Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
PLoS Pathog ; 20(5): e1012211, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709823

RESUMEN

Cytolytic CD8+ T cells mediate immunopathology in cutaneous leishmaniasis without controlling parasites. Here, we identify factors involved in CD8+ T cell migration to the lesion that could be targeted to ameliorate disease severity. CCR5 was the most highly expressed chemokine receptor in patient lesions, and the high expression of CCL3 and CCL4, CCR5 ligands, was associated with delayed healing of lesions. To test the requirement for CCR5, Leishmania-infected Rag1-/- mice were reconstituted with CCR5-/- CD8+ T cells. We found that these mice developed smaller lesions accompanied by a reduction in CD8+ T cell numbers compared to controls. We confirmed these findings by showing that the inhibition of CCR5 with maraviroc, a selective inhibitor of CCR5, reduced lesion development without affecting the parasite burden. Together, these results reveal that CD8+ T cells migrate to leishmanial lesions in a CCR5-dependent manner and that blocking CCR5 prevents CD8+ T cell-mediated pathology.


Asunto(s)
Linfocitos T CD8-positivos , Movimiento Celular , Leishmaniasis Cutánea , Receptores CCR5 , Animales , Receptores CCR5/metabolismo , Receptores CCR5/inmunología , Linfocitos T CD8-positivos/inmunología , Ratones , Humanos , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Ratones Noqueados , Ratones Endogámicos C57BL , Antagonistas de los Receptores CCR5/farmacología , Maraviroc/farmacología , Femenino
2.
Mucosal Immunol ; 17(1): 41-53, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37866719

RESUMEN

Despite their importance for immunity against sexually transmitted infections, the composition of female reproductive tract (FRT) memory T-cell populations in response to changes within the local tissue environment under the regulation of the menstrual cycle remains poorly defined. Here, we show that in humans and pig-tailed macaques, the cycle determines distinct clusters of differentiation 4 T-cell surveillance behaviors by subsets corresponding to migratory memory (TMM) and resident memory T cells. TMM displays tissue-itinerant trafficking characteristics, restricted distribution within the FRT microenvironment, and distinct effector responses to infection. Gene pathway analysis by RNA sequencing identified TMM-specific enrichment of genes involved in hormonal regulation and inflammatory responses. FRT T-cell subset fluctuations were discovered that synchronized to cycle-driven CCR5 signaling. Notably, oral administration of a CCR5 antagonist drug blocked TMM trafficking. Taken together, this study provides novel insights into the dynamic nature of FRT memory CD4 T cells and identifies the menstrual cycle as a key regulator of immune surveillance at the site of STI pathogen exposure.


Asunto(s)
Linfocitos T CD4-Positivos , Genitales Femeninos , Ciclo Menstrual , Receptores CCR5 , Transducción de Señal , Femenino , Humanos , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Genitales Femeninos/inmunología , Genitales Femeninos/metabolismo , Ciclo Menstrual/inmunología , Ciclo Menstrual/fisiología , Receptores CCR5/genética , Receptores CCR5/metabolismo , Subgrupos de Linfocitos T/inmunología , Macaca nemestrina/inmunología , Memoria Inmunológica , Microambiente Celular/inmunología , Microambiente Celular/fisiología , Antagonistas de los Receptores CCR5/farmacología
3.
Acta Pharmacol Sin ; 44(10): 1935-1947, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37198412

RESUMEN

Chemokine receptor 5 (CCR5) is one of the main co-receptors of HIV-1, and has been found to be a potential therapeutic target for stroke. Maraviroc is a classic CCR5 antagonist, which is undergoing clinical trials against stroke. As maraviroc shows poor blood-brain barrier (BBB) permeability, it is of interest to find novel CCR5 antagonists suitable for neurological medication. In this study we characterized the therapeutic potential of a novel CCR5 antagonist A14 in treating ischemic stroke mice. A14 was discovered in screening millions compounds in the Chemdiv library based on the molecular docking diagram of CCR5 and maraviroc. We found that A14 dose-dependently inhibited the CCR5 activity with an IC50 value of 4.29 µM. Pharmacodynamic studies showed that A14 treatment exerted protective effects against neuronal ischemic injury both in vitro and vivo. In a SH-SY5Y cell line overexpressing CCR5, A14 (0.1, 1 µM) significantly alleviated OGD/R-induced cell injury. We found that the expression of CCR5 and its ligand CKLF1 was significantly upregulated during both acute and recovery period in focal cortical stroke mice; oral administration of A14 (20 mg·kg-1·d-1, for 1 week) produced sustained protective effect against motor impairment. A14 treatment had earlier onset time, lower onset dosage and much better BBB permeability compared to maraviroc. MRI analysis also showed that A14 treatment significantly reduced the infarction volume after 1 week of treatment. We further revealed that A14 treatment blocked the protein-protein interaction between CCR5 and CKLF1, increasing the activity of CREB signaling pathway in neurons, thereby improving axonal sprouting and synaptic density after stroke. In addition, A14 treatment remarkably inhibited the reactive proliferation of glial cells after stroke and reduced the infiltration of peripheral immune cells. These results demonstrate that A14 is a promising novel CCR5 antagonist for promoting neuronal repair after ischemic stroke. A14 blocked the protein-protein interaction between CKLF1 and CCR5 after stroke by binding with CCR5 stably, improved the infarct area and promoted motor recovery through reversing the CREB/pCREB signaling which was inhibited by activated CCR5 Gαi pathway, and benefited to the dendritic spines and axons sprouting.


Asunto(s)
Antagonistas de los Receptores CCR5 , Accidente Cerebrovascular Isquémico , Neuroblastoma , Accidente Cerebrovascular , Animales , Humanos , Ratones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Maraviroc/uso terapéutico , Maraviroc/farmacología , Simulación del Acoplamiento Molecular , Receptores CCR5/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Antagonistas de los Receptores CCR5/química , Antagonistas de los Receptores CCR5/farmacología
4.
J Med Chem ; 65(24): 16526-16540, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36472561

RESUMEN

Blocking the entry of an HIV-1 targeting CCR5 coreceptor has emerged as an attractive strategy to develop HIV therapeutics. Maraviroc is the only CCR5 antagonist approved by FDA; however, serious side effects limited its clinical use. Herein, 21 novel tropane derivatives (6-26) were designed and synthesized based on the CCR5-maraviroc complex structure. Among them, compounds 25 and 26 had comparable activity to maraviroc and presented more potent inhibitory activity against a series of HIV-1 strains. In addition, compound 26 exhibited synergistic or additive antiviral effects in combination with other antiretroviral agents. Compared to maraviroc, both 25 and 26 displayed higher Cmax and AUC0-∞ and improved oral bioavailability in SD rats. In addition, compounds 25 and 26 showed no significant CYP450 inhibition and showed a novel binding mode with CCR5 different from that of maraviroc-CCR5. In summary, compounds 25 and 26 are promising drug candidates for the treatment of HIV-1 infection.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Ratas , Animales , Maraviroc/farmacología , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Antagonistas de los Receptores CCR5/farmacología , Ciclohexanos/farmacología , Triazoles/farmacología , Triazoles/uso terapéutico , Disponibilidad Biológica , Ratas Sprague-Dawley , Infecciones por VIH/tratamiento farmacológico , Tropanos/farmacología , Receptores CCR5/metabolismo
5.
Viruses ; 14(11)2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36366513

RESUMEN

With the aim of rationally devising a refined and potent HIV-1 blocker, the cDNA of CCL5 5p12 5m, an extremely potent CCR5 antagonist, was fused to that of C37, a gp41-targeted fusion inhibitor. The resulting CCL5 5p12 5m-C37 fusion protein was expressed in E. coli and proved to be capable of inhibiting R5 HIV-1 strains with low to sub-picomolar IC50, maintaining its antagonism toward CCR5. In addition, CCL5 5p12 5m-C37 inhibits R5/X4 and X4 HIV-1 strains in the picomolar concentration range. The combination of CCL5 5p12 5m-C37 with tenofovir (TDF) exhibited a synergic effect, promoting this antiviral cocktail. Interestingly, a CCR5-targeted combination of maraviroc (MVC) with CCL5 5p12 5m-C37 led to a synergic effect that could be explained by an extensive engagement of different CCR5 conformational populations. Within the mechanism of HIV-1 entry, the CCL5 5p12 5m-C37 chimera may fit as a powerful blocker in several instances. In its possible consideration for systemic therapy or pre-exposure prophylaxis, this protein design represents an interesting lead in the combat of HIV-1 infection.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Receptores CCR5/genética , Receptores CCR5/metabolismo , Escherichia coli/metabolismo , Maraviroc/farmacología , Maraviroc/uso terapéutico , Infecciones por VIH/metabolismo , Antagonistas de los Receptores CCR5/farmacología , Antagonistas de los Receptores CCR5/uso terapéutico
6.
PLoS One ; 17(10): e0275269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36251708

RESUMEN

CC Chemokine receptor 5 (CCR5), a member of the Superfamily of G Protein-Coupled Receptors (GPCRs), is an important effector in multiple physiopathological processes such as inflammatory and infectious entities, including central nervous system neuroinflammatory diseases such as Alzheimer's disease, recovery from nervous injuries, and in the HIV-AIDS infective processes. Thus, CCR5 is an attractive target for pharmacological modulation. Since maraviroc was described as a CCR5 ligand that modifies the HIV-AIDS progression, multiple efforts have been developed to describe the functionality of the receptor. In this work, we characterized key structural features of the CCR5 receptor employing extensive atomistic molecular dynamics (MD) in its apo form and in complex with an endogenous agonist, the chemokine CCL5/RANTES, an HIV entry inhibitor, the partial inverse agonist maraviroc, and the experimental antagonists Compound 21 and 34, aiming to elucidate the structural features and mechanistic processes that constitute its functional states, contributing with structural details and a general understanding of this relevant system.


