Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Psychopharmacology (Berl) ; 241(7): 1477-1490, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710856

RESUMEN

RATIONALE: Medications are urgently needed to treat symptoms of drug withdrawal and mitigate dysphoria and psychiatric comorbidities that drive opioid abuse and relapse. ITI-333 is a novel molecule in development for treatment of substance use disorders, psychiatric comorbidities, and pain. OBJECTIVE: Characterize the preclinical profile of ITI-333 using pharmacological, behavioral, and physiological assays. METHODS: Cell-based assays were used to measure receptor binding and intrinsic efficacy of ITI-333; animal models were employed to assess effects on opioid reinstatement, precipitated oxycodone withdrawal, and drug abuse liability. RESULTS: In vitro, ITI-333 is a potent 5-HT2A receptor antagonist (Ki = 8 nM) and a biased, partial agonist at µ-opioid (MOP) receptors (Ki = 11 nM; lacking ß-arrestin agonism) with lesser antagonist activity at adrenergic α1A (Ki = 28 nM) and dopamine D1 (Ki = 50 nM) receptors. In vivo, ITI-333 blocks 5-HT2A receptor-mediated head twitch and MOP receptor-mediated effects on motor hyperactivity in mice. ITI-333 alone is a naloxone-sensitive analgesic (mice) which suppresses somatic signs of naloxone-precipitated oxycodone withdrawal (mice) and heroin cue-induced reinstatement responding without apparent tolerance or physical dependence after chronic dosing (rats). ITI-333 did not acutely impair gastrointestinal or pulmonary function (rats) and was not intravenously self-administered by heroin-maintained rats or rhesus monkeys. CONCLUSIONS: ITI-333 acts as a potent 5-HT2A receptor antagonist, as well a biased MOP receptor partial agonist with low intrinsic efficacy. ITI-333 mitigates opioid withdrawal/reinstatement, supporting its potential utility as a treatment for OUD.


Asunto(s)
Síndrome de Abstinencia a Sustancias , Animales , Ratones , Masculino , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Ratas , Humanos , Ratas Sprague-Dawley , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/administración & dosificación , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Trastornos Relacionados con Opioides/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Oxicodona/farmacología , Oxicodona/administración & dosificación , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Autoadministración , Cricetulus , Células CHO
2.
Mol Pharmacol ; 106(2): 92-106, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38821630

RESUMEN

Bipolar disorder impacts millions of patients in the United States but the mechanistic understanding of its pathophysiology and therapeutics is incomplete. Atypical antipsychotic serotonin2A (5-HT2A) receptor antagonists, such as quetiapine and olanzapine, and mood-stabilizing voltage-gated sodium channel (VGSC) blockers, such as lamotrigine, carbamazepine, and valproate, show therapeutic synergy and are often prescribed in combination for the treatment of bipolar disorder. Combination therapy is a complex task for clinicians and patients, often resulting in unexpected difficulties with dosing, drug tolerances, and decreased patient compliance. Thus, an unmet need for bipolar disorder treatment is to develop a therapeutic agent that targets both 5-HT2A receptors and VGSCs. Toward this goal, we developed a novel small molecule that simultaneously antagonizes 5-HT2A receptors and blocks sodium current. The new compound, N-(4-bromo-2,5-dimethoxyphenethyl)-6-(4-phenylbutoxy)hexan-1-amine (XOB) antagonizes 5-HT-stimulated, Gq-mediated, calcium flux at 5-HT2A receptors at low micromolar concentrations while displaying negligible affinity and activity at 5-HT1A, 5-HT2B, and 5-HT2C receptors. At similar concentrations, XOB administration inhibits sodium current in heterologous cells and results in reduced action potential (AP) firing and VGSC-related AP properties in mouse prefrontal cortex layer V pyramidal neurons. Thus, XOB represents a new, proof-of-principle tool that can be used for future preclinical investigations and therapeutic development. This polypharmacology approach of developing a single molecule to act upon two targets, which are currently independently targeted by combination therapies, may lead to safer alternatives for the treatment of psychiatric disorders that are increasingly being found to benefit from the simultaneous targeting of multiple receptors. SIGNIFICANCE STATEMENT: The authors synthesized a novel small molecule (XOB) that simultaneously antagonizes two key therapeutic targets of bipolar disorder, 5-HT2A receptors and voltage-gated sodium channels, in heterologous cells, and inhibits the intrinsic excitability of mouse prefrontal cortex layer V pyramidal neurons in brain slices. XOB represents a valuable new proof-of-principle tool for future preclinical investigations and provides a novel molecular approach to the pharmacological treatment of complex neuropsychiatric disease, which often requires a combination of therapeutics for sufficient patient benefit.


