Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 13(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33501945

RESUMEN

Due to their pluripotent nature and unlimited cell renewal, stem cells have been proposed as an ideal material for establishing long-term cnidarian cell cultures. However, the lack of unifying principles associated with "stemness" across the phylum complicates stem cells' identification and isolation. Here, we for the first time report gene expression profiles for cultured coral cells, focusing on regulatory gene networks underlying pluripotency and differentiation. Cultures were initiated from Acropora digitifera tip fragments, the fastest growing tissue in Acropora. Overall, in vitro transcription resembled early larvae, overexpressing orthologs of premetazoan and Hydra stem cell markers, and transcripts with roles in cell division, migration, and differentiation. Our results suggest the presence of pluripotent cell types in cultures and indicate the existence of ancestral genome regulatory modules underlying pluripotency and cell differentiation in cnidaria. Cultured cells appear to be synthesizing protein, differentiating, and proliferating.


Asunto(s)
Antozoos/citología , Antozoos/genética , Animales , Diferenciación Celular , División Celular , Células Cultivadas , Redes Reguladoras de Genes , Transcriptoma
2.
J Chem Ecol ; 34(12): 1565-74, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19023625

RESUMEN

The Caribbean encrusting and excavating sponge Cliona tenuis successfully competes for space with reef corals by undermining, killing, and displacing live coral tissue at rates of up to 20 cm per year. The crude extract from this sponge, along with the more polar partitions, kills coral tissue and lowers the photosynthetic potential of coral zooxanthellae. We used a bioassay-guided fractionation of the extract to identify the compound(s) responsible. The crude extract, the aqueous partition, and compound 1, herein named clionapyrrolidine A [(-)-(5S)-2-imino-1-methylpyrrolidine-5-carboxylic acid], when incorporated into gels at close to natural volumetric concentrations, killed coral tissue when brought into forced contact with live coral for periods of 1-4 days. This is the first report of a pure chemical produced by a sponge that kills coral tissue upon direct contact. The results are consistent with the localized coral death that occurs when C. tenuis-colonized coral fragments are thrown forcibly against live coral during storms. However, healed C. tenuis fragments placed directly onto live coral were killed readily by coral defenses, and fragments placed in close proximity to coral did not have any effect on the adjacent coral tissue. Solutions of clionapyrrolidine A in sea water were only slightly toxic against live coral. Hence, the coral death naturally brought about by C. tenuis when undermining live coral does not occur through external release of allelochemicals; below-polyp mechanisms must be explored further. N-acetylhomoagmatine (2), originally isolated from Cliona celata from the Northeastern Atlantic, was also assayed for comparison purposes because of its structural similarity to siphonodictidine, a toxic compound produced by a coral excavating sponge of the genus Aka. The lack of activity of N-acetylhomoagmatine at close to natural concentrations seems to indicate that the guanidine moiety, which is also present in siphonodictidine, is not a sufficiently strong structural motif for activity against corals.


Asunto(s)
Antozoos/citología , Antozoos/efectos de los fármacos , Poríferos/química , Poríferos/metabolismo , Pirrolidinas/metabolismo , Pirrolidinas/toxicidad , Animales , Bioensayo , Muerte Celular/efectos de los fármacos , Pirrolidinas/química , Pirrolidinas/aislamiento & purificación
3.
BMC Evol Biol ; 8: 47, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-18271961

RESUMEN

BACKGROUND: Clonal marine organisms exhibit high levels of morphological variation. Morphological differences may be a response to environmental factors but also they can be attributed to accumulated genetic differences due to disruption of gene flow among populations. In this study, we examined the extensive morphological variation (of 14 characters) in natural populations observed in the gorgonian Eunicea flexuosa, a widely distributed Caribbean octocoral. Eco-phenotypic and genetic effects were evaluated by reciprocal transplants of colonies inhabiting opposite ends of the depth gradient and analysis of population genetics of mitochondrial and nuclear genes, respectively. RESULTS: Significant differences (P < 0.001) in 14 morphological traits were found among colonies inhabiting 12 locations distributed in seven reefs in southwest Puerto Rico. Results from principal component analysis indicated the presence of two groups based on depth distribution, suggesting the presence of two discrete morphotypes (i.e. shallow type < 5 m and deep type > 17 m). A discriminant function analysis based on a priori univariate and multivariate analyses (which separated the colonies in morphotypes) correctly classified 93% of the colonies for each environment. Light, water motion and sediment transport might influence the distribution of the two morphotypes. Reaction norms of morphological characters of colonies reciprocally transplanted showed gradual significant changes through the 15 months of transplantation. Sclerites of shallow water colonies became larger when transplanted to deeper environments and vice versa, but neither of the two transplanted groups overlapped with the residents' morphology. Genetic analysis of mitochondrial and nuclear genes suggested that such discrete morphology and non-overlapping phenotypic plasticity is correlated with the presence of two independent evolutionary lineages. The distribution of the lineages is non-random and may be related to adaptational responses of each lineage to the environmental demands of each habitat. CONCLUSION: The extensive distribution and ample morphological variation of Eunicea flexuosa corresponds to two distinct genetic lineages with narrower distributions and more rigid phenotypic plasticity than the original description. The accepted description sensu Bayer (1961) of E. flexuosa is a complex of at least two distinct genetic lineages, adapted to different habitats and do not exchange genetic material despite living in sympatry. The present study highlights the importance of correctly defining species, because the unknowingly use of species complexes can overestimate geographical distribution, population abundance, and physiological tolerance.


Asunto(s)
Antozoos/genética , Especiación Genética , Animales , Antozoos/citología , Análisis Multivariante , Fenotipo , Análisis de Componente Principal , Puerto Rico , Análisis de Secuencia de ADN
4.
Nature ; 427(6977): 832-5, 2004 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-14985760

RESUMEN

Only 17% of 111 reef-building coral genera and none of the 18 coral families with reef-builders are considered endemic to the Atlantic, whereas the corresponding percentages for the Indo-west Pacific are 76% and 39%. These figures depend on the assumption that genera and families spanning the two provinces belong to the same lineages (that is, they are monophyletic). Here we show that this assumption is incorrect on the basis of analyses of mitochondrial and nuclear genes. Pervasive morphological convergence at the family level has obscured the evolutionary distinctiveness of Atlantic corals. Some Atlantic genera conventionally assigned to different families are more closely related to each other than they are to their respective Pacific 'congeners'. Nine of the 27 genera of reef-building Atlantic corals belong to this previously unrecognized lineage, which probably diverged over 34 million years ago. Although Pacific reefs have larger numbers of more narrowly distributed species, and therefore rank higher in biodiversity hotspot analyses, the deep evolutionary distinctiveness of many Atlantic corals should also be considered when setting conservation priorities.


Asunto(s)
Antozoos/clasificación , Filogenia , Animales , Antozoos/anatomía & histología , Antozoos/citología , Antozoos/genética , Océano Atlántico , Núcleo Celular/genética , ADN Mitocondrial/genética , Evolución Molecular , Datos de Secuencia Molecular , Océano Pacífico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA