Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220039, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36633281

RESUMEN

Anthranilate phosphoribosyltransferase catalyses the second reaction in the biosynthesis of tryptophan from chorismate in microorganisms and plants. The enzyme is homodimeric with the active site located in the hinge region between two domains. A range of structures in complex with the substrates, substrate analogues and inhibitors have been determined, and these have provided insights into the catalytic mechanism of this enzyme. Substrate 5-phospho-d-ribose 1-diphosphate (PRPP) binds to the C-terminal domain and coordinates to Mg2+, in a site completed by two flexible loops. Binding of the second substrate anthranilate is more complex, featuring multiple binding sites along an anthranilate channel. This multi-modal binding is consistent with the substrate inhibition observed at high concentrations of anthranilate. A series of structures predict a dissociative mechanism for the reaction, similar to the reaction mechanisms elucidated for other phosphoribosyltransferases. As this enzyme is essential for some pathogens, efforts have been made to develop inhibitors for this enzyme. To date, the best inhibitors exploit the multiple binding sites for anthranilate. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Asunto(s)
Antranilato Fosforribosiltransferasa , ortoaminobenzoatos , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Sitios de Unión , Dominio Catalítico , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo
2.
Biochem Biophys Res Commun ; 521(4): 991-996, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31727369

RESUMEN

Mycobacterium fortuitum has emerged as a nosocomial infectious agent and biofilm formation attributed for the presence of this bacterium in hospital environment. Transposon random mutagenesis was used to identify membrane-proteins for biofilm formation in M. fortuitum. Ten mutants were shortlisted from a library of 450 mutants for examine their biofilm forming ability. Comparative biofilm ability with respect to wild type M. fortuitum ATCC 6841 showed an altered and delayed biofilm formation in one mutant namely, MT721. Sequence analysis revealed mutation in anthranilate phosphoribosyl transferase (MftrpD), which is associated with tryptophan operon. Functional interaction study of TrpD protein through STRING showed its interaction with chorismate utilizing proteins, majorly involved in synthesis of aromatic amino acid and folic acid, suggesting that biofilm establishment and maintenance requires components of central metabolism. Our study indicates important role of MftrpD in establishment and maintenance of biofilm by M. fortuitum, which may further be explored for drug discovery studies against mycobacterial infections.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Elementos Transponibles de ADN/genética , Mutagénesis Insercional/genética , Mutación/genética , Mycobacterium fortuitum/genética , Mycobacterium fortuitum/fisiología , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ácido Corísmico/metabolismo , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína
3.
Proteins ; 87(10): 815-825, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31134642

RESUMEN

It is an important goal of computational biology to correctly predict the association state of a protein based on its amino acid sequence and the structures of known homologues. We have pursued this goal on the example of anthranilate phosphoribosyltransferase (AnPRT), an enzyme that is involved in the biosynthesis of the amino acid tryptophan. Firstly, known crystal structures of naturally occurring homodimeric AnPRTs were analyzed using the Protein Interfaces, Surfaces, and Assemblies (PISA) service of the European Bioinformatics Institute (EBI). This led to the identification of two hydrophobic "hot spot" amino acids in the protein-protein interface that were predicted to be essential for self-association. Next, in a comprehensive multiple sequence alignment (MSA), naturally occurring AnPRT variants with hydrophilic or charged amino acids in place of hydrophobic residues in the two hot spot positions were identified. Representative variants were characterized in terms of thermal stability, enzymatic activity, and quaternary structure. We found that AnPRT variants with charged residues in both hot spot positions exist exclusively as monomers in solution. Variants with hydrophilic amino acids in one hot spot position occur in both forms, monomer and dimer. The results of the present study provide a detailed characterization of the determinants of the AnPRT monomer-dimer equilibrium and show that analysis of hot spots in combination with MSAs can be a valuable tool in prediction of protein quaternary structures.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Bacterias/enzimología , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Antranilato Fosforribosiltransferasa/genética , Dominio Catalítico , Biología Computacional , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Multimerización de Proteína
4.
BMC Bioinformatics ; 18(1): 274, 2017 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-28545394