Asunto(s)
Receptor de Serotonina 5-HT2A , Animales , Ratones , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Humanos , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Células HEK293 , Cricetulus
3.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792047

RESUMEN

Compound 7-16 was designed and synthesized in our previous study and was identified as a more potential selective 5-HT2A receptor antagonist and inverse agonist for treating Parkinson's disease psychosis (PDP). Then, the metabolism, disposition, and excretion properties of 7-16 and its potential inhibition on transporters were investigated in this study to highlight advancements in the understanding of its therapeutic mechanisms. The results indicate that a total of 10 metabolites of 7-16/[14C]7-16 were identified and determined in five species of liver microsomes and in rats using UPLC-Q Exactive high-resolution mass spectrometry combined with radioanalysis. Metabolites formed in human liver microsomes could be covered by animal species. 7-16 is mainly metabolized through mono-oxidation (M470-2) and N-demethylation (M440), and the CYP3A4 isozyme was responsible for both metabolic reactions. Based on the excretion data in bile and urine, the absorption rate of 7-16 was at least 74.7%. 7-16 had weak inhibition on P-glycoprotein and no effect on the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 transporters. The comprehensive pharmacokinetic properties indicate that 7-16 deserves further development as a new treatment drug for PDP.


Asunto(s)
Enfermedad de Parkinson , Agonistas del Receptor de Serotonina 5-HT2 , Antagonistas del Receptor de Serotonina 5-HT2 , Animales , Humanos , Masculino , Ratas , Microsomas Hepáticos/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Metilación , Oxidación-Reducción , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/farmacología , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacología
4.
Epilepsia ; 65(7): e125-e130, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38738911

RESUMEN

Because of its involvement in breathing control and neuronal excitability, dysregulation of the serotonin (5-HT) 2C receptor (5-HT2C) might play a key role in sudden unexpected death in epilepsy. Seizure-induced respiratory arrest is thus prevented by a 5-HT2B/C agonist in different seizure model. However, the specific contribution of 5-HT2C in chronic epilepsy-related respiratory dysfunction remains unknown. In a rat model of temporal lobe epilepsy (EPI rats), in which we previously reported interictal respiratory dysfunctions and a reduction of brainstem 5-HT tone, quantitative reverse transcriptase polymerase chain reaction showed overexpression of TPH2 (5-HT synthesis enzyme), SERT (5-HT reuptake transporter), and 5-HT2C transcript levels in the brainstem of EPI rats, and of RNA-specific adenosine deaminase (ADAR1, ADAR2) involved in the production of 5-HT2C isoforms. Interictal ventilation was assessed with whole-body plethysmography before and 2 h after administration of SB242084 (2 mg/kg), a specific antagonist of 5-HT2C. As expected, SB242084 administration induced a progressive decrease in ventilatory parameters and an alteration of breathing stability in both control and EPI rats. However, the size of the SB242084 effect was lower in EPI rats than in controls. Increased 5-HT2C gene expression in the brainstem of EPI rats could be part of a compensatory mechanism against epilepsy-related low 5-HT tone and expression of 5-HT2C isoforms for which 5-HT affinity might be lower.


Asunto(s)
Tronco Encefálico , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal , Receptor de Serotonina 5-HT2C , Animales , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo , Ratas , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/metabolismo , Tronco Encefálico/metabolismo , Tronco Encefálico/efectos de los fármacos , Masculino , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Indoles/farmacología , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Ratas Sprague-Dawley , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Aminopiridinas , Tiofenos
5.
Science ; 384(6702): eadn6354, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753765

RESUMEN

AlphaFold2 (AF2) models have had wide impact but mixed success in retrospective ligand recognition. We prospectively docked large libraries against unrefined AF2 models of the σ2 and serotonin 2A (5-HT2A) receptors, testing hundreds of new molecules and comparing results with those obtained from docking against the experimental structures. Hit rates were high and similar for the experimental and AF2 structures, as were affinities. Success in docking against the AF2 models was achieved despite differences between orthosteric residue conformations in the AF2 models and the experimental structures. Determination of the cryo-electron microscopy structure for one of the more potent 5-HT2A ligands from the AF2 docking revealed residue accommodations that resembled the AF2 prediction. AF2 models may sample conformations that differ from experimental structures but remain low energy and relevant for ligand discovery, extending the domain of structure-based drug design.


Asunto(s)
Aprendizaje Profundo , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Receptor de Serotonina 5-HT2A , Agonistas del Receptor de Serotonina 5-HT2 , Antagonistas del Receptor de Serotonina 5-HT2 , Humanos , Microscopía por Crioelectrón , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Ligandos , Conformación Proteica , Pliegue de Proteína , Receptor de Serotonina 5-HT2A/química , Receptor de Serotonina 5-HT2A/ultraestructura , Receptores sigma/química , Receptores sigma/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Agonistas del Receptor de Serotonina 5-HT2/química , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/química , Antagonistas del Receptor de Serotonina 5-HT2/farmacología
6.
Biomed Pharmacother ; 176: 116814, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820974

RESUMEN

Diabetes and derived complications, especially diabetic nephropathy and neuropathy annually cause great morbimortality worldwide. 5-hydroxytryptamine (5-HT) acts as a modulator of renal sympathetic input and vascular tone. In this line, 5-HT2 receptor blockade has been linked with reduced incidence and progression of diabetic microvascular alterations. In this work, we aimed to determine, in diabetic rats, whether 5-HT2 blockade ameliorates renal function and to characterize the serotonergic modulatory action on renal sympathetic neurotransmission. Diabetes was induced in male Wistar rats by alloxan administration (150 mg/kg, s.c.), and sarpogrelate (30 mg/kg·day, p.o.; 5-HT2 antagonist) was administered for 14 days (DM-S). Normoglycemic and diabetic (DM) animals were maintained as aged-matched controls. At 28th day, DM-S animals were anesthetized and prepared for the in situ autoperfusion of the kidney. Renal vasoconstrictor responses were induced electrically or by i.a. noradrenaline (NA) administration. The role of 5-HT and selective 5-HT agonist/antagonist were studied on these renal vasopressor responses. Sarpogrelate treatment decreased renal sympathetic-induced vasopressor responses, reduced renal hypertrophy and kidney damage markers increased in DM. Intraarterial 5-HT inhibited the sympathetic-induced renal vasoconstrictions, effect reproduced by 5-CT, AS-19, L-694,247 and LY 344864 (5-HT1/5/7, 5-HT7, 5-HT1D and 5-HT1F receptor agonists, respectively). Blocking 5-HT1D/1F/7 receptors completely abolished the 5-CT sympatho-inhibition. NA vasoconstrictions were not altered by any of the 5-HT agonists tested. Thus, in experimental diabetes, chronic sarpogrelate treatment reduces renal damage markers, kidney hypertrophy and renal sympathetic hyperactivity and modifies serotonergic modulation of renal sympathetic neurotransmission, causing a sympatho-inhibition by prejunctional 5-HT1D/1F and 5-HT7 activation.


