Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 510
Filtrar
2.
Immunol Med ; 47(2): 93-99, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38236134

RESUMEN

The recognition by cytotoxic T cells (CTLs) is essential for the clearance of SARS-CoV-2 virus-infected cells. Several viral proteins have been described to be recognized by CTLs. Among them, the spike (S) protein is one of the immunogenic proteins. The S protein acts as a ligand for its receptors, and several mutants with different affinities for its cognate receptors have been reported, and certain mutations in the S protein, such as L452R and Y453F, have been found to inhibit the HLA-A24-restricted CTL response. In this study, we conducted a screening of candidate peptides derived from the S protein, specifically targeting those carrying the HLA-A24 binding motif. Among these peptides, we discovered that NF9 (NYNYLYRLF) represents an immunogenic epitope. CTL clones specific to the NF9 peptide were successfully established. These CTL clones exhibited the ability to recognize endogenously expressed NF9 peptide. Interestingly, the CTL clone demonstrated cross-reactivity with the Y453F peptide (NYNYLFRLF) but not with the L452R peptide (NYNYRYRLF). The CTL clone was able to identify the endogenously expressed Y453F mutant peptide. These findings imply that the NF9-specific CTL clone possesses the capability to recognize and respond to the Y453F mutant peptide.


Asunto(s)
Reacciones Cruzadas , Epítopos de Linfocito T , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Linfocitos T Citotóxicos , Linfocitos T Citotóxicos/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Humanos , SARS-CoV-2/inmunología , Epítopos de Linfocito T/inmunología , COVID-19/inmunología , Antígeno HLA-A24/inmunología , Péptidos/inmunología , Células Clonales
3.
HLA ; 103(1): e15321, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38192181

RESUMEN

HLA-A*24:02:154 has one nucleotide change compared with HLA-A*24:02:01:01 in codon 113 of exon 3 (TAC > TAT).


Asunto(s)
Antígeno HLA-A24 , Humanos , Alelos , China , Exones/genética , Pueblos del Este de Asia , Antígeno HLA-A24/genética
4.
Cancer Sci ; 115(1): 24-35, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37879364

RESUMEN

We previously identified papillomavirus binding factor (PBF) as an osteosarcoma antigen recognized by an autologous cytotoxic T lymphocyte clone. Vaccination with PBF-derived peptide presented by HLA-A24 (PBF peptide) elicited strong immune responses. In the present study, we generated T cell receptor-engineered T cells (TCR-T cells) directed against the PBF peptide (PBF TCR-T cells). PBF TCR was successfully transduced into T cells and detected using HLA-A*24:02/PBF peptide tetramer. PBF TCR-T cells generated from a healthy donor were highly expanded and recognized T2-A24 cells pulsed with PBF peptide, HLA-A24+ 293T cells transfected with PBF cDNA, and sarcoma cell lines. To establish an adoptive cell therapy model, we modified the PBF TCR by replacing both α and ß constant regions with those of mice (hybrid PBF TCR). Hybrid PBF TCR-T cells also showed reactivity against T2-A24 cells pulsed with PBF peptide and to HLA-A24+ 293T cells transfected with various lengths of PBF cDNA including the PBF peptide sequence. Subsequently, we generated target cell lines highly expressing PBF (MFH03-PBF [short] epitope [+]) containing PBF peptide with in vivo tumorigenicity. Hybrid PBF TCR-T cells exhibited antitumor effects compared with mock T cells in NSG mice xenografted with MFH03-PBF (short) epitope (+) cells. CD45+ T cells significantly infiltrated xenografted tumors only in the hybrid PBF TCR T cell group and most of these cells were CD8-positive. CD8+ T cells also showed Ki-67 expression and surrounded the CD8-negative tumor cells expressing Ki-67. These findings suggest that PBF TCR-T cell therapy might be a candidate immunotherapy for sarcoma highly expressing PBF.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Ratones , Linfocitos T CD8-positivos , Antígeno HLA-A24 , ADN Complementario/metabolismo , Antígeno Ki-67/metabolismo , Linfocitos T Citotóxicos , Péptidos , Osteosarcoma/genética , Epítopos/metabolismo , Neoplasias Óseas/metabolismo , Receptores de Antígenos de Linfocitos T
5.
HLA ; 102(6): 660-670, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37400938