Asunto(s)
Inhibidores de Fusión de VIH , Infecciones por VIH , Antagonistas de los Receptores CCR5/farmacología , Antagonistas de los Receptores CCR5/uso terapéutico , Quimiocina CCL5/farmacología , Infecciones por VIH/tratamiento farmacológico , Humanos , Imidazoles , Ligandos , Maraviroc/uso terapéutico , Receptores CCR5 , Sulfonamidas , Tiofenos
7.
PLoS Pathog ; 18(6): e1010547, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35749425

RESUMEN

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has created a global pandemic infecting over 230 million people and costing millions of lives. Therapies to attenuate severe disease are desperately needed. Cenicriviroc (CVC), a C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 2 (CCR2) antagonist, an agent previously studied in advanced clinical trials for patients with HIV or nonalcoholic steatohepatitis (NASH), may have the potential to reduce respiratory and cardiovascular organ failures related to COVID-19. Inhibiting the CCR2 and CCR5 pathways could attenuate or prevent inflammation or fibrosis in both early and late stages of the disease and improve outcomes of COVID-19. Clinical trials using CVC either in addition to standard of care (SoC; e.g., dexamethasone) or in combination with other investigational agents in patients with COVID-19 are currently ongoing. These trials intend to leverage the anti-inflammatory actions of CVC for ameliorating the clinical course of COVID-19 and prevent complications. This article reviews the literature surrounding the CCR2 and CCR5 pathways, their proposed role in COVID-19, and the potential role of CVC to improve outcomes.


Asunto(s)
Antagonistas de los Receptores CCR5 , Tratamiento Farmacológico de COVID-19 , Antagonistas de los Receptores CCR5/farmacología , Antagonistas de los Receptores CCR5/uso terapéutico , Humanos , Imidazoles , Receptores CCR2 , Receptores CCR5 , SARS-CoV-2 , Sulfóxidos
8.
J Exp Med ; 219(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35404390

RESUMEN

The resistance of pancreatic ductal adenocarcinoma (PDAC) to immune checkpoint inhibitors (ICIs) is attributed to the immune-quiescent and -suppressive tumor microenvironment (TME). We recently found that CCR2 and CCR5 were induced in PDAC following treatment with anti-PD-1 antibody (αPD-1); thus, we examined PDAC vaccine or radiation therapy (RT) as T cell priming mechanisms together with BMS-687681, a dual antagonist of CCR2 and CCR5 (CCR2/5i), in combination with αPD-1 as new treatment strategies. Using PDAC mouse models, we demonstrated that RT followed by αPD-1 and prolonged treatment with CCR2/5i conferred better antitumor efficacy than other combination treatments tested. The combination of RT + αPD-1 + CCR2/5i enhanced intratumoral effector and memory T cell infiltration but suppressed regulatory T cell, M2-like tumor-associated macrophage, and myeloid-derived suppressive cell infiltration. RNA sequencing showed that CCR2/5i partially inhibited RT-induced TLR2/4 and RAGE signaling, leading to decreased expression of immunosuppressive cytokines including CCL2/CCL5, but increased expression of effector T cell chemokines such as CCL17/CCL22. This study thus supports the clinical development of CCR2/5i in combination with RT and ICIs for PDAC treatment.


Asunto(s)
Adenocarcinoma , Antagonistas de los Receptores CCR5 , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores CCR2 , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/radioterapia , Animales , Antagonistas de los Receptores CCR5/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/radioterapia , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Receptores CCR2/antagonistas & inhibidores , Receptores CCR5 , Microambiente Tumoral , Neoplasias Pancreáticas
9.
Front Immunol ; 13: 826418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35126399

RESUMEN

The large number of pathologies that position CCR5 as a central molecular determinant substantiates the studies aimed at understanding receptor-ligand interactions, as well as the development of compounds that efficiently block this receptor. This perspective focuses on CCR5 antagonism as the preferred landscape for therapeutic intervention, thus the receptor active site occupancy by known antagonists of different origins is overviewed. CCL5 is a natural agonist ligand for CCR5 and an extensively studied scaffold for CCR5 antagonists production through chemokine N-terminus modification. A retrospective 3D modeling analysis on recently developed CCL5 mutants and their contribution to enhanced anti-HIV-1 activity is reported here. These results allow us to prospect the development of conceptually novel amino acid substitutions outside the CCL5 N-terminus hotspot. CCR5 interaction improvement in regions distal to the chemokine N-terminus, as well as the stabilization of the chemokine hydrophobic core are strategies that influence binding affinity and stability beyond the agonist/antagonist dualism. Furthermore, the development of allosteric antagonists topologically remote from the orthosteric site (e.g., intracellular or membrane-embedded) is an intriguing new avenue in GPCR druggability and thus a conceivable novel direction for CCR5 blockade. Ultimately, the three-dimensional structure elucidation of the interaction between various ligands and CCR5 helps illuminate the active site occupancy and mechanism of action.


Asunto(s)
Antagonistas de los Receptores CCR5/farmacología , Quimiocina CCL5/química , VIH-1/fisiología , Modelos Moleculares , Receptores CCR5/química , Animales , Antagonistas de los Receptores CCR5/química , Quimiocina CCL5/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Humanos , Ligandos , Unión Proteica , Receptores CCR5/metabolismo
10.
J Immunol ; 208(5): 1170-1179, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35140134

RESUMEN

Mucosa-associated invariant T (MAIT) cells recognize bacterial riboflavin metabolite Ags presented by MHC class Ib-related protein (MR1) and play important roles in immune control of microbes that synthesize riboflavin. This includes the pathobiont Staphylococcus aureus, which can also express a range of virulence factors, including the secreted toxin leukocidin ED (LukED). In this study, we found that human MAIT cells are hypersensitive to LukED-mediated lysis and lost on exposure to the toxin, leaving a T cell population devoid of MAIT cells. The cytolytic effect of LukED on MAIT cells was rapid and occurred at toxin concentrations lower than those required for toxicity against conventional T cells. Furthermore, this coincided with high MAIT cell expression of CCR5, and loss of these cells was efficiently inhibited by the CCR5 inhibitor maraviroc. Interestingly, exposure and preactivation of MAIT cells with IL-12 and IL-18, or activation via TCR triggering, partially protected from LukED toxicity. Furthermore, analysis of NK cells indicated that LukED targeted the mature cytotoxic CD57+ NK cell subset in a CCR5-independent manner. Overall, these results indicate that LukED efficiently eliminates immune cells that can respond rapidly to S. aureus in an innate fashion without the need for clonal expansion, and that MAIT cells are exceptionally vulnerable to this toxin. Thus, the findings support a model where LukED secretion may allow S. aureus to avoid recognition by the rapid cell-mediated responses mediated by MAIT cells and NK cells.


Asunto(s)
Evasión Inmune/inmunología , Células Asesinas Naturales/inmunología , Leucocidinas/metabolismo , Células T Invariantes Asociadas a Mucosa/patología , Receptores CCR5/metabolismo , Staphylococcus aureus/patogenicidad , Antagonistas de los Receptores CCR5/farmacología , Línea Celular , Humanos , Subunidad p35 de la Interleucina-12/metabolismo , Interleucina-18/metabolismo , Activación de Linfocitos/inmunología , Maraviroc/farmacología , Células T Invariantes Asociadas a Mucosa/inmunología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/inmunología , Células THP-1 , Factores de Virulencia/metabolismo
11.
Fluids Barriers CNS ; 19(1): 7, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35062973

RESUMEN

BACKGROUND: C-C chemokine receptor type 1 (CCR1) and its endogenous ligand, CCL5, participate in the pathogenesis of neuroinflammatory diseases. However, much remains unknown regarding CCL5/CCR1 signaling in blood-brain barrier (BBB) permeability after intracerebral hemorrhage (ICH). METHODS: A total of 250 CD1 male mice were used and ICH was induced via autologous whole blood injection. Either Met-RANTES, a selective CCR1 antagonist, or Met-RANTES combined with a Rac1 CRISPR activator was administered to the mice 1 h after ICH. Post-ICH assessments included neurobehavioral tests, brain water content, BBB integrity, hematoma volume, Western blot, and immunofluorescence staining. The CCR1 ligand, rCCL5, and SRC CRISPR knockout in naïve mice were used to further elucidate detrimental CCL5/CCR1/SRC signaling. RESULTS: Brain endogenous CCR1 and CCL5 were upregulated after ICH in mice with a peak at 24 h, and CCR1 was expressed in endothelial cells, astrocytes, and neurons. Met-R treatment reduced brain edema and neurobehavioral impairment, as well as preserved BBB integrity and tight junction protein expression in ICH mice. Met-R treatment decreased expression of p-SRC, Rac1, albumin, and MMP9, but increased claudin-5, occludin, and ZO-1 tight junction proteins after ICH. These effects were regressed using the Rac1 CRISPR activator. Administration of rCCL5 in naïve mice increased expression of p-SRC, Rac1, albumin, and MMP9, but decreased levels of claudin-5, occludin, and ZO-1 tight junction proteins. These effects in naïve mice were reversed with SRC CRISPR (KO). CONCLUSIONS: Our findings demonstrate that CCR5 inhibition by Met-R improves neurological deficits after ICH by preserving BBB integrity through inhibiting CCR1/SRC/Rac1 signaling pathway in mice. Thus, Met-R has therapeutic potential in the management of ICH patients.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Antagonistas de los Receptores CCR5/farmacología , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Quimiocina CCL5/farmacología , Neuropéptidos/metabolismo , Receptores CCR1/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Familia-src Quinasas/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Quimiocina CCL5/administración & dosificación , Masculino , Ratones , Neuropéptidos/efectos de los fármacos , Receptores CCR1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína de Unión al GTP rac1/efectos de los fármacos , Familia-src Quinasas/efectos de los fármacos
12.
AIDS ; 36(1): 11-18, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34628442