RESUMEN

BACKGROUND: Large enzyme families may contain functionally diverse members that give rise to clusters in a sequence similarity network (SSN). In prokaryotes, the genome neighborhood of a gene-product is indicative of its function and thus, a genome neighborhood network (GNN) deduced for an SSN provides strong clues to the specific function of enzymes constituting the different clusters. The Enzyme Function Initiative ( http://enzymefunction.org/ ) offers services that compute SSNs and GNNs. RESULTS: We have implemented AGeNNT that utilizes these services, albeit with datasets purged with respect to unspecific protein functions and overrepresented species. AGeNNT generates refined GNNs (rGNNs) that consist of cluster-nodes representing the sequences under study and Pfam-nodes representing enzyme functions encoded in the respective neighborhoods. For cluster-nodes, AGeNNT summarizes the phylogenetic relationships of the contributing species and a statistic indicates how unique nodes and GNs are within this rGNN. Pfam-nodes are annotated with additional features like GO terms describing protein function. For edges, the coverage is given, which is the relative number of neighborhoods containing the considered enzyme function (Pfam-node). AGeNNT is available at https://github.com/kandlinf/agennt . CONCLUSIONS: An rGNN is easier to interpret than a conventional GNN, which commonly contains proteins without enzymatic function and overly specific neighborhoods due to phylogenetic bias. The implemented filter routines and the statistic allow the user to identify those neighborhoods that are most indicative of a specific metabolic capacity. Thus, AGeNNT facilitates to distinguish and annotate functionally different members of enzyme families.


Asunto(s)
Enzimas/metabolismo , Interfaz Usuario-Computador , Algoritmos , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Biocatálisis , Análisis por Conglomerados , Enzimas/química , Enzimas/genética , Redes Reguladoras de Genes , Histidina/biosíntesis , Internet , Anotación de Secuencia Molecular , Timidina Fosforilasa/química , Timidina Fosforilasa/genética , Timidina Fosforilasa/metabolismo
5.
Extremophiles ; 21(1): 73-83, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27757697

RESUMEN

Regulation of amino acid metabolism (RAM) domains are widely distributed among prokaryotes. In most cases, a RAM domain fuses with a DNA-binding domain to act as a transcriptional regulator. The extremely thermophilic bacterium, Thermus thermophilus, only carries a single gene encoding a RAM domain-containing protein on its genome. This protein is a stand-alone RAM domain protein (SraA) lacking a DNA-binding domain. Therefore, we hypothesized that SraA, which senses amino acids through its RAM domain, may interact with other proteins to modify its functions. In the present study, we identified anthranilate phosphoribosyltransferase (AnPRT), the second enzyme in the tryptophan biosynthetic pathway, as a partner protein that interacted with SraA in T. thermophilus. In the presence of tryptophan, SraA was assembled to a decamer and exhibited the ability to form a stable hetero-complex with AnPRT. An enzyme assay revealed that AnPRT was only inhibited by tryptophan in the presence of SraA. This result suggests a novel feedback control mechanism for tryptophan biosynthesis through an inter-RAM domain interaction in bacteria.


Asunto(s)
Antranilato Fosforribosiltransferasa/metabolismo , Proteínas Bacterianas/metabolismo , Thermus thermophilus/enzimología , Triptófano/biosíntesis , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Retroalimentación Fisiológica , Unión Proteica , Multimerización de Proteína , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
6.
J Biol Chem ; 290(32): 19527-39, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26063803

RESUMEN

We present the crystal structure and biochemical characterization of Escherichia coli YbiB, a member of the hitherto uncharacterized TrpD2 protein family. Our results demonstrate that the functional diversity of proteins with a common fold can be far greater than predictable by computational annotation. The TrpD2 proteins show high structural homology to anthranilate phosphoribosyltransferase (TrpD) and nucleoside phosphorylase class II enzymes but bind with high affinity (KD = 10-100 nM) to nucleic acids without detectable sequence specificity. The difference in affinity between single- and double-stranded DNA is minor. Results suggest that multiple YbiB molecules bind to one longer DNA molecule in a cooperative manner. The YbiB protein is a homodimer that, therefore, has two electropositive DNA binding grooves. But due to negative cooperativity within the dimer, only one groove binds DNA in in vitro experiments. A monomerized variant remains able to bind DNA with similar affinity, but the negative cooperative effect is eliminated. The ybiB gene forms an operon with the DNA helicase gene dinG and is under LexA control, being induced by DNA-damaging agents. Thus, speculatively, the TrpD2 proteins may be part of the LexA-controlled SOS response in bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Respuesta SOS en Genética , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , ADN Bacteriano/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Operón , Pentosiltransferasa/química , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/genética , Transducción de Señal , Homología Estructural de Proteína
7.
Biochem J ; 461(1): 87-98, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24712732

RESUMEN

AnPRT (anthranilate phosphoribosyltransferase), required for the biosynthesis of tryptophan, is essential for the virulence of Mycobacterium tuberculosis (Mtb). AnPRT catalyses the Mg2+-dependent transfer of a phosphoribosyl group from PRPP (5'-phosphoribosyl-1'-pyrophosphate) to anthranilate to form PRA (5'-phosphoribosyl anthranilate). Mtb-AnPRT was shown to catalyse a sequential reaction and significant substrate inhibition by anthranilate was observed. Antimycobacterial fluoroanthranilates and methyl-substituted analogues were shown to act as alternative substrates for Mtb-AnPRT, producing the corresponding substituted PRA products. Structures of the enzyme complexed with anthranilate analogues reveal two distinct binding sites for anthranilate. One site is located over 8 Å (1 Å=0.1 nm) from PRPP at the entrance to a tunnel leading to the active site, whereas in the second, inner, site anthranilate is adjacent to PRPP, in a catalytically relevant position. Soaking the analogues for variable periods of time provides evidence for anthranilate located at transient positions during transfer from the outer site to the inner catalytic site. PRPP and Mg2+ binding have been shown to be associated with the rearrangement of two flexible loops, which is required to complete the inner anthranilate-binding site. It is proposed that anthranilate first binds to the outer site, providing an unusual mechanism for substrate capture and efficient transfer to the catalytic site following the binding of PRPP.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Antranilato Fosforribosiltransferasa/farmacología , Proteínas Bacterianas/farmacología , Catálisis , Cristalización , Modelos Moleculares , Mycobacterium tuberculosis/patogenicidad , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Factores de Virulencia/farmacología
8.
Chembiochem ; 15(6): 852-64, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24623674

RESUMEN

The emergence of extensively drug-resistant strains of Mycobacterium tuberculosis (Mtb) highlights the need for new therapeutics to treat tuberculosis. We are attempting to fast-track a targeted approach to drug design by generating analogues of a validated hit from molecular library screening that shares its chemical scaffold with a current therapeutic, the anti-arthritic drug Lobenzarit (LBZ). Our target, anthranilate phosphoribosyltransferase (AnPRT), is an enzyme from the tryptophan biosynthetic pathway in Mtb. A bifurcated hydrogen bond was found to be a key feature of the LBZ-like chemical scaffold and critical for enzyme inhibition. We have determined crystal structures of compounds in complex with the enzyme that indicate that the bifurcated hydrogen bond assists in orientating compounds in the correct conformation to interact with key residues in the substrate-binding tunnel of Mtb-AnPRT. Characterising the inhibitory potency of the hit and its analogues in different ways proved useful, due to the multiple substrates and substrate binding sites of this enzyme. Binding in a site other than the catalytic site was found to be associated with partial inhibition. An analogue, 2-(2-5-methylcarboxyphenylamino)-3-methylbenzoic acid, that bound at the catalytic site and caused complete, rather than partial, inhibition of enzyme activity was found. Therefore, we designed and synthesised an extended version of the scaffold on the basis of this observation. The resultant compound, 2,6-bis-(2-carboxyphenylamino)benzoate, is a 40-fold more potent inhibitor of the enzyme than the original hit and provides direction for further structure-based drug design.


