Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.293
Filtrar
1.
Mar Drugs ; 22(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39057423

RESUMEN

α-Conotoxins, as selective nAChR antagonists, can be valuable tools for targeted drug delivery and fluorescent labeling, while conotoxin-drug or conotoxin-fluorescent conjugates through the disulfide bond are rarely reported. Herein, we demonstrate the [2,4] disulfide bond of α-conotoxin as a feasible new chemical modification site. In this study, analogs of the α-conotoxin LsIA cysteine[2,4] were synthesized by stapling with five linkers, and their inhibitory activities against human α7 and rat α3ß2 nAChRs were maintained. To further apply this method in targeted delivery, the alkynylbenzyl bromide linker was synthesized and conjugated with Coumarin 120 (AMC) and Camptothecin (CPT) by copper-catalyzed click chemistry, and then stapled between cysteine[2,4] of the LsIA to construct a fluorescent probe and two peptide-drug conjugates. The maximum emission wavelength of the LsIA fluorescent probe was 402.2 nm, which was essentially unchanged compared with AMC. The cytotoxic activity of the LsIA peptide-drug conjugates on human A549 was maintained in vitro. The results demonstrate that the stapling of cysteine[2,4] with alkynylbenzyl bromide is a simple and feasible strategy for the exploitation and utilization of the α-conotoxin LsIA.


Asunto(s)
Conotoxinas , Cisteína , Humanos , Conotoxinas/química , Conotoxinas/farmacología , Cisteína/química , Animales , Disulfuros/química , Células A549 , Sistemas de Liberación de Medicamentos , Ratas , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química , Colorantes Fluorescentes/química , Receptores Nicotínicos/metabolismo , Cumarinas/química , Cumarinas/farmacología , Química Clic
2.
Biomed Pharmacother ; 177: 117007, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906020

RESUMEN

This study demonstrates the potential of gelatin nanoparticles as a nanodelivery system for antagonists of nicotinic acetylcholine receptors (nAChRs) to improve chemotherapy efficacy and reduce off-target effects. Too often, chemotherapy for lung cancer does not lead to satisfactory results. Therefore, new approaches directed at multiple pharmacological targets in cancer therapy are being developed. Following the activation of nAChRs (e.g. by nicotine), cancer cells begin to proliferate and become more resistant to chemotherapy-induced apoptosis. This work shows that the 3-alkylpyridinium salt, APS7, a synthetic analog of a toxin from the marine sponge Haliclona (Rhizoneira) sarai, acts as an nAChR antagonist that inhibits the pro-proliferative and anti-apoptotic effects of nicotine on A549 human lung adenocarcinoma cells. In this study, gelatin-based nanoparticles filled with APS7 (APS7-GNPs) were prepared and their effects on A549 cells were compared with that of free APS7. Both APS7 and APS7-GNPs inhibited Ca2+ influx and increased the efficacy of cisplatin chemotherapy in nicotine-stimulated A549 cells. However, significant benefits from APS7-GNPs were observed - a stronger reduction in the proliferation of A549 lung cancer cells and a much higher selectivity in cytotoxicity towards cancer cells compared with non-tumorigenic lung epithelial BEAS-2B cells.


Asunto(s)
Proliferación Celular , Gelatina , Neoplasias Pulmonares , Nanopartículas , Humanos , Gelatina/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Células A549 , Nanopartículas/química , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química , Cisplatino/farmacología , Nicotina/farmacología , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química , Línea Celular Tumoral
3.
Mar Drugs ; 22(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786593

RESUMEN

α7 nicotinic acetylcholine receptors (nAChRs) are mainly distributed in the central nervous system (CNS), including the hippocampus, striatum, and cortex of the brain. The α7 nAChR has high Ca2+ permeability and can be quickly activated and desensitized, and is closely related to Alzheimer's disease (AD), epilepsy, schizophrenia, lung cancer, Parkinson's disease (PD), inflammation, and other diseases. α-conotoxins from marine cone snail venom are typically short, disulfide-rich neuropeptides targeting nAChRs and can distinguish various subtypes, providing vital pharmacological tools for the functional research of nAChRs. [Q1G, ΔR14]LvΙB is a rat α7 nAChRs selective antagonist, modified from α-conotoxin LvΙB. In this study, we utilized three types of fluorescein after N-Hydroxy succinimide (NHS) activation treatment: 6-TAMRA-SE, Cy3 NHS, and BODIPY-FL NHS, labeling the N-Terminal of [Q1G, ΔR14]LvΙB under weak alkaline conditions, obtaining three fluorescent analogs: LvIB-R, LvIB-C, and LvIB-B, respectively. The potency of [Q1G, ΔR14]LvΙB fluorescent analogs was evaluated at rat α7 nAChRs expressed in Xenopus laevis oocytes. Using a two-electrode voltage clamp (TEVC), the half-maximal inhibitory concentration (IC50) values of LvIB-R, LvIB-C, and LvIB-B were 643.3 nM, 298.0 nM, and 186.9 nM, respectively. The stability of cerebrospinal fluid analysis showed that after incubation for 12 h, the retention rates of the three fluorescent analogs were 52.2%, 22.1%, and 0%, respectively. [Q1G, ΔR14]LvΙB fluorescent analogs were applied to explore the distribution of α7 nAChRs in the hippocampus and striatum of rat brain tissue and it was found that Cy3- and BODIPY FL-labeled [Q1G, ΔR14]LvΙB exhibited better imaging characteristics than 6-TAMARA-. It was also found that α7 nAChRs are widely distributed in the cerebral cortex and cerebellar lobules. Taking into account potency, imaging, and stability, [Q1G, ΔR14]LvΙB -BODIPY FL is an ideal pharmacological tool to investigate the tissue distribution and function of α7 nAChRs. Our findings not only provide a foundation for the development of conotoxins as visual pharmacological probes, but also demonstrate the distribution of α7 nAChRs in the rat brain.


Asunto(s)
Encéfalo , Conotoxinas , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Conotoxinas/farmacología , Conotoxinas/química , Ratas , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Antagonistas Nicotínicos/farmacología , Colorantes Fluorescentes , Ratas Sprague-Dawley , Masculino , Femenino
4.
Int J Biol Macromol ; 271(Pt 1): 132472, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772455

RESUMEN

The two most active disulfide bond isomers of the analgesic αO-conotoxin GeXIVA, namely GeXIVA[1, 2] and GeXIVA[1, 4], were subjected to Asp-scanning mutagenesis to determine the key amino acid residues for activity at the rat α9α10 nicotinic acetylcholine receptor (nAChR). These studies revealed the key role of arginine residues for the activity of GeXIVA isomers towards the α9α10 nAChR. Based on these results, additional analogues with 2-4 mutations were designed and tested. The analogues [T1A,D14A,V28K]GeXIVA[1, 2] and [D14A,I23A,V28K]GeXIVA[1, 4] were developed and showed sub-nanomolar activity for the α9α10 nAChR with IC50 values of 0.79 and 0.38 nM. The latter analogue had exceptional selectivity for the α9α10 receptor subtype over other nAChR subtypes and can be considered as a drug candidate for further development. Molecular dynamics of receptor-ligand complexes allowed us to make deductions about the possible causes of increases in the affinity of key GeXIVA[1, 4] mutants for the α9α10 nAChR.


Asunto(s)
Arginina , Ácido Aspártico , Conotoxinas , Receptores Nicotínicos , Conotoxinas/química , Conotoxinas/genética , Conotoxinas/farmacología , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Animales , Arginina/química , Ratas , Ácido Aspártico/química , Ácido Aspártico/genética , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacología , Simulación de Dinámica Molecular , Mutagénesis , Isomerismo
5.
J Med Chem ; 67(11): 9587-9598, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38814877

RESUMEN

The spike-protein of SARS-CoV-2 has a distinctive amino-acid sequence (682RRARS686) that forms a cleavage site for the enzyme furin. Strikingly, the structure of the spike-protein loop containing the furin cleavage site bears substantial similarity to neurotoxin peptides found in the venoms of certain snakes and marine cone snails. Leveraging this relationship, we designed and synthesized disulfide-constrained peptides with amino-acid sequences corresponding to the furin cleavage-sites of wild-type (B.1 variant) SARS-CoV-2 or the Alpha, Delta, and Omicron variants. Remarkably, some of these peptides potently inhibited α7 and α9α10 nicotinic acetylcholine receptors (nAChR) with nM affinity and showed SARS-CoV-2 variant and nAChR subtype-dependent potencies. Nuclear magnetic resonance spectroscopy and molecular dynamics were used to rationalize structure-activity relationships between peptides and their cognate receptors. These findings delineate nAChR subtypes that can serve as high-affinity spike-protein targets in tissues central to COVID-19 pathophysiology and identify ligands and target receptors to inform the development of novel SARS-CoV-2 therapeutics.


Asunto(s)
Diseño de Fármacos , Antagonistas Nicotínicos , Receptores Nicotínicos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Relación Estructura-Actividad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Receptores Nicotínicos/metabolismo , SARS-CoV-2/efectos de los fármacos , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/síntesis química , Péptidos/farmacología , Péptidos/química , Péptidos/síntesis química , Animales , Secuencia de Aminoácidos , Simulación de Dinámica Molecular
6.
Toxicol Lett ; 398: 91-104, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768836

RESUMEN

Desensitization of nicotinic acetylcholine receptors (nAChRs) can be induced by overstimulation with acetylcholine (ACh) caused by an insufficient degradation of ACh after poisoning with organophosphorus compounds (OPCs). Currently, there is no generally applicable treatment for OPC poisoning that directly targets the desensitized nAChR. The bispyridinium compound MB327, an allosteric modulator of nAChR, has been shown to act as a resensitizer of nAChRs, indicating that drugs binding directly to nAChRs can have beneficial effects after OPC poisoning. However, MB327 also acts as an inhibitor of nAChRs at higher concentrations and can thus not be used for OPC poisoning treatment. Consequently, novel, more potent resensitizers are required. To successfully design novel ligands, the knowledge of the binding site is of utmost importance. Recently, we performed in silico studies to identify a new potential binding site of MB327, MB327-PAM-1, for which a more affine ligand, UNC0646, has been described. In this work, we performed ligand-based screening approaches to identify novel analogs of UNC0646 to help further understand the structure-affinity relationship of this compound class. Furthermore, we used structure-based screenings and identified compounds representing four new chemotypes binding to MB327-PAM-1. One of these compounds, cycloguanil, is the active metabolite of the antimalaria drug proguanil and shows a higher affinity towards MB327-PAM-1 than MB327. Furthermore, cycloguanil can reestablish the muscle force in soman-inhibited rat muscles. These results can act as a starting point to develop more potent resensitizers of nAChR and to close the gap in the treatment after OPC poisoning.


Asunto(s)
Receptores Nicotínicos , Animales , Ligandos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Sitios de Unión , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química , Ratas , Relación Estructura-Actividad , Masculino , Unión Proteica , Simulación del Acoplamiento Molecular , Soman , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química
7.
Mar Drugs ; 22(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38667764

RESUMEN

Nicotine binds to nicotinic acetylcholine receptors (nAChRs) that are overexpressed in different cancer cells, promoting tumor growth and resistance to chemotherapy. In this study, we aimed to investigate the potential of APS7-2 and APS8-2, synthetic analogs of a marine sponge toxin, to inhibit nicotine-mediated effects on A549 human lung cancer cells. Our electrophysiological measurements confirmed that APS7-2 and APS8-2 act as α7 nAChR antagonists. APS8-2 showed no cytotoxicity in A549 cells, while APS7-2 showed concentration-dependent cytotoxicity in A549 cells. The different cytotoxic responses of APS7-2 and APS8-2 emphasize the importance of the chemical structure in determining their cytotoxicity on cancer cells. Nicotine-mediated effects include increased cell viability and proliferation, elevated intracellular calcium levels, and reduced cisplatin-induced cytotoxicity and reactive oxygen species production (ROS) in A549 cells. These effects of nicotine were effectively attenuated by APS8-2, whereas APS7-2 was less effective. Our results suggest that APS8-2 is a promising new therapeutic agent in the chemotherapy of lung cancer.


Asunto(s)
Antineoplásicos , Supervivencia Celular , Neoplasias Pulmonares , Nicotina , Especies Reactivas de Oxígeno , Receptor Nicotínico de Acetilcolina alfa 7 , Humanos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Células A549 , Nicotina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Animales , Antagonistas Nicotínicos/farmacología , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Calcio/metabolismo , Poríferos/química
8.
Mar Drugs ; 22(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38667766

RESUMEN

Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity. From these data, small spiroimine enantiomers mimicking the functional core motif of phycotoxins were chemically synthesized and characterized. Voltage-clamp analyses involving three nAChR subtypes revealed preserved antagonism for both enantiomers, despite lower subtype specificity and binding affinities associated with faster reversibility compared with their macrocyclic relatives. Binding and structural analyses involving two AChBPs pointed to modest affinities and positional variability of the spiroimines, along with a range of AChBP loop-C conformations denoting a prevalence of antagonistic properties. These data highlight the major contribution of the spiroimine core to binding within the nAChR nest and confirm the need for an extended interaction network as established by the macrocyclic toxins to define high affinities and marked subtype specificity. This study identifies a minimal set of functional pharmacophores and binding determinants as templates for designing new antagonists targeting disease-associated nAChR subtypes.


Asunto(s)
Iminas , Toxinas Marinas , Antagonistas Nicotínicos , Receptores Nicotínicos , Toxinas Marinas/química , Toxinas Marinas/farmacología , Toxinas Marinas/toxicidad , Iminas/química , Iminas/farmacología , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Animales , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/química , Relación Estructura-Actividad
9.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38613458

RESUMEN

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Ibogaína , Ibogaína/análogos & derivados , Nicotina , Receptores Nicotínicos , Animales , Dopamina/metabolismo , Masculino , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Nicotina/farmacología , Ibogaína/farmacología , Ratones , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratones Endogámicos C57BL , Antagonistas Nicotínicos/farmacología , Oocitos/efectos de los fármacos , Agonistas Nicotínicos/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Autoadministración , Xenopus laevis , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Relación Dosis-Respuesta a Droga , Actividad Motora/efectos de los fármacos
10.
Acta Pharmacol Sin ; 45(6): 1160-1174, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38438581

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4ß2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-ß-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.


Asunto(s)
Neuronas GABAérgicas , Hiperalgesia , Ratones Endogámicos C57BL , Receptores Nicotínicos , Animales , Receptores Nicotínicos/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Masculino , Hiperalgesia/metabolismo , Hiperalgesia/tratamiento farmacológico , Ratones , Porción Reticular de la Sustancia Negra/metabolismo , Porción Reticular de la Sustancia Negra/efectos de los fármacos , Nicotina/farmacología , Analgésicos/farmacología , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Capsaicina/farmacología , Acetilcolina/metabolismo , Optogenética , Umbral del Dolor/efectos de los fármacos
11.
Toxins (Basel) ; 16(2)2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38393158

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer, with a poor prognosis. GBM cells, which develop in the environment of neural tissue, often exploit neurotransmitters and their receptors to promote their own growth and invasion. Nicotinic acetylcholine receptors (nAChRs), which play a crucial role in central nervous system signal transmission, are widely represented in the brain, and GBM cells express several subtypes of nAChRs that are suggested to transmit signals from neurons, promoting tumor invasion and growth. Analysis of published GBM transcriptomes revealed spatial heterogeneity in nAChR subtype expression, and functional nAChRs of α1*, α7, and α9 subtypes are demonstrated in our work on several patient-derived GBM microsphere cultures and on the U87MG GBM cell line using subtype-selective neurotoxins and fluorescent calcium mobilization assay. The U87MG cell line shows reactions to nicotinic agonists similar to those of GBM patient-derived culture. Selective α1*, α7, and α9 nAChR neurotoxins stimulated cell growth in the presence of nicotinic agonists. Several cultivating conditions with varying growth factor content have been proposed and tested. The use of selective neurotoxins confirmed that cell cultures obtained from patients are representative GBM models, but the use of media containing fetal bovine serum can lead to alterations in nAChR expression and functioning.


Asunto(s)
Glioblastoma , Receptores Nicotínicos , Humanos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Agonistas Nicotínicos/farmacología , Proteínas/metabolismo , Péptidos/farmacología , Línea Celular , Proliferación Celular , Antagonistas Nicotínicos/farmacología
12.
Neurosci Lett ; 824: 137666, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38331019

RESUMEN

Alcohol Use Disorder (AUD) presents a significant and challenging public health concern, marked by a dearth of effective pharmacological treatments. Understanding the neurobiological underpinnings of AUD is of paramount importance for the development of efficacious interventions. The process of addiction entails the acquisition of associative behaviors, prominently engaging the dorsal region of the hippocampus for encoding these associative memories. Nicotinic receptor systems have been implicated in mediating the rewarding effects of ethanol, as well as memory and learning processes. In our current investigation, we delved into the role of α4ß2 nicotinic acetylcholine receptors (nAChRs) within the dorsal hippocampus in the context of ethanol-induced conditioned place preference (CPP), a robust model for scrutinizing the rewarding properties and drug-associated behaviors. To establish CPP, ethanol (2 g/kg) was administered intraperitoneally during a 8-day conditioning phase. Fos immunohistochemistry was employed to assess the involvement of discrete subregions within the dorsal hippocampus in ethanol-induced CPP. Additionally, we probed the influence of α4ß2 nAChRs on CPP via microinjections of a selective nAChR antagonist, dihydro-ß-erythroidine (DHBE, at dosages of 6, 12, and 18 µg/0.5 µL per hemisphere) within the hippocampus. Our results unveiled that ethanol-induced CPP was associated with an increase Fos -positive cells in various subregions of the dorsal hippocampus, including CA1, CA2, CA3, and the dentate gyrus. Intrahippocampal administration of DHBE (at doses of 6 and 18 µg/0.50 µL per hemisphere) effectively blocked ethanol-induced CPP, while leaving locomotor activity unaffected. These findings underscore the critical involvement of the dorsal hippocampus and α4ß2 nAChRs in the acquisition of ethanol-associated learning and reward.


Asunto(s)
Etanol , Receptores Nicotínicos , Ratones , Animales , Etanol/farmacología , Receptores Nicotínicos/metabolismo , Hipocampo/metabolismo , Antagonistas Nicotínicos/farmacología
13.
J Med Chem ; 67(2): 971-987, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38217860

RESUMEN

Pain severely affects the physical and mental health of patients. The need to develop nonopioid analgesic drugs to meet medical demands is urgent. In this study, we designed a truncated analogue of αO-conotoxin, named GeX-2, based on disulfide-bond deletion and sequence truncation. GeX-2 retained the potency of its parent peptide at the human α9α10 nAChR and exhibited potent inhibitory activity at CaV2.2 channels via activation of the GABAB receptor (GABABR). Importantly, GeX-2 significantly alleviated pain in the rat model of chronic constriction injury. The dual inhibition of GeX-2 at both α9α10 nAChRs and CaV2.2 channels is speculated to synergistically mediate the potent analgesic effects. Results from site-directed mutagenesis assay and computational modeling suggest that GeX-2 preferentially interacts with the α10(+)α10(-) binding site of α9α10 nAChR and favorably binds to the top region of the GABABR2 subunit. The study offers vital insights into the molecular action mechanism of GeX-2, demonstrating its potential as a novel nonopioid analgesic.


Asunto(s)
Analgésicos no Narcóticos , Conotoxinas , Receptores Nicotínicos , Ratas , Humanos , Animales , Conotoxinas/química , Receptores de GABA-B/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/química , Dolor/tratamiento farmacológico , Receptores Nicotínicos/metabolismo , Ácido gamma-Aminobutírico , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química
14.
Behav Brain Funct ; 20(1): 1, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218838

RESUMEN

BACKGROUND: Clinical and preclinical research have demonstrated that short-term exposure to nicotine during the initial experimentation stage can lead to early manifestation of withdrawal-like signs, indicating the state of "acute dependence". As drug withdrawal is a major factor driving the progression toward regular drug intake, characterizing and understanding the features of early nicotine withdrawal may be important for the prevention and treatment of drug addiction. In this study, we corroborate the previous studies by showing that withdrawal-like signs can be precipitated after short-term nicotine exposure in mice, providing a potential animal model of acute dependence on nicotine. RESULTS: To model nicotine exposure from light tobacco use during the initial experimentation stage, mice were treated with 0.5 mg/kg (-)-nicotine ditartrate once daily for 3 days. On the following day, the behavioral tests were conducted after implementing spontaneous or mecamylamine-precipitated withdrawal. In the open field test, precipitated nicotine withdrawal reduced locomotor activity and time spent in the center zone. In the elevated plus maze test, the mecamylamine challenge increased the time spent in the closed arm and reduced the number of entries irrespective of nicotine experience. In the examination of the somatic aspect, precipitated nicotine withdrawal enhanced the number of somatic signs. Finally, nicotine withdrawal did not affect cognitive functioning or social behavior in the passive avoidance, spatial object recognition, or social interaction test. CONCLUSIONS: Collectively, our data demonstrate that early nicotine withdrawal-like signs could be precipitated by the nicotinic antagonist mecamylamine in mice, and that early withdrawal from nicotine primarily causes physical symptoms.


Asunto(s)
Nicotina , Síndrome de Abstinencia a Sustancias , Ratones , Animales , Nicotina/efectos adversos , Mecamilamina/farmacología , Mecamilamina/uso terapéutico , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/etiología , Síndrome de Abstinencia a Sustancias/psicología , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/uso terapéutico , Autoestimulación
15.
Mar Drugs ; 22(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276651

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting painful neuropathy that occurs commonly during cancer management, which often leads to the discontinuation of medication. Previous studies suggest that the α9α10 nicotinic acetylcholine receptor (nAChR)-specific antagonist αO-conotoxin GeXIVA[1,2] is effective in CIPN models; however, the related mechanisms remain unclear. Here, we analyzed the preventive effect of GeXIVA[1,2] on neuropathic pain in the long-term oxaliplatin injection-induced CIPN model. At the end of treatment, lumbar (L4-L6) spinal cord was extracted, and RNA sequencing and bioinformatic analysis were performed to investigate the potential genes and pathways related to CIPN and GeXIVA[1,2]. GeXIVA[1,2] inhibited the development of mechanical allodynia induced by chronic oxaliplatin treatment. Repeated injections of GeXIVA[1,2] for 3 weeks had no effect on the mice's normal pain threshold or locomotor activity and anxiety-like behavior, as evaluated in the open field test (OFT) and elevated plus maze (EPM). Our RNA sequencing results identified 209 differentially expressed genes (DEGs) in the CIPN model, and simultaneously injecting GeXIVA[1,2] with oxaliplatin altered 53 of the identified DEGs. These reverted genes were significantly enriched in immune-related pathways represented by the cytokine-cytokine receptor interaction pathway. Our findings suggest that GeXIVA[1,2] could be a potential therapeutic compound for chronic oxaliplatin-induced CIPN management.


Asunto(s)
Antineoplásicos , Conotoxinas , Neuralgia , Ratones , Animales , Oxaliplatino/efectos adversos , Conotoxinas/farmacología , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/genética , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/genética , Modelos Animales de Enfermedad , Antagonistas Nicotínicos/farmacología , Expresión Génica , Antineoplásicos/efectos adversos
16.
FASEB J ; 38(1): e23374, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38161283

RESUMEN

This study was undertaken to identify and characterize the first ligands capable of selectively identifying nicotinic acetylcholine receptors containing α7 and ß2 subunits (α7ß2-nAChR subtype). Basal forebrain cholinergic neurons express α7ß2-nAChR. Here, they appear to mediate neuronal dysfunction induced by the elevated levels of oligomeric amyloid-ß associated with early Alzheimer's disease. Additional work indicates that α7ß2-nAChR are expressed across several further critically important cholinergic and GABAergic neuronal circuits within the central nervous system. Further studies, however, are significantly hindered by the inability of currently available ligands to distinguish heteromeric α7ß2-nAChR from the closely related and more widespread homomeric α7-only-nAChR subtype. Functional screening using two-electrode voltage-clamp electrophysiology identified a family of α7ß2-nAChR-selective analogs of α-conotoxin PnIC (α-CtxPnIC). A combined electrophysiology, functional kinetics, site-directed mutagenesis, and molecular dynamics approach was used to further characterize the α7ß2-nAChR selectivity and site of action of these α-CtxPnIC analogs. We determined that α7ß2-nAChR selectivity of α-CtxPnIC analogs arises from interactions at a site distinct from the orthosteric agonist-binding site shared between α7ß2- and α7-only-nAChR. As numerous previously identified α-Ctx ligands are competitive antagonists of orthosteric agonist-binding sites, this study profoundly expands the scope of use of α-Ctx ligands (which have already provided important nAChR research and translational breakthroughs). More immediately, analogs of α-CtxPnIC promise to enable, for the first time, both comprehensive mapping of the distribution of α7ß2-nAChR and detailed investigations of their physiological roles.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Colinérgicos , Sitios de Unión , Neuronas GABAérgicas/metabolismo , Antagonistas Nicotínicos/farmacología
17.
Biochimie ; 216: 108-119, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37871826

RESUMEN

Evidence to date indicates that activation of nicotinic acetylcholine receptors (nAChRs) can reduce cardiac injury from ischemia and subsequent reperfusion. The use of nAChR agonists in various animal models leads to a reduction in reperfusion injury. Earlier this effect was shown for the agonists of α7 nAChR subtype. In this work, we demonstrated the expression of mRNA encoding α4, α6 and ß2 nAChR subunits in the left ventricle of rat heart. In a rat model of myocardial ischemia, we studied the effect of α4ß2 nAChR agonists cytisine and varenicline, medicines used for the treatment of nicotine addiction, and found them to significantly reduce myocardium ischemia-reperfusion injury, varenicline manifesting a higher protection. Dihydro-ß-erythroidine, antagonist of α4ß2 nAChR, as well as methyllycaconitine, antagonist of α7 and α6ß2-containing nAChR, prevented protective effect of varenicline. This together with the presence of α4, α6 and ß2 subunit mRNA in the left ventricule of rat heart raises the possibility that the varenicline effect is mediated by α4ß2 as well as by α7 and/or α6ß2-containing receptors. Our results point to a new way for the use of cytisine and varenicline as cardioprotective agents.


Asunto(s)
Alcaloides , Isquemia Miocárdica , Receptores Nicotínicos , Daño por Reperfusión , Ratas , Animales , Vareniclina/farmacología , Antagonistas Nicotínicos/uso terapéutico , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/uso terapéutico , Alcaloides/farmacología , Alcaloides/uso terapéutico , Receptores Nicotínicos/genética , Reperfusión , Isquemia Miocárdica/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , ARN Mensajero/genética
18.
Chemistry ; 30(7): e202302909, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910861

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are drug targets for neurological diseases and disorders, but selective targeting of the large number of nAChR subtypes is challenging. Marine cone snail α-conotoxins are potent blockers of nAChRs and some have been engineered to achieve subtype selectivity. This engineering effort would benefit from rapid computational methods able to predict mutational energies, but current approaches typically require high-resolution experimental structures, which are not widely available for α-conotoxin complexes. Herein, five mutational energy prediction methods were benchmarked using crystallographic and mutational data on two acetylcholine binding protein/α-conotoxin systems. Molecular models were developed for six nAChR subtypes in complex with five α-conotoxins that were studied through 150 substitutions. The best method was a combination of FoldX and molecular dynamics simulations, resulting in a predictive Matthews Correlation Coefficient (MCC) of 0.68 (85 % accuracy). Novel α-conotoxin mutants designed using this method were successfully validated by experimental assay with improved pharmaceutical properties. This work paves the way for the rapid design of subtype-specific nAChR ligands and potentially accelerated drug development.


Asunto(s)
Conotoxinas , Receptores Nicotínicos , Conotoxinas/química , Receptores Nicotínicos/genética , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Antagonistas Nicotínicos/química , Mutación , Simulación de Dinámica Molecular
19.
J Med Chem ; 67(1): 529-542, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38151460

RESUMEN

Growing evidence suggests that inhibition of the α3ß4 nicotinic acetylcholine receptor (nAChR) represents a promising therapeutic strategy to treat cocaine use disorder. Recently, aristoquinoline (1), an alkaloid from Aristotelia chilensis, was identified as an α3ß4-selective nAChR inhibitor. Here, we prepared 22 derivatives of 1 and evaluated their ability to inhibit the α3ß4 nAChR. These studies revealed structure-activity trends and several compounds with increased potency compared to 1 with few off-target liabilities. Additional mechanistic studies indicated that these compounds inhibit the α3ß4 nAChR noncompetitively, but do not act as channel blockers, suggesting they are negative allosteric modulators. Finally, using a cocaine-primed reinstatement paradigm, we demonstrated that 1 significantly attenuates drug-seeking behavior in an animal model of cocaine relapse. The results from these studies further support a role for the α3ß4 nAChR in the addictive properties of cocaine and highlight the possible utility of aristoquinoline derivatives in treating cocaine use disorder.


Asunto(s)
Alcaloides , Cocaína , Quinolinas , Receptores Nicotínicos , Animales , Alcaloides/farmacología , Alcaloides/uso terapéutico , Comportamiento de Búsqueda de Drogas , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/uso terapéutico
20.
ACS Chem Neurosci ; 14(24): 4311-4322, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38051211

RESUMEN

Understanding the determinants of α-conotoxin (α-CTX) selectivity for different nicotinic acetylcholine receptor (nAChR) subtypes is a prerequisite for the design of tool compounds to study nAChRs. However, selectivity optimization of these small, disulfide-rich peptides is difficult not only because of an absence of α-CTX/nAChR co-structures but also because it is challenging to predict how a mutation to an α-CTX will alter its potency and selectivity. As a prototypical system to investigate selectivity, we employed the α-CTX LvIA that is 25-fold selective for the α3ß2 nAChR over the related α3ß4 nAChR subtype, which is a target for nicotine addiction. Using two-electrode voltage clamp electrophysiology, we identified LvIA[D11R] that is 2-fold selective for the α3ß4 nAChR, reversing the subtype preference. This effect is specifically due to the change in charge and not shape of LvIA[D11R], as substitution of D11 with citrulline retains selectivity for the α3ß2 nAChR. Furthermore, LvIA[D11K] shows a stronger reversal, with 4-fold selectivity for the α3ß4 nAChR. Motivated by these findings, using site-directed mutagenesis, we found that ß2[K79A] (I79 on ß4), but not ß2[K78A] (N78 on ß4), largely restores the potency of basic mutants at position 11. Finally, to understand the structural basis of this effect, we used AlphaFold2 to generate models of LvIA in complex with both nAChR subtypes. Both models confirm the plausibility of an electrostatic mechanism to explain the data and also reproduce a broad range of potency and selectivity structure-activity relationships for LvIA mutants, as measured using free energy perturbation simulations. Our work highlights how electrostatic interactions can drive α-CTX selectivity and may serve as a strategy for optimizing the selectivity of LvIA and other α-CTXs.


Asunto(s)
Conotoxinas , Receptores Nicotínicos , Conotoxinas/genética , Conotoxinas/farmacología , Electricidad Estática , Receptores Nicotínicos/genética , Mutación/genética , Péptidos , Antagonistas Nicotínicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA