RESUMEN
The venoms of Conus snails contain neuroactive peptides named conotoxins (CTXs). Some CTXs are nicotinic acetylcholine receptor (nAChRs) antagonists. nAChRs modulate the release of neurotransmitters and are implicated in several pathophysiologies. One venom peptide from Conus archon, a vermivorous species from the Mexican Pacific, was purified by RP-HPLC and its activity on human α7, α3ß2, and α7ß2 nAChRs was assessed by the two-electrode voltage clamp technique. At 36.3 µM the purified peptide (F27-1, renamed tentatively ArchIIIA) slowly reversibly inhibited the ACh-induced response of the hα7 subtype by 44.52 ± 5.83%, while it had low or no significant effect on the response of the hα3ß2 and hα7ß2 subtypes; the EC50 of the inhibiting effect was 45.7 µM on the hα7 subtype. This peptide has 15 amino acid residues and a monoisotopic mass of 1654.6 Da (CCSALCSRYHCLPCC), with three disulfide bridges and a free C-terminus. This sequence with a CC-C-C-CC arrangement (framework III) belongs to the M superfamily of conotoxins, corresponding to the mini-M´s (M-1-M-3) conotoxins; due to its size and inter-Cys spacings it is an M-2 conotoxin. This toxin is a novel mini-M conotoxin affecting ligand-gated ion channels, like the maxi-M CTX ψ-conotoxins and α-MIIIJ conotoxin (nAChRs blockers). This peptide seems to be homologous to the reg3b conotoxin (from Conus regius) with an identity of 93.3%, differing only in the third residue in the sequence, serine for threonine, both uncharged polar residues. We obtained, in silico, a probable 3D structure, which is consistent with its effect on neuronal subtypes.
Asunto(s)
Conotoxinas , Caracol Conus , Antagonistas Nicotínicos , Receptores Nicotínicos , Animales , Conotoxinas/química , Conotoxinas/farmacología , Caracol Conus/química , Humanos , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacología , Péptidos/metabolismo , Receptores Nicotínicos/metabolismoRESUMEN
The alkaloids aristoteline (1), aristoquinoline (2), and aristone (3) were purified from the leaves of the Maqui tree Aristotelia chilensis and chemically characterized by NMR spectroscopy. The pharmacological activity of these natural compounds was evaluated on human (h) α3ß4, α4ß2, and α7 nicotinic acetylcholine receptors (AChRs) by Ca2+ influx measurements. The results suggest that these alkaloids do not have agonistic, but inhibitory, activity on each receptor subtype. The obtained IC50 values indicate the following receptor selectivity: hα3ß4 > hα4ß2 â« hα7. In the particular case of hα3ß4 AChRs, 1 (0.40 ± 0.20 µM) and 2 (0.96 ± 0.38 µM) show higher potencies compared with 3 (167 ± 3 µM). Molecular docking and structure-activity relationship results indicate that ligand lipophilicity is important for the interaction with the luminal site located close to the cytoplasmic side of the hα3ß4 ion channel between positions -2' and -4'. Compound 1 could be used as a molecular scaffold for the development of more potent noncompetitive inhibitors with higher selectivity for the hα3ß4 AChR that could serve for novel addiction and depression therapies.
Asunto(s)
Alcaloides/farmacología , Elaeocarpaceae/química , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores , Alcaloides/química , Alcaloides/aislamiento & purificación , Humanos , Simulación del Acoplamiento Molecular , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/aislamiento & purificación , Relación Estructura-ActividadRESUMEN
Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS) subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i) PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii) cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii) HEK 293 cells heterologoulsy expressing α4ß2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+)-11á-hydroxyerysotrine was the lowest, whereas (+)-erythravine and (+)-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4ß2 nicotinic acetylcholine receptors. The IC50 obtained with (+)-erythravine and (+)-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4ß2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4ß2 subtype.
Asunto(s)
Alcaloides/farmacología , Erythrina/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Alcaloides/química , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Antagonistas Nicotínicos/química , Embarazo , RatasRESUMEN
A phytochemical investigation of the leaves of Hyperbaena valida resulted in the isolation and characterization of two erythrina-type alkaloids, 1 and 2, which were found to be antagonists at nicotinic receptors. Compound 1 was assigned as the new 15-amido-3-demethoxy-2alpha,3alpha-methylenedioxyerythroculine and compound 2 as the known 3-demethoxy-2alpha,3alpha-methylenedioxyerythroculine. Antagonism of a 100 microM nicotine response was observed for alkaloid 1 (IC50 value of 94 +/- 8 microM) and alkaloid 2 (IC50 value of 77 +/- 19 microM).
Asunto(s)
Alcaloides/aislamiento & purificación , Compuestos Heterocíclicos de 4 o más Anillos/aislamiento & purificación , Menispermaceae/química , Antagonistas Nicotínicos/aislamiento & purificación , Plantas Medicinales/química , Algoritmos , Alcaloides/química , Alcaloides/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Concentración 50 Inhibidora , Jamaica , Estructura Molecular , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacologíaRESUMEN
In this work we report the synthesis and evaluation of the analgesic properties of new isosteric heterocyclic derivatives, presenting the isoxazole nucleus, designed as nicotinic acetylcholine receptor ligand candidates, analogues to alkaloid epibatidine. Compound 2-(3-methyl-5-isoxazolyl)pyridine (3) presented the best analgesic profile of this series in hot plate test, which was partially prevented by pretreatment with nicotinic receptor antagonist mecamylamine.
Asunto(s)
Analgésicos/química , Analgésicos/farmacología , Isoxazoles/química , Isoxazoles/farmacología , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Analgésicos/síntesis química , Analgésicos/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Femenino , Isoxazoles/síntesis química , Isoxazoles/metabolismo , Ligandos , Masculino , Ratones , Estructura Molecular , Antagonistas Nicotínicos/síntesis química , Antagonistas Nicotínicos/metabolismo , Relación Estructura-ActividadRESUMEN
The nicotinic acetylcholine receptor presents two very well differentiated domains for ligand binding that account for different cholinergic properties. In the hydrophilic extracellular region of the alpha subunit exist the binding sites for agonists such as the neurotransmitter acetylcholine, which upon binding trigger the channel opening, and for competitive antagonists such as d-tubocurarine, which compete for the former inhibiting its pharmacological action. For non-competitive inhibitors, a population of low-affinity binding sites have been found at the lipid-protein interface of the nicotinic acetylcholine receptor. In addition, at the M2 transmembrane domain, several high-affinity binding sites have been found for non-competitive inhibitors such as chlorpromazine, triphenylmethylphosphonium, the local anaesthetic QX-222 and the hydrophobic probe trifluoromethyl-iodophenyldiazirine. They are known as luminal binding sites. Although the local anaesthetic meproadifen seems to be located between the hydrophobic domains M2-M3, this locus is considered to form part of the channel mouth, thus this site can also be called a luminal binding site. In contraposition, experimental evidences support the hypothesis of the existence of other high-affinity binding sites for non-competitive inhibitors located not at the channel lumen, but at non-luminal binding domains. Among them, we can quote the binding site for quinacrine, which is located at the lipid-protein interface of the alpha M1 domain, and the binding site for ethidium, which is believed to interact with the wall of the vestibule very far away from both the lumen channel and the lipid membrane surface. The aim of this review is to discuss these recent findings relative to both structurally and functionally relevant aspects of non-competitive inhibitors of the nicotinic acetylcholine receptor. We will put special emphasis on the description of the localization of molecules with non-competitive antagonist properties that bind with high-affinity to luminal and non-luminal domains. The information described herein was principally obtained by means of methods such as photolabelling and site-directed mutagenesis in combination with patch-clamp. Our laboratory has contributed with data obtained by using biophysical approaches such as paramagnetic electron spin resonance and quantitative fluorescence spectroscopy.