Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 680
Filtrar
1.
J Am Chem Soc ; 146(18): 12857-12863, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38676654

RESUMEN

The ribosome brings 3'-aminoacyl-tRNA and 3'-peptidyl-tRNAs together to enable peptidyl transfer by binding them in two major ways. First, their anticodon loops are bound to mRNA, itself anchored at the ribosomal subunit interface, by contiguous anticodon:codon pairing augmented by interactions with the decoding center of the small ribosomal subunit. Second, their acceptor stems are bound by the peptidyl transferase center, which aligns the 3'-aminoacyl- and 3'-peptidyl-termini for optimal interaction of the nucleophilic amino group and electrophilic ester carbonyl group. Reasoning that intrinsic codon:anticodon binding might have been a major contributor to bringing tRNA 3'-termini into proximity at an early stage of ribosomal peptide synthesis, we wondered if primordial amino acids might have been assigned to those codons that bind the corresponding anticodon loops most tightly. By measuring the binding of anticodon stem loops to short oligonucleotides, we determined that family-box codon:anticodon pairings are typically tighter than split-box codon:anticodon pairings. Furthermore, we find that two family-box anticodon stem loops can tightly bind a pair of contiguous codons simultaneously, whereas two split-box anticodon stem loops cannot. The amino acids assigned to family boxes correspond to those accessible by what has been termed cyanosulfidic chemistry, supporting the contention that these limited amino acids might have been the first used in primordial coded peptide synthesis.


Asunto(s)
Aminoácidos , Anticodón , Codón , Anticodón/química , Anticodón/genética , Aminoácidos/química , Codón/química , Codón/genética , Ribosomas/metabolismo , Ribosomas/química , Sitios de Unión , Modelos Moleculares
2.
RNA Biol ; 21(1): 1-23, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38629491

RESUMEN

Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.


Asunto(s)
Aminoacil-ARNt Sintetasas , Saccharomyces cerevisiae , Animales , Humanos , Saccharomyces cerevisiae/genética , Anticodón/genética , Leucina/genética , ARN de Transferencia de Leucina/genética , Código Genético , Codón , ARN de Transferencia/genética , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Alanina/genética , Mamíferos/genética
3.
Biosystems ; 239: 105217, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663520

RESUMEN

I analyzed all the theories and models of the origin of the genetic code, and over the years, I have considered the main suggestions that could explain this origin. The conclusion of this analysis is that the coevolution theory of the origin of the genetic code is the theory that best captures the majority of observations concerning the organization of the genetic code. In other words, the biosynthetic relationships between amino acids would have heavily influenced the origin of the organization of the genetic code, as supported by the coevolution theory. Instead, the presence in the genetic code of physicochemical properties of amino acids, which have also been linked to the physicochemical properties of anticodons or codons or bases by stereochemical and physicochemical theories, would simply be the result of natural selection. More explicitly, I maintain that these correlations between codons, anticodons or bases and amino acids are in fact the result not of a real correlation between amino acids and codons, for example, but are only the effect of the intervention of natural selection. Specifically, in the genetic code table we expect, for example, that the most similar codons - that is, those that differ by only one base - will have more similar physicochemical properties. Therefore, the 64 codons of the genetic code table ordered in a certain way would also represent an ordering of some of their physicochemical properties. Now, a study aimed at clarifying which physicochemical property of amino acids has influenced the allocation of amino acids in the genetic code has established that the partition energy of amino acids has played a role decisive in this. Indeed, under some conditions, the genetic code was found to be approximately 98% optimized on its columns. In this same work, it was shown that this was most likely the result of the action of natural selection. If natural selection had truly allocated the amino acids in the genetic code in such a way that similar amino acids also have similar codons - this, not through a mechanism of physicochemical interaction between, for example, codons and amino acids - then it might turn out that even different physicochemical properties of codons (or anticodons or bases) show some correlation with the physicochemical properties of amino acids, simply because the partition energy of amino acids is correlated with other physicochemical properties of amino acids. It is very likely that this would inevitably lead to a correlation between codons (or anticodons or bases) and amino acids. In other words, since the codons (anticodons or bases) are ordered in the genetic code, that is to say, some of their physicochemical properties should also be ordered by a similar order, and given that the amino acids would also appear to have been ordered in the genetic code by selection natural, then it should inevitably turn out that there is a correlation between, for example, the hydrophobicity of anticodons and that of amino acids. Instead, the intervention of natural selection in organizing the genetic code would appear to be highly compatible with the main mechanism of structuring the genetic code as supported by the coevolution theory. This would make the coevolution theory the only plausible explanation for the origin of the genetic code.


Asunto(s)
Aminoácidos , Codón , Evolución Molecular , Código Genético , Selección Genética , Código Genético/genética , Aminoácidos/genética , Aminoácidos/química , Codón/genética , Modelos Genéticos , Anticodón/genética , Humanos , Animales
4.
Sci Adv ; 10(17): eadl0164, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38657076

RESUMEN

Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA-guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread. We show here that the principal form of collateral RNA degradation elicited by Leptotrichia shahii Cas13a expressed in Escherichia coli cells is the cleavage of anticodons in a subset of transfer RNAs (tRNAs) with uridine-rich anticodons. This tRNA cleavage is accompanied by inhibition of protein synthesis, thus providing defense from the phages. In addition, Cas13a-mediated tRNA cleavage indirectly activates the RNases of bacterial toxin-antitoxin modules cleaving messenger RNA, which could provide a backup defense. The mechanism of Cas13a-induced antiphage defense resembles that of bacterial anticodon nucleases, which is compatible with the hypothesis that type VI effectors evolved from an abortive infection module encompassing an anticodon nuclease.


Asunto(s)
Anticodón , Sistemas CRISPR-Cas , Escherichia coli , ARN de Transferencia , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Leptotrichia/genética , Leptotrichia/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Bacteriófagos/genética , División del ARN
5.
Nucleic Acids Res ; 52(7): 3938-3949, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38477328

RESUMEN

In the hypothetical RNA world, ribozymes could have acted as modern aminoacyl-tRNA synthetases (ARSs) to charge tRNAs, thus giving rise to the peptide synthesis along with the evolution of a primitive translation apparatus. We previously reported a T-boxzyme, Tx2.1, which selectively charges initiator tRNA with N-biotinyl-phenylalanine (BioPhe) in situ in a Flexible In-vitro Translation (FIT) system to produce BioPhe-initiating peptides. Here, we performed in vitro selection of elongation-capable T-boxzymes (elT-boxzymes), using para-azido-l-phenylalanine (PheAZ) as an acyl-donor. We implemented a new strategy to enrich elT-boxzyme-tRNA conjugates that self-aminoacylated on the 3'-terminus selectively. One of them, elT32, can charge PheAZ onto tRNA in trans in response to its cognate anticodon. Further evolution of elT32 resulted in elT49, with enhanced aminoacylation activity. We have demonstrated the translation of a PheAZ-containing peptide in an elT-boxzyme-integrated FIT system, revealing that elT-boxzymes are able to generate the PheAZ-tRNA in response to the cognate anticodon in situ of a custom-made translation system. This study, together with Tx2.1, illustrates a scenario where a series of ribozymes could have overseen aminoacylation and co-evolved with a primitive RNA-based translation system.


Asunto(s)
Anticodón , Biosíntesis de Proteínas , ARN Catalítico , Aminoacil-ARN de Transferencia , ARN Catalítico/metabolismo , ARN Catalítico/genética , Anticodón/genética , Aminoacil-ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/genética , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacilación de ARN de Transferencia , Aminoacilación , Extensión de la Cadena Peptídica de Translación
6.
Genes (Basel) ; 15(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540433

RESUMEN

Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional chemical modifications. Approximately 100 different modifications have been identified in tRNAs, and each tRNA typically contains 5-15 modifications that are incorporated at specific sites along the tRNA sequence. These modifications may be classified into two groups according to their position in the three-dimensional tRNA structure, i.e., modifications in the tRNA core and modifications in the anticodon-loop (ACL) region. Since many modified nucleotides in the tRNA core are involved in the formation of tertiary interactions implicated in tRNA folding, these modifications are key to tRNA stability and resistance to RNA decay pathways. In comparison to the extensively studied ACL modifications, tRNA core modifications have generally received less attention, although they have been shown to play important roles beyond tRNA stability. Here, we review and place in perspective selected data on tRNA core modifications. We present their impact on tRNA structure and stability and report how these changes manifest themselves at the functional level in translation, fitness and stress adaptation.


Asunto(s)
Anticodón , ARN de Transferencia , Anticodón/genética , ARN de Transferencia/metabolismo , Nucleótidos , Procesamiento Postranscripcional del ARN
7.
RNA ; 30(3): 213-222, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164607

RESUMEN

Certain positive-sense single-stranded RNA viruses contain elements at their 3' termini that structurally mimic tRNAs. These tRNA-like structures (TLSs) are classified based on which amino acid is covalently added to the 3' end by host aminoacyl-tRNA synthetase. Recently, a cryoEM reconstruction of a representative tyrosine-accepting tRNA-like structure (TLSTyr) from brome mosaic virus (BMV) revealed a unique mode of recognition of the viral anticodon-mimicking domain by tyrosyl-tRNA synthetase. Some viruses in the hordeivirus genus of Virgaviridae are also selectively aminoacylated with tyrosine, yet these TLS RNAs have a different architecture in the 5' domain that comprises the atypical anticodon loop mimic. Herein, we present bioinformatic and biochemical data supporting a distinct secondary structure for the 5' domain of the hordeivirus TLSTyr compared to those in Bromoviridae Despite forming a different secondary structure, the 5' domain is necessary to achieve robust in vitro aminoacylation. Furthermore, a chimeric RNA containing the 5' domain from the BMV TLSTyr and the 3' domain from a hordeivirus TLSTyr are aminoacylated, illustrating modularity in these structured RNA elements. We propose that the structurally distinct 5' domain of the hordeivirus TLSTyrs performs the same role in mimicking the anticodon loop as its counterpart in the BMV TLSTyr Finally, these structurally and phylogenetically divergent types of TLSTyr provide insight into the evolutionary connections between all classes of viral tRNA-like structures.


Asunto(s)
Bromovirus , Virus ARN , Tirosina-ARNt Ligasa , Secuencia de Bases , Anticodón/genética , ARN Viral/química , ARN de Transferencia/química , Bromovirus/genética , Bromovirus/metabolismo , Virus ARN/genética , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/metabolismo , Tirosina/genética , Tirosina/metabolismo , Conformación de Ácido Nucleico
8.
Biosystems ; 235: 105102, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092331

RESUMEN

Analyzing the codon usage frequencies of a specimen of 20 plants, for which the codon-anticodon pattern is known, we have remarked that the hierarchy of the usage frequencies present an almost "universal" behavior. Searching to explain this behavior, we assume that the codon usage probability results from the sum of two contributions: the first dominant term is an almost "universal" one and it depends on the codon-anticodon interaction; the second term is a local one, i.e. depends on the biological species. The codon-anticodon interaction is written as a spin-spin plus a z-spin term in the formalism of the crystal basis model. From general considerations, in particular from the choice of the signs and some constraints on the parameters defining the interaction, we are able to explain most of the observed data.


Asunto(s)
Anticodón , ARN de Transferencia , Anticodón/genética , Uso de Codones , Codón/genética
9.
Nucleic Acids Res ; 52(3): 1374-1386, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38050960

RESUMEN

tRNA superwobbling, used by certain bacteria and organelles, is an intriguing decoding concept in which a single tRNA isoacceptor is used to decode all synonymous codons of a four-fold degenerate codon box. While Escherichia coli relies on three tRNAGly isoacceptors to decode the four glycine codons (GGN), Mycoplasma mycoides requires only a single tRNAGly. Both organisms express tRNAGly with the anticodon UCC, which are remarkably similar in sequence but different in their decoding ability. By systematically introducing mutations and altering the number and type of tRNA modifications using chemically synthesized tRNAs, we elucidated the contribution of individual nucleotides and chemical groups to decoding by the E. coli and M. mycoides tRNAGly. The tRNA sequence was identified as the key factor for superwobbling, revealing the T-arm sequence as a novel pivotal element. In addition, the presence of tRNA modifications, although not essential for providing superwobbling, was shown to delicately fine-tune and balance the decoding of synonymous codons. This emphasizes that the tRNA sequence and its modifications together form an intricate system of high complexity that is indispensable for accurate and efficient decoding.


Asunto(s)
Escherichia coli , Mycoplasma mycoides , ARN Bacteriano , ARN de Transferencia de Glicerina , Anticodón/genética , Secuencia de Bases , Codón/genética , Escherichia coli/genética , Glicina/genética , ARN de Transferencia/genética , ARN de Transferencia de Glicerina/genética , Mycoplasma mycoides/genética , Mycoplasma mycoides/metabolismo , ARN Bacteriano/genética
10.
Nature ; 625(7994): 393-400, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030725

RESUMEN

One of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2)1,2. At present, only a few snapshots of eukaryotic ribosome translocation have been reported3-5. Here we report ten high-resolution cryogenic-electron microscopy (cryo-EM) structures of the elongating eukaryotic ribosome bound to the full translocation module consisting of mRNA, peptidyl-tRNA and deacylated tRNA, seven of which also contained ribosome-bound, naturally modified eEF2. This study recapitulates mRNA-tRNA2-growing peptide module progression through the ribosome, from the earliest states of eEF2 translocase accommodation until the very late stages of the process, and shows an intricate network of interactions preventing the slippage of the translational reading frame. We demonstrate how the accuracy of eukaryotic translocation relies on eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs. Our findings shed light on the mechanism of translation arrest by the anti-fungal eEF2-binding inhibitor, sordarin. We also propose that the sterically constrained environment imposed by diphthamide, a conserved eukaryotic posttranslational modification in eEF2, not only stabilizes correct Watson-Crick codon-anticodon interactions but may also uncover erroneous peptidyl-tRNA, and therefore contribute to higher accuracy of protein synthesis in eukaryotes.


Asunto(s)
Células Eucariotas , Biosíntesis de Proteínas , ARN Mensajero , Sistemas de Lectura , Ribosomas , Anticodón/genética , Anticodón/metabolismo , Codón/genética , Codón/metabolismo , Microscopía por Crioelectrón , Células Eucariotas/química , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Factor 2 de Elongación Peptídica/antagonistas & inhibidores , Factor 2 de Elongación Peptídica/metabolismo , Sistemas de Lectura/genética , Ribosomas/química , Ribosomas/metabolismo , Ribosomas/ultraestructura , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
11.
Acc Chem Res ; 56(23): 3504-3514, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992267

RESUMEN

As part of the classic central dogma of molecular biology, transfer RNAs (tRNAs) are integral to protein translation as the adaptor molecules that link the genetic code in messenger RNA (mRNA) to the amino acids in the growing peptide chain. tRNA function is complicated by the existence of 61 codons to specify 20 amino acids, with most amino acids coded by two or more synonymous codons. Further, there are often fewer tRNAs with unique anticodons than there are synonymous codons for an amino acid, with a single anticodon able to decode several codons by "wobbling" of the base pairs arising between the third base of the codon and the first position on the anticodon. The complications introduced by synonymous codons and wobble base pairing began to resolve in the 1960s with the discovery of dozens of chemical modifications of the ribonucleotides in tRNA, which, by analogy to the epigenome, are now collectively referred to as the epitranscriptome for not changing the genetic code inherent to all RNA sequences. tRNA modifications were found to stabilize codon-anticodon interactions, prevent misinitiation of translation, and promote translational fidelity, among other functions, with modification deficiencies causing pathological phenotypes. This led to hypotheses that modification-dependent tRNA decoding efficiencies might play regulatory roles in cells. However, it was only with the advent of systems biology and convergent "omic" technologies that the higher level function of synonymous codons and tRNA modifications began to emerge.Here, we describe our laboratories' discovery of tRNA reprogramming and codon-biased translation as a mechanism linking tRNA modifications and synonymous codon usage to regulation of gene expression at the level of translation. Taking a historical approach, we recount how we discovered that the 8-10 modifications in each tRNA molecule undergo unique reprogramming in response to cellular stresses to promote translation of mRNA transcripts with unique codon usage patterns. These modification tunable transcripts (MoTTs) are enriched with specific codons that are differentially decoded by modified tRNAs and that fall into functional families of genes encoding proteins necessary to survive the specific stress. By developing and applying systems-level technologies, we showed that cells lacking specific tRNA modifications are sensitized to certain cellular stresses by mistranslation of proteins, disruption of mitochondrial function, and failure to translate critical stress response proteins. In essence, tRNA reprogramming serves as a cellular coping strategy, enabling rapid translation of proteins required for stress-specific cell response programs. Notably, this phenomenon has now been characterized in all organisms from viruses to humans and in response to all types of environmental changes. We also elaborate on recent findings that cancer cells hijack this mechanism to promote their own growth, metastasis, and chemotherapeutic resistance. We close by discussing how understanding of codon-biased translation in various systems can be exploited to develop new therapeutics and biomanufacturing processes.