RESUMEN

BACKGROUND: Temsavir (TMR), the active agent of the gp120-directed attachment inhibitor fostemsavir (FTR), the CD4-directed attachment inhibitor ibalizumab (IBA), and the CCR5 antagonist maraviroc (MVC) are antiretroviral agents that target steps in HIV-1 viral entry. Although mechanisms of inhibition of the three agents are different, it is important to understand whether there is potential for cross-resistance between these agents, as all involve interactions with gp120. METHODS: Envelopes derived from plasma samples from participants in the BRIGHTE study who experienced protocol-derived virologic failure (PDVF) and were co-dosed with FTR and either IBA or MVC were analyzed for susceptibility to the agents. Also, CCR5-tropic MVC-resistant envelopes from the MOTIVATE trials were regenerated and studies were performed to understand whether susceptibility to multiple agents were linked. RESULTS: The cloned envelopes exhibited reduced susceptibility to TMR and resistance to the co-dosed agent. At PDVF, emergent or preexisting amino acid substitutions were present at TMR positions of interest. When amino acid substitutions at these positions were reverted to the consensus sequence, full susceptibility to TMR was restored without effecting resistance to the co-dosed agent. In addition, five envelopes from MOTIVATE were regenerated and exhibited R5-tropic-MVC-resistance. Only one exhibited reduced susceptibility to TMR and it contained an M426L polymorphism. When reverted to 426M, full sensitivity for TMR was restored, but it remained MVC resistant. CONCLUSION: The data confirm that decreased susceptibility to TMR and resistance to IBA or MVC are not linked and that there is no cross-resistance between either of these two agents and FTR.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Fármacos Anti-VIH/uso terapéutico , Anticuerpos Monoclonales/farmacología , Antagonistas de los Receptores CCR5/farmacología , Antagonistas de los Receptores CCR5/uso terapéutico , Ciclohexanos/farmacología , Ciclohexanos/uso terapéutico , Farmacorresistencia Viral , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/tratamiento farmacológico , Humanos , Maraviroc
13.
Artículo en Inglés | MEDLINE | ID: mdl-34728496

RESUMEN

BACKGROUND AND OBJECTIVES: Progressive multifocal leukoencephalopathy (PML) is a disabling neurologic disorder resulting from the infection of the CNS by JC polyomavirus in immunocompromised individuals. For the last 2 decades, increasing use of immunotherapies leads to iatrogenic PML. Iatrogenic PML is often associated with signs of inflammation at onset (inflammatory PML) and/or after treatment withdrawal immune reconstitution inflammatory syndrome (PML-IRIS). Although immune reconstitution is a key element for viral clearance, it may also be harmful and induce clinical worsening. A C-C chemokine receptor type 5 (CCR5) antagonist (maraviroc) has been proposed to prevent and/or limit the deleterious immune responses underlying PML-IRIS. However, the data to support its use remain scarce and disputed. METHODS: We conducted a multicenter retrospective cohort study at 8 university hospitals in France and Switzerland by collecting clinical, biological, and radiologic data of patients who developed inflammatory PML (iPML) or PML-IRIS related to immunosuppressive therapies used for chronic inflammatory diseases between 2010 and 2020. We added to this cohort, a meta-analysis of individual case reports of patients with iPML/PML-IRIS treated with maraviroc published up to 2021. RESULTS: Overall, 27 cases were identified in the cohort and 9 from the literature. Among them, 27 met the inclusion criteria: 16 treated with maraviroc and 11 with standard of care (including corticosteroids use). Most cases were related to MS (92.6%) and natalizumab (88%). Inflammatory features (iPML) were present at onset in 12 patients (44.4%), and most patients (92.6%) received corticosteroids within the course of PML. Aggravation due to PML-IRIS was not prevented by maraviroc compared with patients who received only corticosteroids (adjusted odds ratio: 0.408, 95% CI: 0.06-2.63). Similarly, maraviroc did not influence time to clinical worsening due to PML-IRIS (adjusted hazard ratio = 0.529, 95% CI: 0.14-2.0) or disability at the last follow-up (adjusted odds ratio: 2, 95% CI: 0.23-17.3). DISCUSSION: The use of CCR5 blockade did not help to keep deleterious immune reconstitution in check even when associated with corticosteroids. Despite maraviroc's reassuring safety profile, this study does not support its use in iPML/PML-IRIS. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence showing that adding maraviroc to the management of iatrogenic iPML/PML-IRIS does not improve the outcome.


