Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 888
Filtrar
1.
J Biol Chem ; 298(5): 101903, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398092

RESUMEN

The sugars streptose and dihydrohydroxystreptose (DHHS) are unique to the bacteria Streptomyces griseus and Coxiella burnetii, respectively. Streptose forms the central moiety of the antibiotic streptomycin, while DHHS is found in the O-antigen of the zoonotic pathogen C. burnetii. Biosynthesis of these sugars has been proposed to follow a similar path to that of TDP-rhamnose, catalyzed by the enzymes RmlA, RmlB, RmlC, and RmlD, but the exact mechanism is unclear. Streptose and DHHS biosynthesis unusually requires a ring contraction step that could be performed by orthologs of RmlC or RmlD. Genome sequencing of S. griseus and C. burnetii has identified StrM and CBU1838 proteins as RmlC orthologs in these respective species. Here, we demonstrate that both enzymes can perform the RmlC 3'',5'' double epimerization activity necessary to support TDP-rhamnose biosynthesis in vivo. This is consistent with the ring contraction step being performed on a double epimerized substrate. We further demonstrate that proton exchange is faster at the 3''-position than the 5''-position, in contrast to a previously studied ortholog. We additionally solved the crystal structures of CBU1838 and StrM in complex with TDP and show that they form an active site highly similar to those of the previously characterized enzymes RmlC, EvaD, and ChmJ. These results support the hypothesis that streptose and DHHS are biosynthesized using the TDP pathway and that an RmlD paralog most likely performs ring contraction following double epimerization. This work will support the elucidation of the full pathways for biosynthesis of these unique sugars.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Carbohidrato Epimerasas , Coxiella burnetii/enzimología , Streptomyces griseus/enzimología , Carbohidrato Epimerasas/genética , Azúcares de Nucleósido Difosfato/biosíntesis , Nucleótidos de Timina/biosíntesis
2.
mBio ; 12(6): e0284621, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34809459

RESUMEN

The Gram-negative cell envelope is a complex structure delineating the cell from its environment. Recently, we found that enterobacterial common antigen (ECA) plays a role maintaining the outer membrane (OM) permeability barrier, which excludes toxic molecules including many antibiotics. ECA is a conserved carbohydrate found throughout Enterobacterales (e.g., Salmonella, Klebsiella, and Yersinia). There are two OM forms of ECA (phosphoglyceride-linked ECAPG and lipopolysaccharide-linked ECALPS) and one periplasmic form of ECA (cyclic ECACYC). ECAPG, found in the outer leaflet of the OM, consists of a linear ECA oligomer attached to phosphoglyceride through a phosphodiester linkage. The process through which ECAPG is produced from polymerized ECA is unknown. Therefore, we set out to identify genes interacting genetically with ECAPG biosynthesis in Escherichia coli K-12 using the competition between ECA and peptidoglycan biosynthesis. Through transposon-directed insertion sequencing, we identified an interaction between elyC and ECAPG biosynthesis. ElyC is an inner membrane protein previously shown to alter peptidoglycan biosynthesis rates. We found ΔelyC was lethal specifically in strains producing ECAPG without other ECA forms, suggesting ECAPG biosynthesis impairment or dysregulation. Further characterization suggested ElyC inhibits ECAPG synthesis in a posttranscriptional manner. Moreover, the full impact of ElyC on ECA levels requires the presence of ECACYC. Our data demonstrate ECACYC can regulate ECAPG synthesis in strains wild type for elyC. Overall, our data demonstrate ElyC and ECACYC act in a novel pathway that regulates the production of ECAPG, supporting a model in which ElyC provides feedback regulation of ECAPG production based on the periplasmic levels of ECACYC. IMPORTANCE Enterobacterial common antigen (ECA) is a conserved polysaccharide present on the surface of the outer membrane (OM) and in the periplasm of the many pathogenic bacteria belonging to Enterobacterales, including Klebsiella pneumoniae, Salmonella enterica, and Yersinia pestis. As the OM is a permeability barrier that excludes many antibiotics, synthesis pathways for OM molecules are promising targets for antimicrobial discovery. Here, we elucidated, in E. coli K-12, a new pathway for the regulation of biosynthesis of one cell surface form of ECA, ECAPG. In this pathway, an inner membrane protein, ElyC, and the periplasmic form of ECA, ECACYC, genetically interact to inhibit the synthesis of ECAPG, potentially through feedback regulation based on ECACYC levels. This is the first insight into the pathway responsible for synthesis of ECAPG and represents a potential target for weakening the OM permeability barrier. Furthermore, this pathway provides a tool for experimental manipulation of ECAPG levels.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Escherichia coli/metabolismo , Glicerofosfolípidos/biosíntesis , Antígenos Bacterianos/química , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Vías Biosintéticas , Escherichia coli/genética , Glicerofosfolípidos/química
3.
World J Microbiol Biotechnol ; 37(10): 175, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34519879

RESUMEN

The 38 kDa protein is a major antigen of mycobacterium tuberculosis and has been widely used in TB serodiagnosis, due to its highly sensitivity and specificity. Here we attempt to establish a production platform of recombinant 38 kDa protein in mammalian cells and to evaluate the potential value of 38 kDa protein in TB serodiagnosis. The 38 kDa gene is synthesized and cloned into a lentiviral expressing vector. Recombinant lentiviral vector LV-CMV-38 kDa-eGFP was packaged, titered, and then transduced into HEK 293 T cells. Recombinant cell lines were selected by limiting dilution. Supernatants were collected and purified by HisTrapTM HP column. Western blot showed a molecular weight of approximate 38 kDa in cell supernatants as expected. ELISA assay confirmed the immunological specificity of the obtained protein in the presence of MTB-infected human serum samples. In all, we have obtained a stable cell line with long-term and robust expression of secretory MTB 38 kDa protein, which may provide a promising candidate antigen for the development of TB serological diagnosis.


Asunto(s)
Antígenos Bacterianos/genética , Expresión Génica , Lipoproteínas/genética , Mycobacterium tuberculosis/metabolismo , Antígenos Bacterianos/análisis , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/aislamiento & purificación , Clonación Molecular , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Lipoproteínas/análisis , Lipoproteínas/biosíntesis , Lipoproteínas/aislamiento & purificación , Mycobacterium tuberculosis/genética , Proteínas Recombinantes/análisis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Tuberculosis/microbiología
4.
Microbiol Spectr ; 9(2): e0109521, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34549992

RESUMEN

Almost 140 years after the identification of Mycobacterium tuberculosis as the etiological agent of tuberculosis, important aspects of its biology remain poorly described. Little is known about the role of posttranscriptional control of gene expression and RNA biology, including the role of most of the small RNAs (sRNAs) identified to date. We have carried out a detailed investigation of the M. tuberculosis sRNA F6 and shown it to be dependent on SigF for expression and significantly induced in starvation conditions in vitro and in a mouse model of infection. Further exploration of F6 using an in vitro starvation model of infection indicates that F6 affects the expression of the essential chaperonins GroEL2 and GroES. Our results point toward a role for F6 during periods of low metabolic activity typically associated with long-term survival of M. tuberculosis in human granulomas. IMPORTANCE Control of gene expression via small regulatory RNAs (sRNAs) is poorly understood in one of the most successful pathogens, Mycobacterium tuberculosis. Here, we present an in-depth characterization of the sRNA F6, including its expression in different infection models and the differential gene expression observed upon deletion of the sRNA. Our results demonstrate that deletion of F6 leads to dysregulation of the two essential chaperonins GroEL2 and GroES and, moreover, indicate a role for F6 in the long-term survival and persistence of M. tuberculosis in the human host.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Proteínas Bacterianas/biosíntesis , Chaperonina 60/biosíntesis , Regulación Bacteriana de la Expresión Génica/genética , Proteínas de Choque Térmico/biosíntesis , Mycobacterium tuberculosis/metabolismo , ARN Pequeño no Traducido/genética , Animales , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/genética , ARN Bacteriano/genética , Factor sigma/genética , Inanición/patología , Tuberculosis/patología
5.
Biomed Pharmacother ; 142: 112047, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34426260

RESUMEN

Drug-resistant tuberculosis (DR-TB) poses a new threat to global health; to improve the treatment outcome, therapeutic vaccines are considered the best chemotherapy adjuvants. Unfortunately, there is no therapeutic vaccine approved against DR-TB. Our study assessed the therapeutic efficacy of a recombinant drug-resistant BCG (RdrBCG) vaccine in DR-TB. We constructed the RdrBCG overexpressing Ag85B and Rv2628 by selecting drug-resistant BCG strains and transformed them with plasmid pEBCG or pIBCG to create RdrBCG-E and RdrBCG-I respectively. Following successful stability testing, we tested the vaccine's safety in severe combined immune deficient (SCID) mice that lack both T and B lymphocytes plus immunoglobulins. Finally, we evaluated the RdrBCG's therapeutic efficacy in BALB/c mice infected with rifampin-resistant M. tuberculosis and treated with a second-line anti-TB regimen. We obtained M. bovis strains which were resistant to several second-line drugs and M. tuberculosis resistant to rifampin. Notably, the exogenously inserted genes were lost in RdrBCG-E but remained stable in the RdrBCG-I both in vitro and in vivo. When administered adjunct to a second-line anti-TB regimen in a murine model of DR-TB, the RdrBCG-I lowered lung M. tuberculosis burden by 1 log10. Furthermore, vaccination with RdrBCG-I adjunct to chemotherapy minimized lung tissue pathology in mice. Most importantly, the RdrBCG-I showed almost the same virulence as its parent BCG Tice strain in SCID mice. Our findings suggested that the RdrBCG-I was stable, safe and effective as a therapeutic vaccine. Hence, the "recombinant" plus "drug-resistant" BCG strategy could be a useful concept for developing therapeutic vaccines against DR-TB.


Asunto(s)
Antituberculosos/farmacología , Vacuna BCG/inmunología , Farmacorresistencia Bacteriana/genética , Mycobacterium bovis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Pulmonar/prevención & control , Vacunas Sintéticas/inmunología , Amicacina/farmacología , Amicacina/uso terapéutico , Animales , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Antituberculosos/uso terapéutico , Vacuna BCG/biosíntesis , Vacuna BCG/genética , Vacuna BCG/uso terapéutico , Modelos Animales de Enfermedad , Levofloxacino/farmacología , Levofloxacino/uso terapéutico , Ratones Endogámicos BALB C , Ratones SCID , Mycobacterium bovis/química , Mycobacterium bovis/efectos de los fármacos , Mycobacterium tuberculosis/patogenicidad , Plásmidos , Protionamida/farmacología , Protionamida/uso terapéutico , Pirazinamida/farmacología , Pirazinamida/uso terapéutico , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/patología , Vacunas Sintéticas/biosíntesis , Vacunas Sintéticas/genética , Vacunas Sintéticas/uso terapéutico , Virulencia
6.
Infect Immun ; 89(11): e0036021, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34424754

RESUMEN

Bacteria form biofilms for their protection against environmental stress and produce virulence factors within the biofilm. Biofilm formation in acidified environments is regulated by a two-component system, as shown by studies on isogenic mutants of the sensor protein of the two-component regulatory system in Streptococcus pyogenes. In this study, we found that the LiaS histidine kinase sensor mediates biofilm production and pilus expression in an acidified environment through glucose fermentation. The liaS isogenic mutant produced biofilms in a culture acidified by hydrochloric acid but not glucose, suggesting that the acidified environment is sensed by another protein. In addition, the trxS isogenic mutant could not produce biofilms or activate the mga promoter in an acidified environment. Mass spectrometry analysis showed that TrxS regulates M protein, consistent with the transcriptional regulation of emm, which encodes M protein. Our results demonstrate that biofilm production during environmental acidification is directly under the control of TrxS.


Asunto(s)
Proteínas Bacterianas/fisiología , Biopelículas/crecimiento & desarrollo , Streptococcus pyogenes/fisiología , Antígenos Bacterianos/biosíntesis , Proteínas de la Membrana Bacteriana Externa/biosíntesis , Proteínas Bacterianas/genética , Proteínas Portadoras/biosíntesis , Exotoxinas/fisiología , Histidina Quinasa/fisiología , Concentración de Iones de Hidrógeno , Fosforilación , Regiones Promotoras Genéticas
7.
Gastroenterology ; 160(6): 1970-1985, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33476671

RESUMEN

BACKGROUND & AIMS: It is currently unclear whether reported changes in the gut microbiome are cause or consequence of inflammatory bowel disease (IBD). Therefore, we studied the gut microbiome of IBD-discordant and -concordant twin pairs, which offers the unique opportunity to assess individuals at increased risk of developing IBD, namely healthy cotwins from IBD-discordant twin pairs. METHODS: Fecal samples were obtained from 99 twins (belonging to 51 twin pairs), 495 healthy age-, sex-, and body mass index-matched controls, and 99 unrelated patients with IBD. Whole-genome metagenomic shotgun sequencing was performed. Taxonomic and functional (pathways) composition was compared among healthy cotwins, IBD-twins, unrelated patients with IBD, and healthy controls with multivariable (ie, adjusted for potential confounding) generalized linear models. RESULTS: No significant differences were observed in the relative abundance of species and pathways between healthy cotwins and their IBD-twins (false discovery rate <0.10). Compared with healthy controls, 13, 19, and 18 species, and 78, 105, and 153 pathways were found to be differentially abundant in healthy cotwins, IBD-twins, and unrelated patients with IBD, respectively (false discovery rate <0.10). Of these, 8 (42.1%) of 19 and 1 (5.6%) of 18 species, and 37 (35.2%) of 105 and 30 (19.6%) of 153 pathways overlapped between healthy cotwins and IBD-twins, and healthy cotwins and unrelated patients with IBD, respectively. Many of the shared species and pathways have previously been associated with IBD. The shared pathways include potentially inflammation-related pathways, for example, an increase in propionate degradation and L-arginine degradation pathways. CONCLUSIONS: The gut microbiome of healthy cotwins from IBD-discordant twin pairs displays IBD-like signatures. These IBD-like microbiome signatures might precede the onset of IBD. However, longitudinal follow-up studies are needed to infer a causal relationship.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Inflamatorias de la Mama/epidemiología , Neoplasias Inflamatorias de la Mama/microbiología , Adulto , Antígenos Bacterianos/biosíntesis , Estudios de Casos y Controles , Estudios Transversales , Heces/microbiología , Femenino , Microbioma Gastrointestinal/fisiología , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Países Bajos/epidemiología , Fenotipo , Factores de Riesgo , Sideróforos/biosíntesis , Gemelos Dicigóticos , Gemelos Monocigóticos , Adulto Joven
8.
Protein Expr Purif ; 180: 105818, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33418060

RESUMEN

Campylobacteriosis is a disease in humans caused by the infection from Campylobacter spp. Human cases are mainly due to Campylobacter jejuni, although C. coli can cause gastroenteritis in humans as well. The bacteria are commensal in chicken tract and can be contaminated into chicken products during processing. Obviously, detecting reagents such as a specific antibody is essential for the development of immune-based detection methods for C. jejuni or C. coli. In this study, in silico techniques were used to design a chimeric recombinant antigen, named multiepitope antigen (MEA), for the production of specific polyclonal antibody. To design MEA polypeptide based on C. jejuni fibronectin-binding protein or CadF, four conserved and unique antigenic peptides were identified and fused together directly. The C. jejuni CadF-based MEA polypeptide fused with two single six-histidine tags at both C- and N-terminal ends was expressed under Escherichia coli expression system. The recombinant MEA was successfully produced and purified by Ni-NTA resin with a high satisfactory yield. Indirect ELISA results showed that anti-MEA polyclonal antibody derived from rabbit serum had a titer of 16,000, indicating high antigenicity of MEA polypeptide. Dot blot results also confirmed that the produced anti-MEA antibody could specifically recognize both C. jejuni and C. coli whole cells as expected while there was no cross-reactivity to non-Campylobacter spp. tested in this study.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos , Proteínas de la Membrana Bacteriana Externa , Campylobacter coli , Campylobacter jejuni , Proteínas Portadoras , Epítopos , Expresión Génica , Proteínas Recombinantes de Fusión , Animales , Anticuerpos Antibacterianos/química , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/biosíntesis , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Campylobacter coli/química , Campylobacter coli/genética , Campylobacter coli/inmunología , Campylobacter jejuni/química , Campylobacter jejuni/genética , Campylobacter jejuni/inmunología , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Epítopos/biosíntesis , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Conejos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología
9.
Prep Biochem Biotechnol ; 51(1): 9-15, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32393098

RESUMEN

Cancer is considered as a disease with high rates of mortality and morbidity. The limitations and side effects of common treatments have prompted the need for innovative cancer therapies. Furthermore, selectivity and targeting of cancer cells are crucial factors to successful treatment of cancer. One of these methods is the use of bacterial toxins including Bacillus anthracis toxin to aid cancer therapy. This toxin is composed of three polypeptides: protective factor (PA), lethal factor (LF), and edema factor (EF). PA can bind to various surface receptors of all types of human cells and it internalizes the lethal factor and edema factor subunits of the toxin in the cytosol. In the present study, we cloned and expressed the lef gene of B. anthracis as the lethal part of the toxin in Bacillus subtilis WB600 by a shuttle expression vector PHT4. The rLF made in B. subtilis is efficiently secreted by the host into the culture medium which facilitates downstream processing. The rLF can be used to study cancer treatment. Abbreviations: EF: edema factor; LF: lethal factor; PA: protective factor; rLF: recombinant lethal factor; rPAm: recombinant protective factor mutants; uPA: urokinase-type plasminogen activator; uPAR: urokinase-type plasminogen activator receptor.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/genética , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/genética , Neoplasias/metabolismo , Antígenos Bacterianos/farmacología , Toxinas Bacterianas/farmacología , Supervivencia Celular/efectos de los fármacos , Expresión Génica , Genes Bacterianos , Vectores Genéticos , Células HeLa , Humanos , Neoplasias/patología , Plásmidos/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
10.
Subcell Biochem ; 96: 563-577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33252744

RESUMEN

Anthrax toxin is a major virulence factor of Bacillus anthracis, a Gram-positive bacterium which can form highly stable spores that are the causative agents of the disease, anthrax. While chiefly a disease of livestock, spores can be "weaponized" as a bio-terrorist agent, and can be deadly if not recognized and treated early with antibiotics. The intracellular pathways affected by the enzymes are broadly understood and are not discussed here. This chapter focuses on what is known about the assembly of secreted toxins on the host cell surface and how the toxin is delivered into the cytosol. The central component is the "Protective Antigen", which self-oligomerizes and forms complexes with its pay-load, either Lethal Factor or Edema Factor. It binds a host receptor, CMG2, or a close relative, triggering receptor-mediated endocytosis, and forms a remarkably elegant yet powerful machine that delivers toxic enzymes into the cytosol, powered only by the pH gradient across the membrane. We now have atomic structures of most of the starting, intermediate and final assemblies in the infectious process. Together with a major body of biophysical, mutational and biochemical work, these studies reveal a remarkable story of both how toxin assembly is choreographed in time and space.


Asunto(s)
Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Carbunco/microbiología , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/genética , Bacillus anthracis/química , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/genética , Humanos , Transporte de Proteínas
11.
Biomolecules ; 10(11)2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233724

RESUMEN

Neonatal sepsis is a life-threatening condition and Staphylococcus aureus is one of its major causes. However, to date, no rapid and sensitive diagnostic tool has been developed for its direct detection. Bioinformatics analyses identified a surface-exposed 112-amino acid polypeptide of the cell wall protein NWMN_1649, a surface protein involved in cell aggregation and biofilm formation, as being a species-specific and highly conserved moiety. The polypeptide was cloned, purified, and used to immunize mice to raise specific immunoglobulins. The purified antibodies were conjugated to gold nano-particles and used to assemble an immunochromatographic strip (ICS). The developed prototype ICS detected as low as 5 µg purified polypeptide and 102 CFU/mL S. aureus within 15 min. The strip showed superior ability to directly detect S. aureus in neonatal sepsis blood specimens without prior sample processing. Moreover, it showed no cross-reaction in specimens infected with two other major causes of neonatal sepsis; coagulase-negative staphylococci and Klebsiella pneumoniae. The selected NWMN_1649-derived polypeptide demonstrates success as a promising biomolecule upon which a prototype ICS has been developed. This ICS provides a rapid, direct, sensitive, and specific option for the detection of S. aureus causing neonatal sepsis. Such a tool is urgently needed especially in resources-limited countries.


Asunto(s)
Cromatografía de Afinidad/métodos , Sepsis Neonatal/diagnóstico , Sepsis Neonatal/inmunología , Péptidos/química , Péptidos/inmunología , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/inmunología , Animales , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/aislamiento & purificación , Biología Computacional , Simulación por Computador , Femenino , Humanos , Recién Nacido , Nanopartículas del Metal/química , Ratones Endogámicos BALB C , Sepsis Neonatal/sangre , Sepsis Neonatal/microbiología , Biosíntesis de Péptidos/inmunología , Péptidos/aislamiento & purificación , Sensibilidad y Especificidad , Infecciones Estafilocócicas/sangre , Staphylococcus aureus/citología , Staphylococcus aureus/inmunología
12.
mBio ; 11(4)2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32788387

RESUMEN

The outer membrane (OM) of Gram-negative bacteria poses a barrier to antibiotic entry due to its high impermeability. Thus, there is an urgent need to study the function and biogenesis of the OM. In Enterobacterales, an order of bacteria with many pathogenic members, one of the components of the OM is enterobacterial common antigen (ECA). We have known of the presence of ECA on the cell surface of Enterobacterales for many years, but its properties have only more recently begun to be unraveled. ECA is a carbohydrate antigen built of repeating units of three amino sugars, the structure of which is conserved throughout Enterobacterales. There are three forms of ECA, two of which (ECAPG and ECALPS) are located on the cell surface, while one (ECACYC) is located in the periplasm. Awareness of the importance of ECA has increased due to studies of its function that show it plays a vital role in bacterial physiology and interaction with the environment. Here, we review the discovery of ECA, the pathways for the biosynthesis of ECA, and the interactions of its various forms. In addition, we consider the role of ECA in the host immune response, as well as its potential roles in host-pathogen interaction. Furthermore, we explore recent work that offers insights into the cellular function of ECA. This review provides a glimpse of the biological significance of this enigmatic molecule.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/inmunología , Vías Biosintéticas , Bacterias Gramnegativas/metabolismo , Animales , Anticuerpos Antibacterianos/sangre , Humanos , Espectrometría de Masas
13.
Sci Rep ; 10(1): 9547, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533032

RESUMEN

For centuries, herbs have been used by traditional therapists around the world to treat gastrointestinal tract disorders, such as gastritis. We hypothesized that the anti-Helicobacter pylori properties of phytoncide, which is extracted from pinecone waste, would facilitate use as a natural gastroprotective product to treat gastrointestinal tract disorders. Thus, we investigated in vitro antibacterial efficacy against H. pylori by agar diffusion assay. To determine the gastroprotective properties of phytoncide, we conducted hematoxylin and eosin staining, performed assays for the detection of the cytotoxin gene, and evaluated pro-inflammatory cytokine expression in H. pylori-infected C57BL/6 mice. Phytoncide significantly inhibited the survival of H. pylori in the gastrointestinal system of C57BL/6 mice. Reduction of gastric severity in H. pylori-infected mice was associated with reductions in the expression levels of pro-inflammatory cytokines in the gastric mucosa, and of the cytotoxin CagA gene in phytoncide treated groups (P < 0.05 and P < 0.01). In conclusion, phytoncide significantly inhibited the growth of H. pylori in gastro tissue, possibly due to the abundant α-pinene present in the phytoncide as detected by HPLC analysis. Further studies are needed to validate our findings, but we suggest that phytoncide has the potential to be used as a natural ingredient in anti-H. pylori products.


Asunto(s)
Antibacterianos/uso terapéutico , Gastritis/prevención & control , Infecciones por Helicobacter/prevención & control , Helicobacter pylori/efectos de los fármacos , Monoterpenos/uso terapéutico , Pinus/química , Extractos Vegetales/uso terapéutico , Amoxicilina/farmacología , Amoxicilina/uso terapéutico , Animales , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Cromatografía Líquida de Alta Presión , Claritromicina/farmacología , Claritromicina/uso terapéutico , Citocinas/biosíntesis , Citocinas/genética , ADN Bacteriano/genética , Evaluación Preclínica de Medicamentos , Flores/química , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Gastritis/microbiología , Glycyrrhiza , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/genética , Helicobacter pylori/inmunología , Inmunoglobulina G/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Omeprazol/farmacología , Omeprazol/uso terapéutico , Organismos Libres de Patógenos Específicos
14.
PLoS One ; 15(5): e0229700, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32379829

RESUMEN

One of the most important and exclusive characteristics of mycobacteria is their cell wall. Amongst its constituent components are two related families of glycosylated lipids, diphthioceranates and phthiocerol dimycocerosate (PDIM) and its variant phenolic glycolipids (PGL). PGL have been associated with cell wall impermeability, phagocytosis, defence against nitrosative and oxidative stress and, intriguingly, biofilm formation. In bacteria from the Mycobacterium tuberculosis complex (MTBC), the biosynthetic pathway of the phenolphthiocerol moiety of PGL depends upon the expression of several genes encoding type I polyketide synthases (PKS), namely ppsA-E and pks15/1 which constitute the PDIM + PGL locus, and that are highly conserved in PDIM/PGL-producing strains. Consensus has not been achieved regarding the genetic organization of pks15/1 locus and knowledge is lacking on its transcriptional signature. Here we explore publicly available datasets of transcriptome data (RNA-seq) from more than 100 MTBC experiments in 40 growth conditions to outline the transcriptional structure and signature of pks15/1, using a differential expression approach to infer the regulatory patterns involving these and related genes. We show that pks1 expression is highly correlated with fadD22, Rv2949c, lppX, fadD29 and, also, pks6 and pks12, with the first three putatively integrating into a polycistronic structure. We evidence dynamic transcriptional heterogeneity within the genes involved in phenolphtiocerol and phenolic glycolipid production, most exhibiting up-regulation upon acidic pH and antibiotic exposure and down-regulation under hypoxia, dormancy, and low/high iron concentration. We finally propose a model based on transcriptome data in which σD positively regulates pks1, pks15 and fadD22, while σB and σE factors exert negative regulation at an upper level.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Glucolípidos/biosíntesis , Glucolípidos/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Sintasas Poliquetidas/genética , Transcriptoma , Pared Celular/metabolismo , Simulación por Computador , Redes Reguladoras de Genes , Sitios Genéticos , Genoma Bacteriano/genética , Ligasas/genética , RNA-Seq , Virulencia/genética
15.
J Gen Appl Microbiol ; 66(3): 169-174, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31511443

RESUMEN

MPIase (membrane protein integrase) is an essential glycolipid that drives protein integration into the inner membrane of E. coli, while glycolipid ECA (enterobacterial common antigen) is a major component at the surface of the outer membrane. Irrespective of the differences in molecular weight, subcellular localization and function in cells, the glycan chains of the two glycolipids are similar, since the repeating unit comprising the glycan chains is the same. A series of biosynthetic genes for ECA, including ones for the corresponding nucleotide sugars, have been identified and extensively characterized. In this study, we found that knockouts as to the respective genes for ECA biosynthesis can grow in the minimum medium with the normal expression level of MPIase, indicating that MPIase can be biosynthesized de novo without the utilization of any compounds generated through ECA biosynthesis. Conversely, ECA was expressed normally upon MPIase depletion. From these results, we conclude that the biosynthetic genes for MPIase and ECA are independent.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Escherichia coli/genética , Genes Bacterianos , Glucolípidos/biosíntesis , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Escherichia coli/metabolismo , Glucolípidos/química , Glucolípidos/genética , Mutación
16.
J Biol Chem ; 294(42): 15237-15256, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31506299

RESUMEN

Group A carbohydrate (GAC) is a bacterial peptidoglycan-anchored surface rhamnose polysaccharide (RhaPS) that is essential for growth of Streptococcus pyogenes and contributes to its ability to infect the human host. In this study, using molecular and synthetic biology approaches, biochemistry, radiolabeling techniques, and NMR and MS analyses, we examined the role of GacB, encoded in the S. pyogenes GAC gene cluster, in the GAC biosynthesis pathway. We demonstrate that GacB is the first characterized α-d-GlcNAc-ß-1,4-l-rhamnosyltransferase that synthesizes the committed step in the biosynthesis of the GAC virulence determinant. Importantly, the substitution of S. pyogenes gacB with the homologous gene from Streptococcus agalactiae (Group B Streptococcus), Streptococcus equi subsp. zooepidemicus (Group C Streptococcus), Streptococcus dysgalactiae subsp. equisimilis (Group G Streptococcus), or Streptococcus mutans complemented the GAC biosynthesis pathway. These results, combined with those from extensive in silico studies, reveal a common phylogenetic origin of the genes required for this priming step in >40 pathogenic species of the Streptococcus genus, including members from the Lancefield Groups B, C, D, E, G, and H. Importantly, this priming step appears to be unique to streptococcal ABC transporter-dependent RhaPS biosynthesis, whereas the Wzx/Wzy-dependent streptococcal capsular polysaccharide pathways instead require an α-d-Glc-ß-1,4-l-rhamnosyltransferase. The insights into the RhaPS priming step obtained here open the door to targeting the early steps of the group carbohydrate biosynthesis pathways in species of the Streptococcus genus of high clinical and veterinary importance.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Hexosiltransferasas/metabolismo , Polisacáridos Bacterianos/biosíntesis , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/enzimología , Proteínas Bacterianas/genética , Hexosiltransferasas/genética , Familia de Multigenes , Filogenia , Polisacáridos Bacterianos/genética , Ramnosa/metabolismo , Streptococcus/clasificación , Streptococcus/enzimología , Streptococcus/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
17.
Cell Stress Chaperones ; 24(4): 777-792, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31165436

RESUMEN

The heat-inducible expression system has been widely used to produce recombinant proteins in Escherichia coli. However, the rise in temperature affects cell growth, activates the bacterial Heat-Shock Response (HSR), and promotes the formation of insoluble protein aggregates known as inclusion bodies (IBs). In this work, we evaluate the effect of the culture scale (shake flasks and bioreactors) and induction temperature (39 and 42 °C) on the kinetic behavior of thermoinducible recombinant E. coli ATCC 53606 producing rESAT-6 (6-kDa early-secretory antigenic target from Mycobacterium tuberculosis), compared with cultures grown at 30 °C (without induction). Also, the expression of the major E. coli chaperones (DnaK and GroEL) was analyzed. We found that almost twice maximum biomass and rESAT-6 production were obtained in bioreactors (~ 3.29 g/L of biomass and ~ 0.27 g/L of rESAT-6) than in shake flasks (~ 1.41 g/L of biomass and ~ 0.14 g/L of rESAT-6) when induction was carried out at 42 °C, but similar amounts of rESAT-6 were obtained from cultures induced at 39 °C (~ 0.14 g/L). In all thermo-induced conditions, rESAT-6 was trapped in IBs. Furthermore, DnaK was preferably expressed in the soluble fraction, while GroEL was present in IBs. Importantly, IBs formed at 39 °C, in both shake flasks and bioreactors, were more susceptible to degradation by proteinase-K, indicating a lower amyloid content compared to IBs formed at 42 °C. Our work presents evidence that the culture scale and the induction temperature modify the E. coli metabolic response, expression of chaperones, and structure of the IBs during rESAT-6 protein production in a thermoinducible system.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Proteínas Bacterianas/biosíntesis , Escherichia coli , Cuerpos de Inclusión/metabolismo , Proteínas Recombinantes/biosíntesis , Reactores Biológicos/microbiología , Clonación Molecular/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Respuesta al Choque Térmico , Chaperonas Moleculares/metabolismo , Temperatura
18.
Cancer Lett ; 454: 44-52, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-30980864

RESUMEN

Hepatocellular carcinoma (HCC) is currently the third leading cause of cancer death worldwide. To study how mycoplasma infection affects HCC progression, we investigated the characteristics of mycoplasma-infected tumor tissues and circulating tumor cells (CTCs) in HCC patients. The mycoplasmal membrane protein p37 showed significant correlations with higher histologic stages and vascular invasion and predicted poor disease-free survival of HCC patients. p37-positive CTCs were detected in 42 out of 47 HCC patients (89%). p37-positive circulating cells were also detected in 4 out of 10 healthy donors (40%), and all were epithelial cell adhesion molecule (EpCAM)-positive. In HCC patients, most of p37-negative CTCs (95%) showed intermediate phenotype with neither EpCAM nor vimentin expression, but p37-positive CTCs were EpCAM-positive (44%), vimentin-positive (32%), and both negative (24%), suggesting that EpCAM-positive CTCs are enriched with mycoplasma infection. Mycoplasma infection promoted migratory capacity of HCC cells with increased expression of EpCAM. Immunoprecipitation analysis revealed that p37 associates with EpCAM. The results suggest that mycoplasma infection promotes tumor progression in HCC patients via interaction of the mycoplasmal p37 and EpCAM.


Asunto(s)
Antígenos Bacterianos/metabolismo , Carcinoma Hepatocelular/microbiología , Molécula de Adhesión Celular Epitelial/metabolismo , Neoplasias Hepáticas/microbiología , Infecciones por Mycoplasma/metabolismo , Mycoplasma hyorhinis/metabolismo , Células A549 , Antígenos Bacterianos/biosíntesis , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Células Hep G2 , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Infecciones por Mycoplasma/sangre , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/patología , Células Neoplásicas Circulantes
19.
Langmuir ; 35(16): 5635-5646, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30916568

RESUMEN

The production of Escherichia coli K1 serotype capsule was investigated using direct stochastic optical reconstruction microscopy with live bacteria and graphene oxide-coated coverslips, overcoming many morphological artifacts found in other high-resolution imaging techniques. Super-resolution fluorescence images showed that the K1 capsular polysaccharide is not uniformly distributed on the cell surface, as previously thought. These studies demonstrated that on the cell surfaces the K1 capsule at the poles had bimodal thicknesses of 238 ± 41 and 323 ± 62 nm, whereas at the equator, there was a monomodal thickness of 217 ± 29 nm. This bimodal variation was also observed in high-pressure light-scattering chromatography measurements of purified K1 capsular polysaccharide. Particle tracking demonstrated that the formation of the capsule was dominated by the expansion of lyso-phosphatidylglycerol (lyso-PG) rafts that anchor the capsular polysaccharide in the outer membrane, and the expansion of these rafts across the cell surface was driven by new material transported through the capsular biosynthesis channels. The discovery of thicker capsules at the poles of the cell will have implications in mediating interactions between the bacterium and its immediate environment.


Asunto(s)
Antígenos Bacterianos/análisis , Escherichia coli/metabolismo , Polisacáridos Bacterianos/análisis , Antígenos Bacterianos/biosíntesis , Escherichia coli/citología , Microscopía Fluorescente , Estructura Molecular , Tamaño de la Partícula , Polisacáridos Bacterianos/biosíntesis , Propiedades de Superficie
20.
Protein Expr Purif ; 154: 118-125, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30261310

RESUMEN

The aim of this study was to evaluate the parameters that affect the production of the recombinant 10 kDa culture filtrate protein (CFP10), a promising reagent of high specificity for intradermoreaction and other antigen-based methods used in the diagnosis of tuberculosis. Conditions of Escherichia coli growth temperature, induction temperature and IPTG-inducer concentration were evaluated in shake flasks and dissolved O2 concentrations of 15 and 30% were evaluated in a bioreactor. The process parameters defined on small scale were: growth temperature between 30 and 37 °C, induction temperature of 26 °C and IPTG concentration of 0.12 mM. The process conducted with 15% dissolved O2 presented a recombinant protein yield of 78.6 mg g-1 biomass and a proportion of recombinant protein (insoluble fraction) in relation to total insoluble protein of 72%, at the time of maximum productivity. The operation with 30% dissolved O2 resulted in lower recombinant protein yields of 62.9 mg g-1 biomass and 20% in relation to total insoluble protein, but in higher overall concentration in the culture broth (69.2 mg L-1versus 48.3 mg L-1). The protein identity was confirmed by mass spectrometry, showing high similarity to CFP10, 10 kDa of Mycobacterium tuberculosis H37Rv (score 95), and the purified antigen presented reactivity by the Western blotting assay.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Mycobacterium tuberculosis/genética , Tuberculosis/diagnóstico , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/aislamiento & purificación , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...