Asunto(s)
Anticodón , Uso de Codones , Humanos , Anticodón/genética , Biosíntesis de Proteínas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Codón/genética , Aminoácidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
RNA ; 30(1): 37-51, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37907335

RESUMEN

Protein synthesis on the ribosome involves successive rapid recruitment of cognate aminoacyl-tRNAs and rejection of the much more numerous incorrect near- or non-cognates. The principal feature of translation elongation is that at every step, many incorrect aa-tRNAs unsuccessfully enter the A site for each cognate accepted. Normal levels of translational accuracy require that cognate tRNAs have relatively similar acceptance rates by the ribosome. To achieve that, tRNAs evolved to compensate for differences in amino acid properties and codon-anticodon strength that affect acceptance. Part of that response involved tRNA posttranscriptional modifications, which can affect tRNA decoding efficiency, accuracy, and structural stability. The most intensively modified regions of the tRNA are the anticodon loop and structural core of the tRNA. Anticodon loop modifications directly affect codon-anticodon pairing and therefore modulate accuracy. Core modifications have been thought to ensure consistent decoding rates principally by stabilizing tRNA structure to avoid degradation; however, degradation due to instability appears to only be a significant issue above normal growth temperatures. We suspected that the greater role of modification at normal temperatures might be to tune tRNAs to maintain consistent intrinsic rates of acceptance and peptide transfer and that hypomodification by altering these rates might degrade the process of discrimination, leading to increased translational errors. Here, we present evidence that most tRNA core modifications do modulate the frequency of misreading errors, suggesting that the need to maintain accuracy explains their deep evolutionary conservation.


Asunto(s)
Anticodón , ARN de Transferencia , Anticodón/genética , Anticodón/metabolismo , ARN de Transferencia/química , Biosíntesis de Proteínas , Codón/genética , Codón/metabolismo , Ribosomas/metabolismo
13.
Nucleic Acids Res ; 51(20): 11197-11212, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37811872

RESUMEN

Queuosine (Q) is a complex tRNA modification found in bacteria and eukaryotes at position 34 of four tRNAs with a GUN anticodon, and it regulates the translational efficiency and fidelity of the respective codons that differ at the Wobble position. In bacteria, the biosynthesis of Q involves two precursors, preQ0 and preQ1, whereas eukaryotes directly obtain Q from bacterial sources. The study of queuosine has been challenging due to the limited availability of high-throughput methods for its detection and analysis. Here, we have employed direct RNA sequencing using nanopore technology to detect the modification of tRNAs with Q and Q precursors. These modifications were detected with high accuracy on synthetic tRNAs as well as on tRNAs extracted from Schizosaccharomyces pombe and Escherichia coli by comparing unmodified to modified tRNAs using the tool JACUSA2. Furthermore, we present an improved protocol for the alignment of raw sequence reads that gives high specificity and recall for tRNAs ex cellulo that, by nature, carry multiple modifications. Altogether, our results show that 7-deazaguanine-derivatives such as queuosine are readily detectable using direct RNA sequencing. This advancement opens up new possibilities for investigating these modifications in native tRNAs, furthering our understanding of their biological function.


Asunto(s)
Nucleósido Q , ARN de Transferencia , Anticodón/genética , Escherichia coli/genética , Eucariontes/genética , Nucleósido Q/análisis , ARN , ARN de Transferencia/química , Schizosaccharomyces/química , Schizosaccharomyces/genética , Análisis de Secuencia de ARN
14.
RNA Biol ; 20(1): 791-804, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776539

RESUMEN

Transfer RNAs (tRNAs) maintain translation fidelity through accurate charging by their cognate aminoacyl-tRNA synthetase and codon:anticodon base pairing with the mRNA at the ribosome. Mistranslation occurs when an amino acid not specified by the genetic message is incorporated into proteins and has applications in biotechnology, therapeutics and is relevant to disease. Since the alanyl-tRNA synthetase uniquely recognizes a G3:U70 base pair in tRNAAla and the anticodon plays no role in charging, tRNAAla variants with anticodon mutations have the potential to mis-incorporate alanine. Here, we characterize the impact of the 60 non-alanine tRNAAla anticodon variants on the growth of Saccharomyces cerevisiae. Overall, 36 tRNAAla anticodon variants decreased growth in single- or multi-copy. Mass spectrometry analysis of the cellular proteome revealed that 52 of 57 anticodon variants, not decoding alanine or stop codons, induced mistranslation when on single-copy plasmids. Variants with G/C-rich anticodons resulted in larger growth deficits than A/U-rich variants. In most instances, synonymous anticodon variants impact growth differently, with anticodons containing U at base 34 being the least impactful. For anticodons generating the same amino acid substitution, reduced growth generally correlated with the abundance of detected mistranslation events. Differences in decoding specificity, even between synonymous anticodons, resulted in each tRNAAla variant mistranslating unique sets of peptides and proteins. We suggest that these differences in decoding specificity are also important in determining the impact of tRNAAla anticodon variants.


Asunto(s)
Anticodón , ARN de Transferencia de Alanina , Anticodón/genética , ARN de Transferencia de Alanina/metabolismo , ARN de Transferencia/metabolismo , Codón , Alanina/genética , Alanina/metabolismo , Biosíntesis de Proteínas
15.
Sci Adv ; 9(23): eadh8502, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285440

RESUMEN

As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNAPhe), resulting in codon-specific ribosomal pausing and stress signaling. While SAMD9 ACNase activity is normally latent in cells, it can be activated by poxvirus infection or rendered constitutively active by SAMD9 mutations associated with various human disorders, revealing tRNAPhe depletion as an antiviral mechanism and a pathogenic condition in SAMD9 disorders. We identified the N-terminal effector domain of SAMD9 as the ACNase, with substrate specificity primarily determined by a eukaryotic tRNAPhe-specific 2'-O-methylation at the wobble position, making virtually all eukaryotic tRNAPhe susceptible to SAMD9 cleavage. Notably, the structure and substrate specificity of SAMD9 ACNase differ from known microbial ACNases, suggesting convergent evolution of a common immune defense strategy targeting tRNAs.


Asunto(s)
Anticodón , ARN de Transferencia de Fenilalanina , Humanos , Anticodón/genética , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , Codón , ARN de Transferencia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
16.
Elife ; 122023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37266569

RESUMEN

Transfer RNAs (tRNAs) in bacteriophage genomes are widespread across bacterial host genera, but their exact function has remained unclear for more than 50 years. Several hypotheses have been proposed, and the most widely accepted one is codon compensation, which suggests that phages encode tRNAs that supplement codons that are less frequently used by the host. Here, we combine several observations and propose a new hypothesis that phage-encoded tRNAs counteract the tRNA-depleting strategies of the host using enzymes such as VapC, PrrC, Colicin D, and Colicin E5 to defend from viral infection. Based on mutational patterns of anticodon loops of tRNAs encoded by phages, we predict that these tRNAs are insensitive to host tRNAses. For phage-encoded tRNAs targeted in the anticodon itself, we observe that phages typically avoid encoding these tRNAs, further supporting the hypothesis that phage tRNAs are selected to be insensitive to host anticodon nucleases. Altogether, our results support the hypothesis that phage-encoded tRNAs have evolved to be insensitive to host anticodon nucleases.


Asunto(s)
Bacteriófagos , Colicinas , Anticodón/genética , Bacteriófagos/genética , Colicinas/genética , ARN de Transferencia/genética , Mutación , Codón
17.
Nature ; 618(7966): 842-848, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258671

RESUMEN

Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into  efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.


Asunto(s)
Codón sin Sentido , Regulador de Conductancia de Transmembrana de Fibrosis Quística , ARN de Transferencia , Animales , Ratones , Aminoácidos/genética , Codón sin Sentido/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , ARN de Transferencia/administración & dosificación , ARN de Transferencia/genética , ARN de Transferencia/uso terapéutico , Emparejamiento Base , Anticodón/genética , Biosíntesis de Proteínas , Mucosa Nasal/metabolismo , Perfilado de Ribosomas
18.
Biomolecules ; 13(4)2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37189358

RESUMEN

In the field of genetic code expansion (GCE), improvements in the efficiency of noncanonical amino acid (ncAA) incorporation have received continuous attention. By analyzing the reported gene sequences of giant virus species, we noticed some sequence differences at the tRNA binding interface. On the basis of the structural and activity differences between Methanococcus jannaschii Tyrosyl-tRNA Synthetase (MjTyrRS) and mimivirus Tyrosyl-tRNA Synthetase (MVTyrRS), we found that the size of the anticodon-recognized loop of MjTyrRS influences its suppression activity regarding triplet and specific quadruplet codons. Therefore, three MjTyrRS mutants with loop minimization were designed. The suppression of wild-type MjTyrRS loop-minimized mutants increased by 1.8-4.3-fold, and the MjTyrRS variants enhanced the activity of the incorporation of ncAAs by 15-150% through loop minimization. In addition, for specific quadruplet codons, the loop minimization of MjTyrRS also improves the suppression efficiency. These results suggest that loop minimization of MjTyrRS may provide a general strategy for the efficient synthesis of ncAAs-containing proteins.


Asunto(s)
Aminoácidos , Tirosina-ARNt Ligasa , Aminoácidos/metabolismo , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo , Anticodón/genética , Methanocaldococcus/genética , Methanocaldococcus/metabolismo , Codón
19.
J Biol Chem ; 299(4): 104608, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36924943

RESUMEN

Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein-coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and, from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.


Asunto(s)
Anticodón , Codón , ARN Ribosómico , Ribosomas , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Codón/química , Codón/genética , Codón/metabolismo , Conformación de Ácido Nucleico , Nucleótidos/química , Nucleótidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/química , Ribosomas/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Disparidad de Par Base , Modelos Moleculares , ARN Ribosómico/química , ARN Ribosómico/metabolismo
20.
RNA ; 29(5): 620-629, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36781286

RESUMEN

Transfer RNA fragments are proposed to regulate numerous processes in eukaryotes, including translation inhibition, epigenetic inheritance, and cancer. In the bacterium Salmonella enterica serovar Typhimurium, 5' tRNA halves ending in 2',3' cyclic phosphate are proposed to bind the RtcR transcriptional activator, resulting in transcription of an RNA repair operon. However, since 5' and 3' tRNA halves can remain base paired after cleavage, the 5' tRNA halves could potentially bind RtcR as nicked tRNAs. Here we report that nicked tRNAs are ligands for RtcR. By isolating RNA from bacteria under conditions that preserve base pairing, we show that many tRNA halves are in the form of nicked tRNAs. Using a circularly permuted tRNA that mimics a nicked tRNA, we show that nicked tRNA ending in 2',3' cyclic phosphate is a better ligand for RtcR than the corresponding 5' tRNA half. In human cells, we show that some tRNA halves similarly remain base paired as nicked tRNAs following cleavage by anticodon nucleases. Our work supports a role for the RNA repair operon in repairing nicked tRNAs and has implications for the functions proposed for tRNA fragments in eukaryotes.


Asunto(s)
ARN de Transferencia , ARN , Humanos , ARN de Transferencia/genética , ARN/genética , Eucariontes/genética , Factores de Transcripción/genética , Operón/genética , Anticodón/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...