Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
Cell Mol Life Sci ; 81(1): 297, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992309

RESUMEN

Muse cells, identified as cells positive for the pluripotent surface marker SSEA-3, are pluripotent-like endogenous stem cells located in the bone marrow (BM), peripheral blood, and organ connective tissues. The detailed characteristics of SSEA-3(+) cells in extraembryonic tissue, however, are unknown. Here, we demonstrated that similar to human-adult tissue-Muse cells collected from the BM, adipose tissue, and dermis as SSEA-3(+), human-umbilical cord (UC)-SSEA-3(+) cells express pluripotency markers, differentiate into triploblastic-lineage cells at a single cell level, migrate to damaged tissue, and exhibit low telomerase activity and non-tumorigenicity. Notably, ~ 20% of human-UC-SSEA-3(+) cells were negative for X-inactive specific transcript (XIST), a naïve pluripotent stem cell characteristic, whereas all human adult tissue-Muse cells are XIST-positive. Single-cell RNA sequencing revealed that the gene expression profile of human-UC-SSEA-3(+) cells was more similar to that of human post-implantation blastocysts than human-adult tissue-Muse cells. The DNA methylation level showed the same trend, and notably, the methylation levels in genes particularly related to differentiation were lower in human-UC-SSEA-3(+) cells than in human-adult tissue-Muse cells. Furthermore, human-UC-SSEA-3(+) cells newly express markers specific to extraembryonic-, germline-, and hematopoietic-lineages after differentiation induction in vitro whereas human-adult tissue-Muse cells respond only partially to the induction. Among various stem/progenitor cells in living bodies, those that exhibit properties similar to post-implantation blastocysts in a naïve state have not yet been found in humans. Easily accessible human-UC-SSEA-3(+) cells may be a valuable tool for studying early-stage human development and human reproductive medicine.


Asunto(s)
Blastocisto , Diferenciación Celular , Antígenos Embrionarios Específico de Estadio , Cordón Umbilical , Humanos , Antígenos Embrionarios Específico de Estadio/metabolismo , Cordón Umbilical/citología , Blastocisto/citología , Blastocisto/metabolismo , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Análisis de la Célula Individual , Telomerasa/metabolismo , Telomerasa/genética , Femenino
2.
Sci Rep ; 14(1): 11935, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789477

RESUMEN

Carbohydrate markers of immature cells during prenatal human development can be aberrantly expressed in cancers and deserve evaluation as immune targets. A candidate target in Ewing sarcoma is the globo-series ganglioside stage-specific embryonic antigen-4 (SSEA-4). We detected SSEA-4 expression on the cell surface of all of 14 EwS cell lines and in 21 of 31 (68%) primary EwS tumor biopsies. Among paired subpopulations of tumor cells with low versus high SSEA-4 expression, SSEA-4high expression was significantly and consistently associated with functional characteristics of tumor aggressiveness, including higher cell proliferation, colony formation, chemoresistance and propensity to migrate. SSEA-4low versus SSEA-4high expression was not related to expression levels of the EWSR1-FLI1 fusion transcript or markers of epithelial/mesenchymal plasticity. SSEA-4low cells selected from bulk populations regained higher SSEA-4 expression in vitro and during in vivo tumor growth in a murine xenograft model. T cells engineered to express SSEA-4-specific chimeric antigen receptors (CARs) specifically interacted with SSEA-4 positive EwS cells and exerted effective antigen-specific tumor cell lysis in vitro. In conclusion, with its stable expression and functional significance in EwS, SSEA-4 is an attractive therapeutic immune target in this cancer that deserves further evaluation for clinical translation.


Asunto(s)
Sarcoma de Ewing , Antígenos Embrionarios Específico de Estadio , Animales , Femenino , Humanos , Ratones , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Neoplasias Óseas/inmunología , Neoplasias Óseas/patología , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Gangliósidos , Glicoesfingolípidos , Sarcoma de Ewing/patología , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/genética , Antígenos Embrionarios Específico de Estadio/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Proc Natl Acad Sci U S A ; 121(5): e2313397121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252815

RESUMEN

Non-small cell lung cancer (NSCLC), a major life-threatening disease accounting for 85% of all lung cancer cases, has been treated with tyrosine kinase inhibitors (TKIs), but often resulted in drug resistance, and approximately 60% of TKI-resistant cases are due to acquired secondary (epithelial growth factor receptor) EGFR-T790M mutation. To identify alternative targets for TKI-resistant NSCLC with EGFR-T790M mutation, we found that the three globo-series glycosphingolipids are increasingly expressed on this type of NSCLC cell lines, and among them, the increase of stage-specific embryonic antigen-4 (SSEA-4) expression is the most significant. Compared to TKI-sensitive cell lines, SSEA-4 and the key enzyme ß3GalT5 responsible for the synthesis of SSEA3 are more expressed in TKI-resistant NSCLC cell lines with EGFR-T790M mutation, and the expression levels strongly correlate with poor survival in patients with EGFR mutation. In addition, we demonstrated that a SSEA-4 targeted monoclonal antibody, especially the homogeneous glycoform with well-defined Fc glycan designed to improve effective functions, is highly effective against this subpopulation of NSCLC in cell-based and animal studies. These findings provide a direction for the prediction of tumor recurrence and treatment of TKI-resistant NSCLC with EGFR-T790M mutation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antígenos Embrionarios Específico de Estadio , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Recurrencia Local de Neoplasia
4.
Carbohydr Res ; 535: 108990, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039697

RESUMEN

Stage-specific embryonic antigens (SSEAs) are carbohydrate markers that have diverse roles in embryonic development. However, the exact roles of SSEAs remain unclear. To obtain mechanistic insights into their roles, we aimed to develop functionalized SSEA glycan analogs via chemical synthesis. Herein, we report a convergent synthetic approach for SSEA-3 and SSEA-4 analogs using readily available versatile building blocks. A key step, namely the stereoselective glycosylation of a common tetrasaccharide acceptor, was successfully achieved using a 4-O-Bn Gal donor for SSEA-3 and a Neu-Gal donor for SSEA-4, which were previously developed by our group. The obtained SSEA-3 and SSEA-4 glycans were further functionalized with biotin and deuterated lipid for applications in biological studies. Thus, the findings of this study will facilitate further research on SSEAs.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores , Carbohidratos , Antígenos Embrionarios Específico de Estadio , Polisacáridos , Antígeno Lewis X
5.
Neurosci Res ; 203: 42-50, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38154662

RESUMEN

Numerous evidences showed that human umbilical cord blood (UCB) mononuclear cells were a promising approach for the therapy of ischemic stroke(IS). The effect of stage-specific embryonic antigen 3 (SSEA3)positive subpopulation in UCB was not investigated in IS. In this study, we isolated SSEA3 positive cells from healthy UCB mononuclear cells, which comprised about 7.01% of the total UCB-mononuclear cells. Flow cytometry analysis revealed that SSEA3(+)UCB cells were almost positive for CD44 and CD45, and negative for CD73, CD90 and CD105. The expression of Oct3/4 in SSEA3(+)UCB cells were higher than that in UCB. SSEA3(+)UCB cells sorted by magnetic cell sorting were intravenously injected into the middle cerebral arterial occlusion(MCAO) rat model. Neurological score showed that SSEA3(+)UCB transplantation group exhibited significant improvements in the functional outcome of MCAO rats than UCB transplantation group. Nissl staining and microtubule association protein-2(MAP2) immunofluorescence staining showed that the SSEA3(+)UCB transplantation group decreased neuronal loss. SSEA3(+)UCB transplantation group reduced neuronal apoptosis, inhibited caspase3 expression, and decreased tumor necrosis factor α(TNF-α). These results indicate that SSEA3 positive cells are a novel subpopulation of UCB cells, which exhibit great potential for the treatment of ischemic stroke.


Asunto(s)
Modelos Animales de Enfermedad , Sangre Fetal , Accidente Cerebrovascular Isquémico , Animales , Humanos , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/metabolismo , Sangre Fetal/citología , Leucocitos Mononucleares/trasplante , Leucocitos Mononucleares/metabolismo , Masculino , Ratas Sprague-Dawley , Ratas , Infarto de la Arteria Cerebral Media/terapia , Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Antígenos Embrionarios Específico de Estadio/metabolismo , Isquemia Encefálica/terapia , Apoptosis/fisiología
6.
Oncol Rep ; 50(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37615224

RESUMEN

Despite significant advancements in therapeutic approaches, oral neoplasms remain formidable and life­threatening conditions that affect a substantial number of individuals worldwide. Within oral malignancies, a subset of cancer stem cells (CSCs) represent a crucial population responsible for tumor initiation and progression. The identification of reliable markers for the detection and characterization of CSCs in solid tumors, particularly in the context of oral cancers, remains an ongoing challenge. Stage­specific embryonic antigen 3 (SSEA3), previously associated with mesenchymal stem cells and linked to the progression of breast neoplasms and poor prognosis, has yet to be comprehensively elucidated in the context of oral malignancies. The present study aimed to investigate the expression and properties of SSEA3 in 16 distinct subsets of human oral neoplastic cell lines, classified as either CD44 positive (+) or CD44 negative (­). For the first time, SSEA3 was examined as an indicator of tumorigenicity and resistance to taxane­derived chemotherapeutic agents. In the majority of oral neoplastic cell lines analyzed, SSEA3 was expressed in a small population of CD44(+) cells. Significantly, SSEA3(+) cells exhibited heightened proliferative activity and upregulated expression of genes associated with stem cells compared with SSEA3(­) cells. The aforementioned findings suggested that SSEA3 may contribute to the evolution and progression of oral malignancies by fostering tumor growth. Furthermore, SSEA3(+) cells displayed increased sensitivity to taxane­based pharmaceuticals, indicating the potential for SSEA3 to be a viable target in the treatment schema for oral cavity neoplasms. In conclusion, the present study provides novel insight into the role of SSEA3 in the progression and management of oral neoplasms, potentially paving the way for more effective therapeutic approaches.


Asunto(s)
Neoplasias de la Boca , Humanos , Antígenos Embrionarios Específico de Estadio , Neoplasias de la Boca/tratamiento farmacológico , Transformación Celular Neoplásica , Línea Celular Tumoral , Células Madre Neoplásicas
7.
Cell Prolif ; 56(1): e13345, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36225120

RESUMEN

OBJECTIVES: Multilineage differentiating Stress Enduring (MUSE) cells are endogenous, stress-resistant stem cells, expressing pluripotency master genes and able to differentiate in cells of the three embryonic sheets. Stage-Specific Embryonic Antigen 3 (SSEA-3), a glycosphingolipid (GSL), is the marker for identifying MUSE cells and is used to isolate this population from mesenchymal stromal cells. GSLs modulate signal transduction by interacting with plasma membrane components. The growth factor FGF2, important for MUSE cells biology, may interact with GSLs. Specific cell surface markers represent an invaluable tool for stem cell isolation. Nonetheless their role, if any, in stem cell biology is poorly investigated. Functions of stem cells, however, depend on niche external cues, which reach cells through surface markers. We addressed the role of SSEA-3 in MUSE cell behaviour, trying to define whether SSEA-3 is just a marker or if it plays a functional role in this cell population by determining if it has any relationship with FGF2 activity. RESULTS: We evidenced how the SSEA-3 and FGF2 cooperation affected the self-renewal and clonogenic capacity of MUSE cells. The block of SSEA-3 significantly reduced the multilineage potential of MUSE cells with production of nullipotent clones. CONCLUSIONS: We contributed to dissecting the mechanisms underlying MUSE cell properties for establishing successful stem-cell-based therapies and the promotion of MUSE cells as a tool for the in vitro disease model.


Asunto(s)
Alprostadil , Factor 2 de Crecimiento de Fibroblastos , Diferenciación Celular , Antígenos Embrionarios Específico de Estadio/metabolismo
8.
Head Face Med ; 18(1): 9, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236383

RESUMEN

BACKGROUND: Stage-specific embryonic antigen-4 (SSEA-4) is a marker for the identification of multipotent embryonic cells. It is also positive in neuroepithelial cells, precursor neural cells (NPC), and human dental pulp cells. The aim of this study was to evaluate the potential morphodifferentiation and histodifferentiation to NPC of SSEA-4 positive stem cells from human exfoliated deciduous teeth (SHED). METHODS: A SHED population in culture, positive to SSEA-4, was obtained by magnetic cell separation. The cells were characterized by immunohistochemistry and flow cytometry. Subsequently, a neurosphere assay was performed in a medium supplemented with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF); afterward, cells were neurodifferenciated with a neurobasal medium. Finally, indirect immunohistochemistry was performed to identify neuronal markers. RESULTS: The morphological and histological changes in the SSEA-4 positive SHEDs were observed after induction with epidermal and fibroblast growth factors in neurobasal culture medium. At the end of induction, the markers Nestin, TuJ-1, and GFAP were identified. CONCLUSIONS: The findings show that SSEA-4 positive SHEDs have a behavior similar to neuronal precursor cells. Our findings indicate that the dental pulp of deciduous teeth is a promising source for regeneration therapies associated with neurodegenerative diseases or peripheral nerve alterations.


Asunto(s)
Pulpa Dental , Células-Madre Neurales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Antígenos Embrionarios Específico de Estadio , Diente Primario
9.
Future Oncol ; 18(1): 117-134, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34734786

RESUMEN

Glycans, chains of sugar molecules found conjugated to cell proteins and lipids, contribute to their growth, movement and differentiation. Aberrant glycosylation is a hallmark of several medical conditions including tumorigenesis. Glycosphingolipids (GSLs), consisting of glycans conjugated to a lipid (ceramide) core, are found in the lipid bilayer of eukaryotic cell membranes. GSLs, play an active role in cell processes. Several GSLs are expressed by human embryonic stem cells and have been found to be overexpressed in several types of cancer. In this review, we discuss the data, hypotheses and perspectives related to the GSLs Globo H and SSEA-4.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/fisiología , Neoplasias/etiología , Antígenos Embrionarios Específico de Estadio/fisiología , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Vacunas contra el Cáncer/uso terapéutico , Desarrollo Embrionario , Glicoconjugados/fisiología , Glicoesfingolípidos/antagonistas & inhibidores , Glicoesfingolípidos/fisiología , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Antígenos Embrionarios Específico de Estadio/inmunología
10.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34876527

RESUMEN

Pancreatic cancer is usually asymptomatic in the early stages; the 5-y survival rate is around 9%; and there is a lack of effective treatment. Here we show that SSEA-4 is more expressed in all pancreatic cancer cell lines examined but not detectable in normal pancreatic cells; and high expression of SSEA-4 or the key enzymes B3GALT5 + ST3GAL2 associated with SSEA-4 biosynthesis significantly lowers the overall survival rate. To evaluate potential new treatments for pancreatic cancer, homogeneous antibodies with a well-defined Fc glycan for optimal effector functions and CAR-T cells with scFv construct designed to target SSEA-4 were shown highly effective against pancreatic cancer in vitro and in vivo. This was further supported by the finding that a subpopulation of natural killer (NK) cells isolated by the homogeneous antibody exhibited enhancement in cancer-cell killing activity compared to the unseparated NK cells. These results indicate that targeting SSEA-4 by homologous antibodies or CAR-T strategies can effectively inhibit cancer growth, suggesting SSEA-4 as a potential immunotherapy target for treating pancreatic disease.


Asunto(s)
Anticuerpos/inmunología , Neoplasias Pancreáticas/tratamiento farmacológico , Antígenos Embrionarios Específico de Estadio/inmunología , Animales , Línea Celular Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos , Regulación de la Expresión Génica , Humanos , Inmunoterapia , Inmunoterapia Adoptiva , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
ACS Chem Biol ; 16(8): 1526-1537, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34369155

RESUMEN

The globo-series glycosphingolipids (SSEA3, SSEA4, and Globo H) were shown to express in many cancers selectively, and a combination of anti-SSEA4 and anti-Globo H antibodies was able to suppress tumor growth in mice inoculated with breast cancer cell lines. To further understand the effect, we focused on the combined effect of the two antibodies in target binding and antibody-dependent cellular cytotoxicity (ADCC) in vitro. Here, we report that the binding of anti-Globo H antibody (VK9) to MDA-MB231 breast cancer cells was influenced by anti-SSEA4 antibody (MC813-70), and a combination of both antibodies induced a similar effect as did anti-SSEA4 antibodies alone in a reporter-based ADCC assay, indicating that SSEA4 is a major target in breast cancer due to its higher expression than Globo H. Furthermore, we showed that a homogeneous anti-SSEA4 antibody (chMC813-70-SCT) designed to maximize the ADCC activity can be used to isolate a subpopulation of natural killer (NK) cells that exhibit an ∼23% increase in killing the target cells as compared to the unseparated NK cells. These findings can be used to predict a therapy outcome based on the expression levels of antigens and evaluate therapeutic antibody development.


Asunto(s)
Anticuerpos/inmunología , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Neoplasias de la Mama/metabolismo , Antígenos Embrionarios Específico de Estadio/inmunología , Animales , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Línea Celular Tumoral , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones , Receptores de IgG/metabolismo , Antígenos Embrionarios Específico de Estadio/metabolismo
12.
Sci Rep ; 11(1): 13684, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211078

RESUMEN

Transurethral resection of bladder tumor (TUR-BT) and radical cystectomy (RC) are standard treatment options for bladder cancer (BC). Neoadjuvant chemotherapy (NAC) prior to RC improves outcome of some patients but currently there are no valid biomarkers to identify patients who benefit from NAC. Presence of cancer stem cells (CSC) has been associated with poor outcome and resistance to chemotherapy in various cancers. Here we studied the expression of stem cell markers ALDH1, SOX2 and SSEA-4 with immunohistochemistry in tissue microarray material consisting of 195 BC patients treated with RC and 74 patients treated with TUR-BT followed by NAC and RC. Post-operative follow-up data of up to 22 years was used. Negative to weak cytoplasmic SOX2 staining was associated with lymphovascular invasion and non-organ confined disease. It was also associated with shortened cancer-specific survival, but the finding was not statistically significant. Contrary to previous reports, none of the other tested biomarkers were associated with cancer-specific mortality or clinicopathological characteristics. Neither were they associated with response to NAC. Despite the promising results of previously published studies, our results suggest that CSC markers ALDH1, SOX2 and SSEA-4 have little if any prognostic or predictive value in BC treated with RC.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/análisis , Factores de Transcripción SOXB1/análisis , Antígenos Embrionarios Específico de Estadio/análisis , Neoplasias de la Vejiga Urinaria/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/diagnóstico , Invasividad Neoplásica/patología , Pronóstico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/cirugía
13.
Anticancer Res ; 41(7): 3327-3335, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34230128

RESUMEN

BACKGROUND/AIM: Stage-specific embryonic antigen (SSEA)-4 plays important roles in the malignant aggressiveness of various cancers. The aim of this study was to investigate the pathological characteristics of SSEA-4 in castration-resistant prostate cancer (CRPC). MATERIALS AND METHODS: SSEA-4 expression and its pathological roles were evaluated in five prostate cancer (PC) cell lines and 27 CRPC tissues. The relationship between SSEA-4 and the androgen receptor (AR) was also examined. RESULTS: SSEA-4 expression was detected in AR-negative cells (PC3, DU145, and AICaP1) but was not detected in AR-positive cells (LNCaP and AICaP2). SSEA-4 expression in human CRPC tissues was significantly higher than that in locally advanced or metastatic hormone sensitive PC (HSPC) tissues. A negative correlation was also detected between SSEA-4 and AR in CRPC tissues but not in HSPC tissues. CONCLUSION: SSEA-4 was over-expressed in CRPC and the changes were mediated by complex mechanisms that related to the AR and hormonal therapy.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Antígenos Embrionarios Específico de Estadio/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Masculino , Células PC-3
14.
Mol Cell Biochem ; 476(7): 2813-2821, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33733429

RESUMEN

Environmental changes can stress and alter biology at the molecular and cellular level. For example, metal-protein interaction is a classic physic and biological property of nature, which is fundamentally influenced by acidity. Here, we report a unique cellular reprogramming phenomenon in that a brief strong acid treatment induced the expression of pluripotent stem cell (PSC) markers. We used strong acid to briefly challenge mix-cultured gastric cells, and then subcultured survived cells in a normal cell culture medium. We found that survival acid-treated cells expressed PSC markers detected by commonly used pluripotent antibodies such as SSEA-4 and Oct4. In addition, we observed that the survived cells from the acid challenge grew faster during the second and third weeks of subculture and had a relative short doubling time (DT) than the controls. PSC marker-labeled 'older' cells also presented immature cell-like morphology with some having marker Oct4 in the nucleus. Finally, the expression of the markers appeared to be sensitive to metal ion chelation. Removal of the metals during a brief acid treatment reduced pluripotent marker-positive cells, suggesting the dissociation of metals from metal-binding proteins may be a factor involved in the induction of stem cell markers. Our findings reveal that somatic cells appear to possess a plasticity feature to express pluripotent marker proteins or to select cell subpopulations that express pluripotent marker proteins when cells are transiently exposed to strong acid. It opens new directions for understanding conserved regulatory mechanisms involved in cellular survival under stressful stimulation.


Asunto(s)
Mucosa Gástrica/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Clorhídrico/farmacología , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Antígenos Embrionarios Específico de Estadio/biosíntesis , Animales , Células Cultivadas , Células HeLa , Humanos , Ratones
15.
Stem Cells ; 39(5): 536-550, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33470499

RESUMEN

Glioblastoma (GBM) is the most common and deadliest tumor of the central nervous system. GBM has poor prognosis and glioma stem cells (GSCs) are implicated in tumor initiation and therapy resistance. Estrogen receptor ß (ERß) is expressed in GBM and exhibit tumor suppressive function. However, the role of ERß in GSCs and the therapeutic potential of ERß agonists on GSCs remain largely unknown. Here, we examined whether ERß modulates GSCs stemness and tested the utility of two ERß selective agonists (LY500307 and Liquiritigenin) to reduce the stemness of GSCs. The efficacy of ERß agonists was examined on GSCs isolated from established and patient derived GBMs. Our results suggested that knockout of ERß increased the proportion of CD133+ and SSEA+ positive GSCs and overexpression of ERß reduced the proportion of GSCs in GBM cells. Overexpression of ERß or treatment with ERß agonists significantly inhibited the GSCs cell viability, neurosphere formation, self-renewal ability, induced the apoptosis and reduced expression of stemness markers in GSCs. RNA sequencing analysis revealed that ERß agonist modulate pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that ERß overexpression or agonist treatment reduced glutamate receptor signaling pathway and induced apoptotic pathways. In orthotopic models, ERß overexpression or ERß agonists treatment significantly reduced the GSCs mediated tumor growth and improved the mice overall survival. Immunohistochemical studies demonstrated that ERß overexpression decreased SOX2 and GRM3 expression and increased expression of GFAP in tumors. These results suggest that ERß activation could be a promising therapeutic strategy to eradicate GSCs.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Receptor beta de Estrógeno/genética , Glioma/genética , Células Madre Neoplásicas/metabolismo , Antígeno AC133/genética , Animales , Apoptosis/efectos de los fármacos , Benzopiranos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Receptor beta de Estrógeno/agonistas , Flavanonas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Receptores de Glutamato/genética , Factores de Transcripción SOXB1/genética , Transducción de Señal/efectos de los fármacos , Antígenos Embrionarios Específico de Estadio/genética , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Stem Cells Dev ; 30(5): 227-233, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33397195

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by the production of multiple autoimmune antibodies and potentially involves any organ or tissue with a broad range of clinical manifestations. Conventional therapy still utilizes glucocorticoids and immunosuppressants. However, some patients show inadequate responses to glucocorticoids and immunosuppression, which may induce secondary immune dysfunction and severe infection as well as lead to an increased tumor risk. The lack of in vitro models has hampered progress in understanding and treating SLE. Patient-derived induced pluripotent stem cells (iPSCs) may provide a unique opportunity for modeling in vitro diseases as well as a platform for drug screening in individual patients. We isolated peripheral blood mononuclear cells from blood to explore the establishment of an in vitro model platform for SLE and directly purified CD34+ cells and seeded them for expansion. CD34+ cells were forced to express seven pluripotency factors, OCT4, SOX2, NANOG, LIN28, c-MYC, KLF4, and SV40LT, through transduction in lentiviral vectors. The morphological characteristics of induced pluripotent stem-like cells, such as prominent nucleoli and a high nucleus-to-cytoplasm ratio, were observed. The pluripotency of established SLE patient-derived iPSCs was confirmed by the expression of embryonic stem cell (ESC) markers and the ability of cells to differentiate into multiple cell lines. SLE patient-derived iPSCs exhibited human ESC properties, including morphology; growth characteristics; expression of pluripotency, genes, and surface markers; and teratoma formation. In conclusion, we generated SLE patient-derived iPSCs and validated their pluripotency. This study is a first but critical step that can provide a model platform for research aimed at understanding the SLE mechanism, which may lead to the discovery of new targets or compounds for the treatment of this disease.


Asunto(s)
Antígenos CD34/metabolismo , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Lupus Eritematoso Sistémico/sangre , Adulto , Antígenos de Superficie/metabolismo , Células Cultivadas , Femenino , Citometría de Flujo , Humanos , Células Madre Pluripotentes Inducidas/citología , Cariotipificación , Leucocitos Mononucleares/citología , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Proteína Homeótica Nanog/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Antígenos Embrionarios Específico de Estadio/metabolismo
17.
Methods Mol Biol ; 2239: 235-249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33226623

RESUMEN

The pluripotency of human induced pluripotent stem cells (HiPSCs) cannot be tested strictly in a similar way as we can do for the mouse ones because of ethical restrictions. One common and initial approach to prove the pluripotency of an established human iPSC line is to demonstrate expression of a set of established surface and intracellular pluripotency markers. This chapter provides procedures of immunocytochemistry of the established HiPSC lines for a set of the signature intracellular pluripotency proteins, OCT4, SOX2, NANOG, and LIN28. We also describe cell phenotyping by flow cytometry for the five established human pluripotency surface markers, SSEA3, SSEA4, TRA-1-60, TRA-1-81, and TRA2-49 (ALP). Numbers of ALP+ and TRA-1-60+ colonies are the most widely used parameters for evaluation of human iPSC reprogramming efficiency. Therefore, this chapter also provides detailed steps for substrate colorimetric reaction of the ALP activity, as well as the TRA-1-60 staining, of the iPSC colonies in the reprogramming population.


Asunto(s)
Reprogramación Celular , Inmunofenotipificación/métodos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/metabolismo , Fosfatasa Alcalina/metabolismo , Antígenos de Superficie/metabolismo , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Citometría de Flujo , Humanos , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteoglicanos/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXB1/metabolismo , Antígenos Embrionarios Específico de Estadio/metabolismo
18.
J Investig Dermatol Symp Proc ; 20(1): S16-S21, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33099378

RESUMEN

Alopecia areata (AA), which is defined as an autoimmune hair loss disease, has a serious impact on the quality of life for patients with AA worldwide. In this study, to our knowledge, a previously unreported method of AA induction in C3H mice has been established and validated. Using this method, we showed that dermal injection of 1-3 million of a mixture of skin cells freshly isolated from AA-affected skin induces AA in more than 80% of healthy mice. Contrary to the previous protocol, the induction of AA by this approach does not need any surgical AA skin grafting, cell manipulation, or high number of activated T cells. We also showed that dermal injection of adherent myeloid cells (mainly CD11b+) in healthy mice is as potent as a mixture of none adherent CD3+ T cells and CD19+ B cells in the induction of AA. Interestingly, most of the mice (7 out of 8) that received non-adherent cells developed AA universalis, whereas most of the mice (5 out of 7) that received adherent cells developed patchy AA. Finally, we found a high number of stage-specific embryonic antigen-expressing cells whose expression in monocytes in an inflammatory disease causes the release of inflammatory cytokines, TNF-α and IL-1ß, from these cells in AA-affected skin.


Asunto(s)
Alopecia Areata/metabolismo , Alopecia Areata/patología , Células Mieloides/metabolismo , Células Mieloides/trasplante , Animales , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Antígeno CD11b/metabolismo , Adhesión Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Antígeno Lewis X/metabolismo , Ratones , Ratones Endogámicos C3H , Antígenos Embrionarios Específico de Estadio/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(44): 27435-27444, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087559

RESUMEN

Conversion of human pluripotent stem cells from primed to naïve state is accompanied by altered transcriptome and methylome, but glycosphingolipid (GSL) profiles in naïve human embryonic stem cells (hESCs) have not been systematically characterized. Here we showed a switch from globo-(SSEA-3, SSEA-4, and Globo H) and lacto-series (fucosyl-Lc4Cer) to neolacto-series GSLs (SSEA-1 and H type 2 antigen), along with marked down-regulation of ß-1,3-galactosyltransferase (B3GALT5) upon conversion to naïve state. CRISPR/Cas9-generated B3GALT5-knockout (KO) hESCs displayed an altered GSL profile, increased cloning efficiency and intracellular Ca2+, reminiscent of the naïve state, while retaining differentiation ability. The altered GSLs could be rescued through overexpression of B3GALT5. B3GALT5-KO cells cultured with 2iLAF exhibited naïve-like transcriptome, global DNA hypomethylation, and X-chromosome reactivation. In addition, B3GALT5-KO rendered hESCs more resistant to calcium chelator in blocking entry into naïve state. Thus, loss of B3GALT5 induces a distinctive state of hESCs displaying unique GSL profiling with expression of neolacto-glycans, increased Ca2+, and conducive for transition to naïve pluripotency.


Asunto(s)
Diferenciación Celular , Galactosiltransferasas/metabolismo , Glicoesfingolípidos/metabolismo , Células Madre Pluripotentes/metabolismo , Antígenos Embrionarios Específico de Estadio/metabolismo , Sistemas CRISPR-Cas/genética , Línea Celular , Células Madre Embrionarias , Galactosiltransferasas/genética , Técnicas de Silenciamiento del Gen , Humanos
20.
Anticancer Res ; 40(10): 5567-5575, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32988880

RESUMEN

BACKGROUND/AIM: Stage-specific embryonic antigen-4 (SSEA-4) expression is associated with malignant aggressiveness and is useful as a marker for identifying cancer stem cells. Our aim was to assess the relationship between hormonal therapy and SSEA-4 expression in prostate cancer (PC). MATERIALS AND METHODS: SSEA-4 expression in paired specimens from PC patients who underwent neoadjuvant hormonal therapy (NHT) and radical prostatectomy (60 pre-NHT specimens and 60 post-NHT specimens) was evaluated using immunohistochemistry. Proliferation index (PI) and apoptotic index (AI) were also evaluated. RESULTS: Post-NHT tissues had significantly elevated SSEA-4 expression whereas anti-tumor effects of NHT were inversely correlated with SSEA-4 expression level. SSEA-4 expression in post-NHT tissues was significantly associated with biochemical recurrence-free survival. SSEA-4 expression in the post-NHT tissues was positively associated with PI and negatively done with AI. CONCLUSION: SSEA-4 is a potential therapeutic target for limiting the malignant potential in hormone-naïve PC when considering the use of NHT.


Asunto(s)
Antineoplásicos Hormonales/administración & dosificación , Biomarcadores de Tumor/genética , Neoplasias de la Próstata/tratamiento farmacológico , Antígenos Embrionarios Específico de Estadio/genética , Anciano , Humanos , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Próstata/patología , Prostatectomía , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...