Asunto(s)
Diabetes Mellitus Experimental , Riñón , Ratas Wistar , Succinatos , Sistema Nervioso Simpático , Animales , Succinatos/farmacología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/fisiopatología , Riñón/efectos de los fármacos , Riñón/inervación , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología , Ratas , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Serotonina/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/fisiopatología , Vasoconstricción/efectos de los fármacos
7.
Psychopharmacology (Berl) ; 241(8): 1631-1644, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594515

RESUMEN

RATIONALE: Cognitive flexibility, the ability to adapt behaviour in response to a changing environment, is disrupted in several neuropsychiatric disorders, including obsessive-compulsive disorder and major depressive disorder. Evidence suggests that flexibility, which can be operationalised using reversal learning tasks, is modulated by serotonergic transmission. However, how exactly flexible behaviour and associated reinforcement learning (RL) processes are modulated by 5-HT action on specific receptors is unknown. OBJECTIVES: We investigated the effects of 5-HT2A receptor (5-HT2AR) and 5-HT2C receptor (5-HT2CR) antagonism on flexibility and underlying RL mechanisms. METHODS: Thirty-six male Lister hooded rats were trained on a touchscreen visual discrimination and reversal task. We evaluated the effects of systemic treatments with the 5-HT2AR and 5-HT2CR antagonists M100907 and SB-242084, respectively, on reversal learning and performance on probe trials where correct and incorrect stimuli were presented with a third, probabilistically rewarded, stimulus. Computational models were fitted to task choice data to extract RL parameters, including a novel model designed specifically for this task. RESULTS: 5-HT2AR antagonism impaired reversal learning only after an initial perseverative phase, during a period of random choice and then new learning. 5-HT2CR antagonism, on the other hand, impaired learning from positive feedback. RL models further differentiated these effects. 5-HT2AR antagonism decreased punishment learning rate (i.e. negative feedback) at high and low doses. The low dose also decreased reinforcement sensitivity (beta) and increased stimulus and side stickiness (i.e., the tendency to repeat a choice regardless of outcome). 5-HT2CR antagonism also decreased beta, but reduced side stickiness. CONCLUSIONS: These data indicate that 5-HT2A and 5-HT2CRs both modulate different aspects of flexibility, with 5-HT2ARs modulating learning from negative feedback as measured using RL parameters and 5-HT2CRs for learning from positive feedback assessed through conventional measures.


Asunto(s)
Cognición , Piperidinas , Receptor de Serotonina 5-HT2A , Receptor de Serotonina 5-HT2C , Refuerzo en Psicología , Aprendizaje Inverso , Antagonistas del Receptor de Serotonina 5-HT2 , Animales , Masculino , Ratas , Aprendizaje Inverso/efectos de los fármacos , Receptor de Serotonina 5-HT2C/efectos de los fármacos , Receptor de Serotonina 5-HT2C/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Piperidinas/farmacología , Cognición/efectos de los fármacos , Cognición/fisiología , Relación Dosis-Respuesta a Droga , Conducta Animal/efectos de los fármacos , Fluorobencenos/farmacología , Aminopiridinas/farmacología , Indoles
8.
Acta Pharmacol Sin ; 45(5): 926-944, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38286832

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive loss of motor neurons in the spinal cord, cerebral cortex and brain stem. ALS is characterized by gradual muscle atrophy and dyskinesia. The limited knowledge on the pathology of ALS has impeded the development of therapeutics for the disease. Previous studies have shown that autophagy and astrocyte-mediated neuroinflammation are involved in the pathogenesis of ALS, while 5HTR2A participates in the early stage of astrocyte activation, and 5HTR2A antagonism may suppress astrocyte activation. In this study, we evaluated the therapeutic effects of desloratadine (DLT), a selective 5HTR2A antagonist, in human SOD1G93A (hSOD1G93A) ALS model mice, and elucidated the underlying mechanisms. HSOD1G93A mice were administered DLT (20 mg·kg-1·d-1, i.g.) from the age of 8 weeks for 10 weeks or until death. ALS onset time and lifespan were determined using rotarod and righting reflex tests, respectively. We found that astrocyte activation accompanying with serotonin receptor 2 A (5HTR2A) upregulation in the spinal cord was tightly associated with ALS-like pathology, which was effectively attenuated by DLT administration. We showed that DLT administration significantly delayed ALS symptom onset time, prolonged lifespan and ameliorated movement disorders, gastrocnemius injury and spinal motor neuronal loss in hSOD1G93A mice. Spinal cord-specific knockdown of 5HTR2A by intrathecal injection of adeno-associated virus9 (AAV9)-si-5Htr2a also ameliorated ALS pathology in hSOD1G93A mice, and occluded the therapeutic effects of DLT administration. Furthermore, we demonstrated that DLT administration promoted autophagy to reduce mutant hSOD1 levels through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocyte neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice. In summary, 5HTR2A antagonism shows promise as a therapeutic strategy for ALS, highlighting the potential of DLT in the treatment of the disease. DLT as a 5HTR2A antagonist effectively promoted autophagy to reduce mutant hSOD1 level through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocytic neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice.


Asunto(s)
Esclerosis Amiotrófica Lateral , Astrocitos , Loratadina , Loratadina/análogos & derivados , Ratones Transgénicos , Médula Espinal , Superóxido Dismutasa-1 , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/metabolismo , Ratones , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Loratadina/farmacología , Loratadina/uso terapéutico , Humanos , Receptor de Serotonina 5-HT2A/metabolismo , Modelos Animales de Enfermedad , Masculino , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/uso terapéutico , Ratones Endogámicos C57BL
9.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-83998

RESUMEN

Serotonin (5-hydroxytryptamine (5-HT)) is a neurotransmitter that regulates a variety of functions in the nervous, gastrointestinal and cardiovascular systems. Despite such importance, 5-HT signaling pathways are not entirely clear. We demonstrated previously that 4-aminopyridine (4-AP)-sensitive voltage-gated K+ (Kv) channels determine the resting membrane potential of arterial smooth muscle cells and that the Kv channels are inhibited by 5-HT, which depolarizes the membranes. Therefore, we hypothesized that 5-HT contracts arteries by inhibiting Kv channels. Here we studied 5-HT signaling and the detailed role of Kv currents in rat mesenteric arteries using patch-clamp and isometric tension measurements. Our data showed that inhibiting 4-AP-sensitive Kv channels contracted arterial rings, whereas inhibiting Ca2+-activated K+, inward rectifier K+ and ATP-sensitive K+ channels had little effect on arterial contraction, indicating a central role of Kv channels in the regulation of resting arterial tone. 5-HT-induced arterial contraction decreased significantly in the presence of high KCl or the voltage-gated Ca2+ channel (VGCC) inhibitor nifedipine, indicating that membrane depolarization and the consequent activation of VGCCs mediate the 5-HT-induced vasoconstriction. The effects of 5-HT on Kv currents and arterial contraction were markedly prevented by the 5-HT2A receptor antagonists ketanserin and spiperone. Consistently, alpha-methyl 5-HT, a 5-HT2 receptor agonist, mimicked the 5-HT action on Kv channels. Pretreatment with a Src tyrosine kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, prevented both the 5-HT-mediated vasoconstriction and Kv current inhibition. Our data suggest that 4-AP-sensitive Kv channels are the primary regulator of the resting tone in rat mesenteric arteries. 5-HT constricts the arteries by inhibiting Kv channels via the 5-HT2A receptor and Src tyrosine kinase pathway.


Asunto(s)
Animales , Masculino , Ratas , 4-Aminopiridina/farmacología , Potenciales de Acción , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Células Cultivadas , Ketanserina/farmacología , Arterias Mesentéricas/efectos de los fármacos , Contracción Muscular , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Nifedipino/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A/metabolismo , Serotonina/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Espiperona/farmacología , Vasoconstricción , Familia-src Quinasas/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA