Immunofluorescence straining of Edu and CD31 indicated that the Edu labeled EPC did not directly participate in the vascularization inside the fat tissue. CONCLUSIONS: ADSC can participate in the tube formation of EPC although it cannot form canonical capillary structures. Meanwhile, Soluble factors secreted by ASCs promotes the angiogenic potential of EPCs. ASCs paracrine signaling appears to promote angiogenesis by increasing the migration and invasion of EPCs and simultaneously upregulating the expression of angiogenesis markers in EPCs. The results of in vivo experiments showed that ASCs combined with EPCs significantly promote the formation of blood vessels in the fat implant. Remarkably, EPCs may promote angiogenesis by paracrine regulation of endogenous endothelial cells (ECs) rather than direct participation in the formation of blood vessels.


Asunto(s)
Células Progenitoras Endoteliales/trasplante , Supervivencia de Injerto/fisiología , Neovascularización Fisiológica/fisiología , Células del Estroma/trasplante , Tejido Adiposo/citología , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Animales , Técnicas de Cultivo de Célula , Movimiento Celular , Células Cultivadas , Técnicas de Cocultivo , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Ratones , Ratones Desnudos , Comunicación Paracrina/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Conejos , Células del Estroma/citología , Células del Estroma/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Bioengineered ; 13(1): 164-177, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34847836

RESUMEN

Angiogenesis plays an important role in tissue development and repair, and how to regulate angiogenesis effectively is a widely studied problem in the biomedical field. In recent years, the role of autophagy in vascular endothelial cells has attracted extensive attention. Icariin (ICA) is a traditional Chinese medicine that has been proven to have outstanding protective effects on the vascular system and to regulate cellular autophagy effectively. However, at present, it has not been reported whether ICA can affect the angiogenic ability of endothelial cells by affecting autophagy. In this study, we aimed to investigate whether ICA affects the angiogenesis capacity of EA.hy926 human vascular endothelial cells through autophagy and explain the underlying potential mechanisms. First, we determined that ICA at appropriate concentrations has the ability to promote cell migration and angiogenesis using wound healing assays and tube formation assays. Then, at the molecular level, we observed the upregulation of VEGFA, VEGFR2, ANGI, ANGII, and Tie2 mRNA and detected the upregulation of TGFß1 protein by Western blotting. We also demonstrated that angiogenic concentrations of ICA can effectively activate autophagy. The autophagy inhibitor 3-MA significantly suppressed TGFß1 expression and tube formation in EA.hy926 cells. Overall, we hope that our studies might help to further understand the effect of ICA on vascular endothelial cells and provide a theoretical basis for future angiogenic applications of ICA.


Asunto(s)
Proteínas Angiogénicas/genética , Células Endoteliales/citología , Flavonoides/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Angiopoyetina 1/genética , Angiopoyetina 2/genética , Autofagia , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Receptor TIE-2/genética , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
20.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34829994

RESUMEN

A sufficient vascular network within the feto-maternal interface is necessary for placental function. Several pregnancy abnormalities have been associated with abnormal vascular formations in the placenta. We hypothesized that growth and expansion of the placental vascular network in the equine (Equus caballus) placenta is regulated by estrogens (estrogen family hormones), a hormone with a high circulating concentration during equine gestation. Administration of letrozole, a potent and specific inhibitor of aromatase, during the first trimester (D30 to D118), decreased circulatory estrone sulfate concentrations, increased circulatory testosterone and androstenedione concentrations, and tended to reduce the weight of the fetus (p < 0.1). Moreover, the gene expression of CYP17A1 was increased, and the expression of androgen receptor was decreased in the D120 chorioallantois (CA) of letrozole-treated mares in comparison to that of the control mares. We also found that at D120, the number of vessels tended to decrease in the CAs with letrozole treatment (p = 0.07). In addition, expression of a subset of angiogenic genes, such as ANGPT1, VEGF, and NOS2, were altered in the CAs of letrozole-treated mares. We further demonstrated that 17ß-estradiol increases the expression of ANGPT1 and VEGF and increases the angiogenic activity of equine endothelial cells in vitro. Our results from the estrogen-suppressed group demonstrated an impaired placental vascular network, suggesting an estrogen-dependent vasculogenesis in the equine CA during the first trimester.


Asunto(s)
Estrógenos/genética , Caballos/genética , Letrozol/farmacología , Neovascularización Fisiológica/genética , Androstenodiona/genética , Angiopoyetina 1/genética , Animales , Aromatasa/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Caballos/crecimiento & desarrollo , Relaciones Materno-Fetales/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Placenta/irrigación sanguínea , Placenta/efectos de los fármacos , Embarazo , Primer Trimestre del Embarazo , Receptores Androgénicos/genética , Esteroide 17-alfa-Hidroxilasa/genética , Testosterona/genética , Factor A de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...