Asunto(s)
Antagonistas de los Receptores CCR5/farmacología , Síndrome Inflamatorio de Reconstitución Inmune/tratamiento farmacológico , Síndrome Inflamatorio de Reconstitución Inmune/prevención & control , Leucoencefalopatía Multifocal Progresiva/tratamiento farmacológico , Leucoencefalopatía Multifocal Progresiva/prevención & control , Maraviroc/farmacología , Adulto , Antagonistas de los Receptores CCR5/administración & dosificación , Femenino , Humanos , Síndrome Inflamatorio de Reconstitución Inmune/inducido químicamente , Leucoencefalopatía Multifocal Progresiva/inducido químicamente , Masculino , Maraviroc/administración & dosificación , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Estudios Retrospectivos , Adulto Joven
14.
J Biomol Struct Dyn ; 40(23): 13115-13126, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34569417

RESUMEN

C-C chemokine receptor 5 (CCR5), which is part of the chemokine receptor family, is a member of the G protein-coupled receptor superfamily. The interactions of CCR5 with HIV-1 during viral entry position it as an effective therapeutic target for designing potent antiviral therapies. The small-molecule Maraviroc was approved by the FDA as a CCR5 drug in 2007, while clinical trials failure has characterised many of the other CCR5 inhibitors. Thus, the continual identification of potential CCR5 inhibitors is, therefore, warranted. In this study, a structure-based discovery approach has been utilised to screen and retrieved novel potential CCR5 inhibitors from the Asinex antiviral compound (∼ 8,722) database. Explicit lipid-bilayer molecular dynamics simulation, in silico physicochemical and pharmacokinetic analyses, were further performed for the top compounds. A total of 23 structurally diverse compounds with binding scores higher than Maraviroc were selected. Subsequent molecular dynamics (MD) simulations analysis of the top four compounds LAS 51495192, BDB 26405401, BDB 26419079, and LAS 34154543, maintained stability at the CCR5 binding site. Furthermore, these compounds made pertinent interactions with CCR5 residues critical for the HIV-1 gp120-V3 loop binding such as Trp86, Tyr89, Phe109, Tyr108, Glu283 and Tyr251. Additionally, the predicted in silico physicochemical and pharmacokinetic descriptors of the selected compounds were within the acceptable range for drug-likeness. The results suggest positive indications that the identified molecules may represent promising CCR5 entry inhibitors. Further structural optimisations and biochemical testing of the proposed compounds may assist in the discovery of effective HIV-1 therapy.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Inhibidores de Fusión de VIH , Infecciones por VIH , VIH-1 , Humanos , Maraviroc/farmacología , Maraviroc/metabolismo , Maraviroc/uso terapéutico , Antagonistas de los Receptores CCR5/farmacología , Antagonistas de los Receptores CCR5/química , Antagonistas de los Receptores CCR5/uso terapéutico , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/uso terapéutico , Ciclohexanos/farmacología , Ciclohexanos/química , Triazoles/farmacología , Triazoles/química , Inhibidores de Fusión de VIH/farmacología , Inhibidores de Fusión de VIH/química , Inhibidores de Fusión de VIH/uso terapéutico , Receptores CCR5/química , Receptores CCR5/metabolismo , Receptores CCR5/uso terapéutico , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/tratamiento farmacológico
15.
Biochem Pharmacol ; 195: 114859, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843718

RESUMEN

BACKGROUND: Chemokine (C- Cmotif) ligand 5 (CCL5) and its receptor C-C motif chemokine receptor 5 (CCR5), have been broadly studied in conjunction with infectious pathogens, however, their involvement in cardiovascular disease is not completely understood. NADPH oxidases (Noxs) are the major source of reactive oxygen species (ROS) in the vasculature. Whether the activation of Noxs is CCL5/CCR5 sensitive and whether such interaction initiates vascular injury is unknown. We investigated whether CCL5/CCR5 leads to vascular damage by activating Noxs. MATERIAL AND METHODS: We used rat aortic smooth muscle cells (RASMC) to investigate the molecular mechanisms by which CCL5 leads to vascular damage and carotid ligation (CL) to analyze the effects of blocking CCR5 on vascular injury. RESULTS: CCL5 induced Nox1 expression in concentration and time-dependent manners, with no changes in Nox2 or Nox4. Maraviroc pre-treatment (CCR5 antagonist, 40uM) blunted CCL5-induced Nox1 expression. Furthermore, CCL5 incubation led to ROS production and activation of Erk1/2 and NFkB, followed by increased vascular cell migration, proliferation, and inflammatory markers. Notably, Nox1 inhibition (GKT771, 10uM) blocked CCL5-dependent effects. In vivo, CL induced pathological vascular remodeling and inflammatory genes and increased Nox1 and CCR5 expression. Maraviroc treatment (25 mg/Kg/day) reduced pathological vascular growth and Nox1 expression. CONCLUSIONS: Our findings suggest that CCL5 activates Nox1 in the vasculature, leading to vascular injury likely via NFkB and Erk1/2. Herein, we place CCR5 antagonists and/or Nox1 inhibitors might be preeminent antiproliferative compounds to reduce the cardiovascular risk associated with medical procedures (e.g. angioplasty) and vascular diseases associated with vascular hyperproliferation.


Asunto(s)
Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 1/metabolismo , Receptores CCR5/metabolismo , Lesiones del Sistema Vascular/metabolismo , Animales , Antagonistas de los Receptores CCR5/farmacología , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CCL5/genética , Quimiocina CCL5/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Maraviroc/farmacología , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , NADPH Oxidasa 1/genética , Ratas , Receptores CCR5/agonistas , Receptores CCR5/genética , Proteínas Recombinantes/farmacología , Lesiones del Sistema Vascular/prevención & control
16.
Drug Alcohol Depend ; 230: 109204, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871976

RESUMEN

Chemokine CXCR4 and CCR5 receptors are best known as HIV co-entry receptors, but evidence that CXCR4 or CCR5 blockade reduces rewarding and locomotor-stimulant effects of psychostimulants in rats suggests a role in psychostimulant use disorders. We investigated the impact of CXCR4 or CCR5 receptor antagonism on anxiety-related effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) in the elevated zero-maze (EZM) assay. Rats exposed to a 4-day MDPV binge dosing paradigm and tested 24 or 72 h post-treatment spent more time in the open compartment at the 24-h time point but less time at the 72-h post-binge time point. Daily administration of AMD 3100, a CXCR4 antagonist (10 mg/kg), or maraviroc, a CCR5 antagonist (2.5 mg/kg), during MDPV treatment inhibited the MDPV-induced increase in time spent in the open compartment. Neither antagonist affected the MDPV-induced reduction in time spent in the open compartment at the 72-h post-binge time point. Cocaine, administered in the same paradigm as MDPV, did not increase time spent in the open compartment 24-h post-binge, suggesting specificity to MDPV. The present results identify a surprising anxiolytic-like effect of MDPV 24 h after cessation of repeated exposure that is sensitive to chemokine CXCR4 and CCR5 receptor activity.


Asunto(s)
Ansiolíticos , Receptores CCR5 , Alcaloides , Animales , Ansiolíticos/farmacología , Benzodioxoles , Antagonistas de los Receptores CCR5/farmacología , Quimiocinas , Pirrolidinas , Ratas , Receptores CXCR4 , Cathinona Sintética
17.
Retrovirology ; 18(1): 24, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429135

RESUMEN

The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , VIH-1/patogenicidad , Enfermedades Neuroinflamatorias/virología , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Receptores del VIH/metabolismo , Transducción de Señal , Animales , Antagonistas de los Receptores CCR5/farmacología , Antagonistas de los Receptores CCR5/uso terapéutico , Ensayos Clínicos como Asunto , Infecciones por VIH/complicaciones , VIH-1/efectos de los fármacos , Humanos , Ratones , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/fisiopatología , Receptores CCR5/inmunología , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/inmunología , Receptores del VIH/inmunología
18.
J Med Chem ; 64(15): 11460-11471, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34261320

RESUMEN

Previous studies have reported the stepwise nature of human immunodeficiency virus type 1 (HIV-1) entry and the pivotal role of coreceptor CCR5 and the gp41 N-terminal heptad repeat (NHR) region in this event. With this in mind, we herein report a dual-targeted drug compound featuring bifunctional entry inhibitors, consisting of a piperidine-4-carboxamide-based CCR5 antagonist, TAK-220, and a gp41 NHR-targeting fusion-inhibitory peptide, C34. The resultant chimeras were constructed by linking both pharmacophores with a polyethylene glycol spacer. One chimera, CP12TAK, exhibited exceptionally potent antiviral activity, about 40- and 306-fold over that of its parent inhibitors, C34 and TAK-220, respectively. In addition to R5-tropic viruses, CP12TAK also strongly inhibited infection of X4-tropic HIV-1 strains. These data are promising for the further development of CP12TAK as a new anti-HIV-1 drug. Results show that this strategy could be extended to the design of therapies against infection of other enveloped viruses.


Asunto(s)
Fármacos Anti-VIH/farmacología , Antagonistas de los Receptores CCR5/farmacología , Diseño de Fármacos , Proteína gp41 de Envoltorio del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Receptores CCR5/metabolismo , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Antagonistas de los Receptores CCR5/síntesis química , Antagonistas de los Receptores CCR5/química , Relación Dosis-Respuesta a Droga , Proteína gp41 de Envoltorio del VIH/metabolismo , Humanos , Estructura Molecular , Relación Estructura-Actividad , Internalización del Virus/efectos de los fármacos
19.
Expert Opin Ther Targets ; 25(4): 311-327, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33719836

RESUMEN

INTRODUCTION: Chemokines and their cognate receptors play a major role in modulating inflammatory responses. Depending on their ligand binding, chemokine receptors can stimulate both immune activating and inhibitory signaling pathways. The CC chemokine receptor 5 (CCR5) promotes immune responses by recruiting immune cells to the sites of inflammation/tumor, and is involved in stimulating tumor cell proliferation, invasion and migration through various mechanisms. Moreover, CCR5 also contributes to an immune-suppressive tumor microenvironment by recruiting regulatory T cells and myeloid-derived suppressor cells facilitating tumor development and progression. In summary, cells expressing CCR5 modulate immune response and tumor progression. Expression of CCR5 is increased in various malignancies and associated with poor outcome. Experimental data show promising efficacy signals with CCR5 antagonists in preclinical tumor models. Therefore, CCR5 has been recognized as a potential therapeutic target for cancer. AREAS COVERED: In this review, we focus on the role of CCR5 in cancer progression and discuss its impact and potential as a therapeutic target for cancer. EXPERT OPINION: Beyond immune-checkpoint inhibitors, potentially synergistic immune-modulatory drugs such as CCR5 antagonists are a promising approach to enlarge our treatment armamentarium against cancer.


Asunto(s)
Antagonistas de los Receptores CCR5/farmacología , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Animales , Movimiento Celular/inmunología , Proliferación Celular/fisiología , Progresión de la Enfermedad , Humanos , Invasividad Neoplásica/inmunología , Neoplasias/inmunología , Neoplasias/patología , Receptores CCR5/efectos de los fármacos , Receptores CCR5/inmunología , Microambiente Tumoral/inmunología
20.
Breast Cancer Res ; 23(1): 11, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33485378

RESUMEN

BACKGROUND: Triple-negative breast cancer (BCa) (TNBC) is a deadly form of human BCa with limited treatment options and poor prognosis. In our prior analysis of over 2200 breast cancer samples, the G protein-coupled receptor CCR5 was expressed in > 95% of TNBC samples. A humanized monoclonal antibody to CCR5 (leronlimab), used in the treatment of HIV-infected patients, has shown minimal side effects in large patient populations. METHODS: A humanized monoclonal antibody to CCR5, leronlimab, was used for the first time in tissue culture and in mice to determine binding characteristics to human breast cancer cells, intracellular signaling, and impact on (i) metastasis prevention and (ii) impact on established metastasis. RESULTS: Herein, leronlimab was shown to bind CCR5 in multiple breast cancer cell lines. Binding of leronlimab to CCR5 reduced ligand-induced Ca+ 2 signaling, invasion of TNBC into Matrigel, and transwell migration. Leronlimab enhanced the BCa cell killing of the BCa chemotherapy reagent, doxorubicin. In xenografts conducted with Nu/Nu mice, leronlimab reduced lung metastasis of the TNBC cell line, MB-MDA-231, by > 98% at 6 weeks. Treatment with leronlimab reduced the metastatic tumor burden of established TNBC lung metastasis. CONCLUSIONS: The safety profile of leronlimab, together with strong preclinical evidence to both prevent and reduce established breast cancer metastasis herein, suggests studies of clinical efficacy may be warranted.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Antagonistas de los Receptores CCR5/farmacología , Muerte Celular/genética , Daño del ADN/efectos de los fármacos , Anticuerpos Anti-VIH/farmacología , Animales , Neoplasias de la Mama , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...