RESUMEN

MHC class I molecules regulate brain development and plasticity in mice and HLA class I molecules are associated with brain disorders in humans. We investigated the relationship between plasma-derived soluble human HLA class I molecules (sHLA class I), HLA class I serotypes and dementia. A cohort of HLA class I serotyped elderly subjects with no dementia/pre-dementia (NpD, n = 28), or with dementia (D, n = 28) was studied. Multivariate analysis was used to examine the influence of dementia and HLA class I serotype on sHLA class I levels, and to compare sHLA class I within four groups according to the presence or absence of HLA-A23/A24 and dementia. HLA-A23/A24 and dementia, but not age, significantly influenced the level of sHLA class I. Importantly, the concurrent presence of HLA-A23/A24 and dementia was associated with higher levels of sHLA class I (p < 0.001). This study has shown that the simultaneous presence of HLA-A23/HLA-A24 and dementia is associated with high levels of serum sHLA class I molecules. Thus, sHLA class I could be considered a biomarker of neurodegeneration in certain HLA class I carriers.


Asunto(s)
Demencia , Antígenos de Histocompatibilidad Clase I , Humanos , Animales , Ratones , Anciano , Antígeno HLA-A24 , Serogrupo , Alelos , Antígenos de Histocompatibilidad Clase I/genética , Demencia/genética
6.
Medicine (Baltimore) ; 102(9): e33135, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862897

RESUMEN

Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder. The pathogenesis of IBS has not yet been fully elucidated, and the relationship between human leukocyte antigen (HLA) class I molecules and IBS is not clear. The present case-control study investigated the correlation between HLA-A and HLA-B genes and IBS. Peripheral blood samples were collected from 102 IBS patients and 108 healthy volunteers at Nanning First People's Hospital. DNA was extracted using a routine procedure, and HLA-A and HLA-B gene polymorphisms were identified by polymerase chain reaction with sequence-specific primers to determine the genotype and distribution frequency of HLA-A and HLA-B in IBS patients and healthy controls. Susceptibility and protective genes for IBS were identified using univariate and multivariate analyses. The frequency of HLA-A11 gene expression in the IBS group was significantly higher than that in the healthy control group, while the frequencies of HLA-A24, 26, and 33 gene expression were significantly higher in the healthy control group than in the IBS group (all P < .05). The frequencies of HLA-B56 and 75 (15) gene expression in the IBS group were significantly higher than those in the healthy control group, while the frequencies of HLA-B46 and 48 gene expression were significantly higher in the healthy control group than in the IBS group (all P < .05). Genes that may be related to the prevalence of IBS were included in the multivariate logistic regression, and the results suggested that the HLA-B75 (15) gene is a susceptibility gene for IBS (P = .031, odds ratio [OR] = 2.625, 95% confidence interval [CI]: 1.093-6.302), while the HLA-A24 (P = .003, OR = 0.308, 95% CI: 0.142-0.666), A26 (P = .009, OR = 0.162, 95% CI: 0.042-0.629), A33 (P = .012, OR = 0.173, 95% CI: 0.044-0.679), and B48 (P = .008, OR = 0.051, 95% CI: 0.006-0.459) genes are protective genes for IBS.


Asunto(s)
Síndrome del Colon Irritable , Humanos , Síndrome del Colon Irritable/genética , Antígeno HLA-A24 , Antígenos HLA-A/genética , Antígenos HLA-B , Genotipo
7.
J Viral Hepat ; 30(3): 262-272, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36575861

RESUMEN

Although human hepatocyte-transplanted immunodeficient mice support infection with hepatitis viruses, these mice fail to develop viral hepatitis due to the lack of an adaptive immune system. In this study, we generated new immunodeficiency cDNA-urokinase-type plasminogen activator (uPA)/SCID/Rag2-/- /Jak3-/- mice and established a mouse model with both a humanized liver and immune system. Transplantation of human hepatocytes with human leukocyte antigen (HLA)-A24 resulted in establishment of a highly replaced liver in cDNA-uPA/SCID/Rag2-/- /Jak3-/- mice. These mice were successfully infected with hepatitis B virus (HBV) and hepatitis C virus (HCV) for a prolonged period and facilitate analysis of the effect of anti-HCV drugs. Administration of peripheral blood mononuclear cells (PBMCs) obtained from an HLA-A24 donor resulted in establishment of 22.6%-81.3% human CD45-positive mononuclear cell chimerism in liver-infiltrating cells without causing graft-versus-host disease in cDNA-uPA/SCID/Rag2-/- /Jak3-/- mice without human hepatocyte transplantation. When mice were transplanted with human hepatocytes and then administered HLA-A24-positive human PBMCs, an alloimmune response between transplanted human hepatocytes and PBMCs occurred, with production of transplanted hepatocyte-specific anti-HLA antibody. In conclusion, we succeeded in establishing a humanized liver/immune system characterized by an allo-reaction between transplanted human immune cells and human liver using a novel cDNA-uPA/SCID/Rag2-/- /Jak3-/- mouse. This mouse model can be used to generate a chronic hepatitis mouse model with a human immune system with application not only to hepatitis virus virology but also to investigation of the pathology of post-transplantation liver rejection.


Asunto(s)
Hepatitis C , Virus de Hepatitis , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , ADN Complementario , Hepacivirus , Hepatitis C/inmunología , Hepatitis C/patología , Virus de Hepatitis/patogenicidad , Hepatocitos , Antígeno HLA-A24 , Janus Quinasa 3/inmunología , Janus Quinasa 3/metabolismo , Leucocitos Mononucleares , Hígado/patología , Ratones SCID , Ratones Transgénicos , Activador de Plasminógeno de Tipo Uroquinasa/genética
8.
HLA ; 101(5): 524-525, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36397649

RESUMEN

HLA-A*24:02:159 differs from HLA-A*24:02:01:01 by one nucleotide in exon 3.


Asunto(s)
Pueblos del Este de Asia , Antígeno HLA-A24 , Humanos , Alelos , Nucleótidos , Análisis de Secuencia de ADN , Antígeno HLA-A24/genética
9.
J Biomed Sci ; 29(1): 80, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224625

RESUMEN

BACKGROUND: Human Papillomavirus type 18 (HPV18) is a high-risk HPV that is commonly associated with cervical cancer. HPV18 oncogenes E6 and E7 are associated with the malignant transformation of cells, thus the identification of human leukocyte antigen (HLA)-restricted E6/E7 peptide-specific CD8 + T cell epitopes and the creation of a HPV18 E6/E7 expressing cervicovaginal tumor in HLA-A2 transgenic mice will be significant for vaccine development. METHODS: In the below study, we characterized various human HLA class I-restricted HPV18 E6 and E7-specific CD8 + T cells mediated immune responses in HLA class I transgenic mice using DNA vaccines encoding HPV18E6 and HPV18E7. We then confirmed HLA-restricted E6/E7 specific CD8 + T cell epitopes using splenocytes from vaccinated mice stimulated with HPV18E6/E7 peptides. Furthermore, we used oncogenic DNA plasmids encoding HPV18E7E6(delD70), luciferase, cMyc, and AKT to create a spontaneous cervicovaginal carcinoma model in HLA-A2 transgenic mice. RESULTS: Therapeutic HPV18 E7 DNA vaccination did not elicit any significant CD8 + T cell response in HLA-A1, HLA-24, HLA-B7, HLA-B44 transgenic or wild type C57BL/6 mice, but it did generate a strong HLA-A2 and HLA-A11 restricted HPV18E7-specific CD8 + T cell immune response. We found that a single deletion of aspartic acid (D) at location 70 in HPV18E6 DNA abolishes the presentation of HPV18 E6 peptide (aa67-75) by murine MHC class I. We found that the DNA vaccine with this mutant HPV18 E6 generated E6-specific CD8 + T cells in HLA-A2. HLA-A11, HLA-A24 and HLA-b40 transgenic mice. Of note, HLA-A2 restricted, HPV18 E7 peptide (aa7-15)- and HPV18 E6 peptide (aa97-105)-specific epitopes are endogenously processed by HPV18 positive Hela-AAD (HLA-A*0201/Dd) cells. Finally, we found that injection of DNA plasmids encoding HPV18E7E6(delD70), AKT, cMyc, and SB100 can result in the development of adenosquamous carcinoma in the cervicovaginal tract of HLA-A2 transgenic mice. CONCLUSIONS: We characterized various human HLA class I-restricted HPV18 E6/E7 peptide specific CD8 + T cell epitopes in human HLA class I transgenic mice. We demonstrated that HPV18 positive Hela cells expressing chimeric HLA-A2 (AAD) do present both HLA-A2-restricted HPV18 E7 (aa7-15)- and HPV18 E6 (aa97-105)-specific CD8 + T cell epitopes. A mutant HPV18E6 that had a single deletion at location 70 obliterates the E6 presentation by murine MHC class I and remains oncogenic. The identification of these human MHC restricted HPV antigen specific epitopes as well as the HPV18E6/E7 expressing adenosquamous cell carcinoma model may have significant future translational potential.


Asunto(s)
Carcinoma Adenoescamoso , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Vacunas de ADN , Animales , Ácido Aspártico , Linfocitos T CD8-positivos , Carcinoma Adenoescamoso/complicaciones , Epítopos de Linfocito T/genética , Femenino , Antígenos HLA-A , Antígeno HLA-A1 , Antígeno HLA-A11 , Antígeno HLA-A2/genética , Antígeno HLA-A24 , Antígeno HLA-B40 , Antígeno HLA-B44 , Antígeno HLA-B7 , Células HeLa , Papillomavirus Humano 18 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Oncogénicas Virales/genética , Infecciones por Papillomavirus/complicaciones , Péptidos , Proteínas Proto-Oncogénicas c-akt , Linfocitos T Citotóxicos , Vacunas de ADN/genética
10.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232928

RESUMEN

Direct-acting antivirals (DAAs) have recently revolutionized the eradication of chronic hepatitis C virus (HCV) infection. However, the effects of DAAs on the development of hepatocellular carcinoma (HCC) remain unknown. Therefore, the present study aimed to investigate immune responses to HCC influenced by DAAs in HCV-infected patients and elucidate the underlying mechanisms. We compared immune responses to 19 different HCC-related tumor-associated antigen (TAA)-derived peptides and host immune cell profiles before and 24 weeks after a treatment with DAAs in 47 HLA-A24-positive patients. The relationships between the different immune responses and phenotypic changes in immune cells were also examined. The treatment with DAAs induced four types of immune responses to TAAs and markedly altered host immune cell profiles. Prominently, reductions in the frequencies of PD-1+CD4+ and PD-1+CD8+ T cells by DAAs were associated with enhanced immune responses to TAAs. The HCV F protein was identified as contributing to the increased frequency of PD-1+ T cells, which may be decreased after eradication by DAAs. DAAs altered the immune responses of patients to HCC by decreasing the frequency of PD-1-expressing CD4+ and CD8+ T cells.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C Crónica , Hepatitis C , Neoplasias Hepáticas , Antivirales/farmacología , Antivirales/uso terapéutico , Carcinoma Hepatocelular/patología , Antígeno HLA-A24/uso terapéutico , Hepacivirus , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Inmunidad , Neoplasias Hepáticas/patología , Receptor de Muerte Celular Programada 1
11.
J Immunol ; 209(9): 1652-1661, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36130828

RESUMEN

Cross-recognized public TCRs against HIV epitopes have been proposed to be important for the control of AIDS disease progression and HIV variants. The overlapping Nef138-8 and Nef138-10 peptides from the HIV Nef protein are HLA-A24-restricted immunodominant T cell epitopes, and an HIV mutant strain with a Y139F substitution in Nef protein can result in immune escape and is widespread in Japan. Here, we identified a pair of public TCRs specific to the HLA-A24-restricted Nef-138-8 epitope using PBMCs from White and Japanese patients, respectively, namely TD08 and H25-11. The gene use of the variable domain for TD08 and H25-11 is TRAV8-3, TRAJ10 for the α-chain and TRBV7-9, TRBD1*01, TRBJ2-5 for the ß-chain. Both TCRs can recognize wild-type and Y2F-mutated Nef138-8 epitopes. We further determined three complex structures, including TD08/HLA-A24-Nef138-8, H25-11/HLA-A24-Nef138-8, and TD08/HLA-A24-Nef138-8 (2F). Then, we revealed the molecular basis of the public TCR binding to the peptide HLA, which mostly relies on the interaction between the TCR and HLA and can tolerate the mutation in the Nef138-8 peptide. These findings promote the molecular understanding of T cell immunity against HIV epitopes and provide an important basis for the engineering of TCRs to develop T cell-based immunotherapy against HIV infection.


Asunto(s)
Infecciones por VIH , VIH-1 , Epítopos de Linfocito T , Antígeno HLA-A24 , Humanos , Epítopos Inmunodominantes , Péptidos/análisis , Receptores de Antígenos de Linfocitos T/análisis , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T Citotóxicos , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
12.
J Immunol ; 209(8): 1481-1491, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36165170

RESUMEN

The immunogenicity of a T cell Ag is correlated with the ability of its antigenic epitope to bind HLA and be stably presented to T cells. This presents a challenge for the development of effective cancer immunotherapies, as many self-derived tumor-associated epitopes elicit weak T cell responses, in part due to weak binding affinity to HLA. Traditional methods to increase peptide-HLA binding affinity involve modifying the peptide to reflect HLA allele binding preferences. Using a different approach, we sought to analyze whether the immunogenicity of wild-type peptides could be altered through modification of the HLA binding pocket. After analyzing HLA class I peptide binding pocket alignments, we identified an alanine 81 to leucine (A81L) modification within the F binding pocket of HLA-A*24:02 that was found to heighten the ability of artificial APCs to retain and present HLA-A*24:02-restricted peptides, resulting in increased T cell responses while retaining Ag specificity. This modification led to increased peptide exchange efficiencies for enhanced detection of low-avidity T cells and, when expressed on artificial APCs, resulted in greater expansion of Ag-specific T cells from melanoma-derived tumor-infiltrating lymphocytes. Our study provides an example of how modifications to the HLA binding pocket can enhance wild-type cognate peptide presentation to heighten T cell activation.


Asunto(s)
Epítopos de Linfocito T , Péptidos , Alanina , Antígeno HLA-A2 , Antígeno HLA-A24 , Leucina , Linfocitos T
13.
J Biol Chem ; 298(7): 102100, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35667438

RESUMEN

Rhesus monkeys have evolved MHC-encoded class I allomorphs such as Mamu-B∗098 that are capable of binding N-myristoylated short lipopeptides rather than conventional long peptides; however, it remains unknown whether such antigen-binding molecules exist in other species, including humans. We herein demonstrate that human leukocyte antigen (HLA)-A∗24:02 and HLA-C∗14:02 proteins, which are known to bind conventional long peptides, also have the potential to bind N-myristoylated short lipopeptides. These HLA class I molecules shared a serine at position 9 (Ser9) with Mamu-B∗098, in contrast to most MHC class I molecules that harbor a larger amino acid residue, such as tyrosine, at this position. High resolution X-ray crystallographic analyses of lipopeptide-bound HLA-A∗24:02 and HLA-C∗14:02 complexes indicated that Ser9 was at the bottom of the B pocket with its small hydroxymethyl side chain directed away from the B-pocket cavity, thereby contributing to the formation of a deep hydrophobic cavity suitable for accommodating the long-chain fatty acid moiety of lipopeptide ligands. Upon peptide binding, however, we found the hydrogen-bond network involving Ser9 was reorganized, and the remodeled B pocket was able to capture the second amino acid residue (P2) of peptide ligands. Apart from the B pocket, virtually no marked alterations were observed for the A and F pockets upon peptide and lipopeptide binding. Thus, we concluded that the structural flexibility of the large B pocket of HLA-A∗2402 and HLA-C∗1402 primarily accounted for their previously unrecognized capacity to bind such chemically distinct ligands as conventional peptides and N-myristoylated lipopeptides.


Asunto(s)
Antígeno HLA-A24 , Antígenos HLA-C , Lipopéptidos , Aminoácidos/química , Antígeno HLA-A24/química , Antígenos HLA-C/química , Antígenos de Histocompatibilidad Clase I/química , Humanos , Ligandos , Unión Proteica
14.
Cancer Sci ; 113(10): 3321-3329, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35766417

RESUMEN

T-cell receptor (TCR)-like Abs that specifically recognize antigenic peptides presented on MHC molecules have been developed for next-generation cancer immunotherapy. Recently, we reported a rapid and efficient method to generate TCR-like Abs using a rabbit system. We humanized previously generated rabbit-derived TCR-like Abs reacting Epstein-Barr virus peptide (BRLF1p, TYPVLEEMF) in the context of HLA-A24 molecules, produced chimeric antigen receptor (CAR)-T cells, and evaluated their antitumor effects using in vitro and in vivo tumor models. Humanization of the rabbit-derived TCR-like Abs using the complementarity-determining region grafting technology maintained their specificity and affinity. We prepared a second-generation CAR using single-chain variable fragment of the humanized TCR-like Abs and then transduced them into human T cells. The CAR-T cells specifically recognized BRLF1p/MHC molecules and lysed the target cells in an antigen-specific manner in vitro. They also demonstrated antitumor activity in a mouse xenograft model. We report the generation of CAR-T cells using humanized rabbit-derived TCR-like Abs. Together with our established and efficient generation procedure for TCR-like Abs using rabbits, our platform for the clinical application of humanized rabbit-derived TCR-like Abs to CAR-T cells will help improve next-generation cancer immunotherapy.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias , Receptores Quiméricos de Antígenos , Anticuerpos de Cadena Única , Animales , Regiones Determinantes de Complementariedad , Antígeno HLA-A24 , Herpesvirus Humano 4 , Humanos , Ratones , Neoplasias/terapia , Conejos , Receptores de Antígenos de Linfocitos T
15.
Int Immunopharmacol ; 109: 108804, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35526384

RESUMEN

BACKGROUND: Previous studies have demonstrated that human leukocyte antigen (HLA)-A*24:02 is a common genetic risk factor for antiepileptic drug-induced skin rash, while HLA-B*15:02 is a specific risk factor for carbamazepine (CBZ)-induced Stevens Johnson syndrome and toxin epidermal necrolysis. The HLA-B*15:02 allele can alter the repertoire of endogenous peptides to trigger CBZ-induced hypersensitivity. However, it is uncertain whether HLA-A*24:02 could produce alterations in the peptide repertoire during treatment with antiepileptic drugs. METHODS: We generated stable HMy2.C1R cells expressing HLA-A*24:02 and HLA-B*15:02, clarified into 4 groups according to with or without CBZ treatment. We employed LC/MSto detect the HLA-bound peptides in 4 groups. Furthermore, we conducted in silico analysis to seek th differential expressed genes (DEGs) associated with HLA-A*24:02 and HLA-B*15:02. Finally, we verify the DEGs via qRT-PCR and Western blotting. RESULTS: A total of 134 peptides were identified from the four groups, mainly comprising<15 mer peptides. In CBZ-treated groups, 29 and 30 peptides showed significantly increased respectively in HLA-A*24:02 and HLA-B*15:02 positive cells comprising Lysine in PΩ, but the sources of these lysine peptides are different. Three peptides were exclusively detected in the HLA-A*24:02 positive cells treated with CBZ, of which 'SRQVVRSSK' was derived from the immune associated protein coronin 1A (CORO1A). CORO1A and its mRNA were significantly expressed in HLA-A*24:02 positive cells treated with CBZ. Additionally, this significantly high expression was identified in HLA-A*24:02 positive cells that were treated with lamotrigine (LTG). Nonetheless, CORO1A were not decreased in HLA-B*15:02 positive cells with or without CBZ or LTG treatment. CONCLUSIONS: These findings confirmed that the alteration in the endogenous peptidome was a general mechanism of HLA-linked skin rashes and suggests that CORO1A is involved in HLA-A*24:02-associated skin rash.


Asunto(s)
Carbamazepina , Hipersensibilidad a las Drogas , Exantema , Proteínas de Microfilamentos , Síndrome de Stevens-Johnson , Anticonvulsivantes/efectos adversos , Carbamazepina/efectos adversos , Exantema/inducido químicamente , Exantema/metabolismo , Predisposición Genética a la Enfermedad , Antígeno HLA-A24/genética , Antígenos HLA-B/genética , Antígeno HLA-B15 , Humanos , Lisina , Péptidos/genética , Péptidos/metabolismo , Síndrome de Stevens-Johnson/genética
16.
PLoS One ; 17(3): e0265348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35290394

RESUMEN

BACKGROUND: HLA-B27 and -B57 were found in people with low levels of HIV-1 DNA, suggesting that HLA class I molecules may influence the size of HIV-1 reservoir. Aim of the study was to explore the association between HLA class I molecules and HIV-1 DNA in people with chronic HIV-1 infection. METHODS: Post-hoc analysis of the APACHE trial, on adults with chronic HIV-1 infection, prolonged suppressive antiretroviral therapy and good immunological profile. HIV-1 DNA was quantified in peripheral blood mononuclear cells (PBMCs); HLA-A, -B and -C were tested on genomic DNA. Crude odds ratios (OR) with their respective 95% Wald confidence intervals (95% CIs) were estimated by univariable logistic regression for HLAs with a p-value <0.10. RESULTS: We found 78 and 18 patients with HIV-1 DNA ≥100 copies/106PBMCs and with HIV-1 DNA <100 copies/106PBMCs, respectively. HLA-A24 was present in 21 (29.6%) participants among subjects with HIV-1 DNA ≥100 copies/106PBMCs and 1 (5.9%) among those with HIV-1 DNA <100 copies/106PBMCs (OR = 5.67, 95%CI = 0.79-46.03; p = 0.105); HLA-B39 was present in 1 (1.4%) with HIV-1 DNA ≥100 copies/106PBMCs and in 3 (17.6%) with HIV-1 DNA <100 copies/106PBMCs (OR = 13.71, 95%CI = 1.33-141.77; p = 0.028) and HLA-B55 in 3 (4.2%) and 3 (17.6%), respectively (OR = 4.43, 95%CI = 0.81-24.29; p = 0.087). All the three patients with HLA-B39 and HIV-1 DNA <100 copies/106PBMCs did not have HLA-A24. CONCLUSIONS: In patients with HIV-1 infection who maintained a good virological and immunological profile, HLA-B39 and -B55 may be associated with lower levels of HIV-1 DNA.


Asunto(s)
Infecciones por VIH , VIH-1 , Adulto , ADN , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , VIH-1/genética , Antígeno HLA-A24 , Antígeno HLA-B27 , Antígeno HLA-B39 , Humanos , Leucocitos Mononucleares , Carga Viral
17.
HLA ; 100(1): 64-66, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35277946

RESUMEN

HLA-A*24:02:138 differs from HLA-A*24:02:01:01 by one nucleotide substitution at position 549 C>T.


Asunto(s)
Pueblo Asiatico , Secuenciación de Nucleótidos de Alto Rendimiento , Alelos , Pueblo Asiatico/genética , China , Antígeno HLA-A24 , Humanos
18.
Microbiol Spectr ; 9(3): e0165921, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34937174

RESUMEN

COVID-19 vaccines are currently being administered worldwide and playing a critical role in controlling the pandemic. They have been designed to elicit neutralizing antibodies against Spike protein of the original SARS-CoV-2, and hence they are less effective against SARS-CoV-2 variants with mutated Spike than the original virus. It is possible that novel variants with abilities of enhanced transmissibility and/or immunoevasion will appear in the near future and perfectly escape from vaccine-elicited immunity. Therefore, the current vaccines may need to be improved to compensate for the viral evolution. For this purpose, it may be beneficial to take advantage of CD8+ cytotoxic T lymphocytes (CTLs). Several lines of evidence suggest the contribution of CTLs on the viral control in COVID-19, and CTLs target a wide range of proteins involving comparatively conserved nonstructural proteins. Here, we identified 22 HLA-A*24:02-restricted CTL candidate epitopes derived from the nonstructural polyprotein 1a (pp1a) of SARS-CoV-2 using computational algorithms, HLA-A*24:02 transgenic mice and the peptide-encapsulated liposomes. We focused on pp1a and HLA-A*24:02 because pp1a is relatively conserved and HLA-A*24:02 is predominant in East Asians such as Japanese. The conservation analysis revealed that the amino acid sequences of 7 out of the 22 epitopes were hardly affected by a number of mutations in the Sequence Read Archive database of SARS-CoV-2 variants. The information of such conserved epitopes might be useful for designing the next-generation COVID-19 vaccine that is universally effective against any SARS-CoV-2 variants by the induction of both anti-Spike neutralizing antibodies and CTLs specific for conserved epitopes. IMPORTANCE COVID-19 vaccines have been designed to elicit neutralizing antibodies against the Spike protein of the original SARS-CoV-2, and hence they are less effective against variants. It is possible that novel variants will appear and escape from vaccine-elicited immunity. Therefore, the current vaccines may need to be improved to compensate for the viral evolution. For this purpose, it may be beneficial to take advantage of CD8+ cytotoxic T lymphocytes (CTLs). Here, we identified 22 HLA-A*24:02-restricted CTL candidate epitopes derived from the nonstructural polyprotein 1a (pp1a) of SARS-CoV-2. We focused on pp1a and HLA-A*24:02 because pp1a is conserved and HLA-A*24:02 is predominant in East Asians. The conservation analysis revealed that the amino acid sequences of 7 out of the 22 epitopes were hardly affected by mutations in the database of SARS-CoV-2 variants. The information might be useful for designing the next-generation COVID-19 vaccine that is universally effective against any variants.


Asunto(s)
COVID-19/inmunología , Epítopos/inmunología , Antígeno HLA-A24/genética , Antígeno HLA-A24/inmunología , Mutación , Poliproteínas/genética , SARS-CoV-2/genética , Linfocitos T Citotóxicos/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Epítopos/genética , Antígeno HLA-A24/aislamiento & purificación , Humanos , Ratones , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
19.
Front Immunol ; 12: 752699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759930

RESUMEN

γδT cell receptors (γδTCRs) recognize a broad range of malignantly transformed cells in mainly a major histocompatibility complex (MHC)-independent manner, making them valuable additions to the engineered immune effector cell therapy that currently focuses primarily on αßTCRs and chimeric antigen receptors (CARs). As an exception to the rule, we have previously identified a γδTCR, which exerts antitumor reactivity against HLA-A*24:02-expressing malignant cells, however without the need for defined HLA-restricted peptides, and without exhibiting any sign of off-target toxicity in humanized HLA-A*24:02 transgenic NSG (NSG-A24:02) mouse models. This particular tumor-HLA-A*24:02-specific Vγ5Vδ1TCR required CD8αα co-receptor for its tumor reactive capacity when introduced into αßT cells engineered to express a defined γδTCR (TEG), referred to as TEG011; thus, it was only active in CD8+ TEG011. We subsequently explored the concept of additional redirection of CD4+ T cells through co-expression of the human CD8α gene into CD4+ and CD8+ TEG011 cells, later referred as TEG011_CD8α. Adoptive transfer of TEG011_CD8α cells in humanized HLA-A*24:02 transgenic NSG (NSG-A24:02) mice injected with tumor HLA-A*24:02+ cells showed superior tumor control in comparison to TEG011, and to mock control groups. The total percentage of mice with persisting TEG011_CD8α cells, as well as the total number of TEG011_CD8α cells per mice, was significantly improved over time, mainly due to a dominance of CD4+CD8+ double-positive TEG011_CD8α, which resulted in higher total counts of functional T cells in spleen and bone marrow. We observed that tumor clearance in the bone marrow of TEG011_CD8α-treated mice associated with better human T cell infiltration, which was not observed in the TEG011-treated group. Overall, introduction of transgenic human CD8α receptor on TEG011 improves antitumor reactivity against HLA-A*24:02+ tumor cells and further enhances in vivo tumor control.


Asunto(s)
Antígenos CD8 , Antígeno HLA-A24 , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T gamma-delta , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , Ratones Transgénicos , Neoplasias/terapia
20.
J Virol ; 95(23): e0125921, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34523962

RESUMEN

Although mutant-specific T cells are elicited in some individuals infected with HIV-1 mutant viruses, the detailed characteristics of these T cells remain unknown. A recent study showed that the accumulation of strains expressing Nef135F, which were selected by HLA-A*24:02-restricted T cells, was associated with poor outcomes in individuals with the detrimental HLA-B*35:01 allele and that HLA-B*35:01-restricted NefYF9 (Nef135-143)-specific T cells failed to recognize target cells infected with Nef135F mutant viruses. Here, we investigated HLA-B*35:01-restricted T cells specific for the NefFF9 epitope incorporating the Nef135F mutation. Longitudinal T-cell receptor (TCR) clonotype analysis demonstrated that 3 types of HLA-B*35:01-restricted T cells (wild-type [WT] specific, mutant specific, and cross-reactive) with different T cell repertoires were elicited during the clinical course. HLA-B*35:01+ individuals possessing wild-type-specific T cells had a significantly lower plasma viral load (pVL) than those with mutant-specific and/or cross-reactive T cells, even though the latter T cells effectively recognized the mutant virus-infected cells. These results suggest that mutant-specific and cross-reactive T cells could only partially suppress HIV-1 replication in vivo. An ex vivo analysis of the T cells showed higher expression of PD-1 on cross-reactive T cells and lower expression of CD160/2B4 on the mutant-specific T cells than other T cells, implying that these inhibitory and stimulatory molecules are key to the reduced function of these T cells. In the present study, we demonstrate that mutant-specific and cross-reactive T cells do not contribute to the suppression of HIV-1 replication in HIV-1-infected individuals, even though they have the capacity to recognize mutant virus-infected cells. Thus, the collaboration of HLA-A*24:02 with the detrimental allele HLA-B*35:01 resulted in the coevolution of HIV-1 alongside virus-specific T cells, leading to poorer clinical outcomes. IMPORTANCE HIV-1 escape mutations are selected under pressure from HIV-1-specific CD8+ T cells. Accumulation of these mutations in circulating viruses impairs the control of HIV-1 by HIV-1-specific T cells. Although it is known that HIV-1-specific T cells recognizing mutant virus were elicited in some individuals infected with a mutant virus, the role of these T cells remains unclear. Accumulation of phenylalanine at HIV-1 Nef135 (Nef135F), which is selected by HLA-A*24:02-restricted T cells, led to poor clinical outcome in individuals carrying the detrimental HLA-B*35:01 allele. In the present study, we found that HLA-B*35:01-restricted mutant-specific and cross-reactive T cells were elicited in HLA-B*35:01+ individuals infected with the Nef135F mutant virus. These T cells could not effectively suppress HIV-1 replication in vivo even though they could recognize mutant virus-infected cells in vitro. Mutant-specific and cross-reactive T cells expressed lower levels of stimulatory molecules and higher levels of inhibitory molecules, respectively, suggesting a potential mechanism whereby these T cells fail to suppress HIV-1 replication in HIV-1-infected individuals.


Asunto(s)
Alelos , VIH-1/genética , Antígeno HLA-A24/química , Antígeno HLA-A24/metabolismo , Antígeno HLA-B35/química , Antígeno HLA-B35/metabolismo , Linfocitos T CD8-positivos , Estudios Transversales , Epítopos de Linfocito T/genética , Infecciones por VIH/virología , Antígeno HLA-A24/genética , Antígenos HLA-B/química , Antígenos HLA-B/genética , Antígeno HLA-B35/genética , Humanos , Mutación , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...