Asunto(s)
Antituberculosos/química , Mycobacterium tuberculosis/enzimología , Triptófano/biosíntesis , ortoaminobenzoatos/química , Antranilato Fosforribosiltransferasa/antagonistas & inhibidores , Antranilato Fosforribosiltransferasa/metabolismo , Antituberculosos/metabolismo , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacología
9.
Chembiochem ; 12(10): 1581-8, 2011 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-21455924

RESUMEN

The anthranilate phosphoribosyl transferase from the hyperthermophilic archaeon Sulfolobus solfataricus (sAnPRT, encoded by strpD), which catalyzes the third step in tryptophan biosynthesis, is a thermostable homodimer with low enzymatic activity at room temperature. We have combined two mutations leading to the monomerization and two mutations leading to the activation of sAnPRT. The resulting "activated monomer" sAnPRT-I36E-M47D+D83G-F149S, which is much more labile than wild-type sAnPRT, was stabilized by a combination of random mutagenesis and metabolic library selection using the extremely thermophilic bacterium Thermus thermophilus as host. This approach led to the identification of five mutations that individually increased the thermal stability of sAnPRT-I36E-M47D+D83G-F149S by 1 to 8 °C, and by 13 °C when combined. The beneficial exchanges were located in different parts of the protein structure, but none of them led to the "re-dimerization" of the enzyme. We observed a negative correlation between thermal stability and catalytic activity of the mutants; this suggests that conformational flexibility is required for catalysis by sAnPRT.


Asunto(s)
Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Biblioteca de Genes , Sulfolobus solfataricus/enzimología , Sulfolobus solfataricus/genética , Thermus thermophilus/genética , Antranilato Fosforribosiltransferasa/química , Clonación Molecular , Activación Enzimática , Estabilidad de Enzimas , Modelos Moleculares , Mutagénesis , Mutación , Multimerización de Proteína , Temperatura
10.
J Biol Chem ; 285(45): 34401-7, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20817725

RESUMEN

The YjgF/YER057c/UK114 family of proteins is highly conserved across all three domains of life and currently lacks a consensus biochemical function. Analysis of Salmonella enterica strains lacking yjgF has led to a working model in which YjgF functions to remove potentially toxic secondary products of cellular enzymes. Strains lacking yjgF synthesize the thiamine precursor phosphoribosylamine (PRA) by a TrpD-dependent mechanism that is not present in wild-type strains. Here, PRA synthesis was reconstituted in vitro with anthranilate phosphoribosyltransferase (TrpD), threonine dehydratase (IlvA), threonine, and phosphoribosyl pyrophosphate. TrpD-dependent PRA formation in vitro was inhibited by S. enterica YjgF and the human homolog UK114. Thus, the work herein describes the first biochemical assay for diverse members of the highly conserved YjgF/YER057c/UK114 family of proteins and provides a means to dissect the cellular functions of these proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Modelos Biológicos , Ribosamonofosfatos/biosíntesis , Salmonella enterica/metabolismo , Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Proteínas Bacterianas/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforribosil Pirofosfato/genética , Fosforribosil Pirofosfato/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ribosamonofosfatos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Salmonella enterica/genética , Homología de Secuencia de Aminoácido , Treonina Deshidratasa/genética , Treonina Deshidratasa/metabolismo
11.
Biochemistry ; 48(23): 5199-209, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19385665

RESUMEN

Anthranilate phosphoribosyltransferase from the hyperthermophilic archaeon Sulfolobus solfataricus (ssAnPRT) is encoded by the sstrpD gene and catalyzes the reaction of anthranilate (AA) with a complex of Mg(2+) and 5'-phosphoribosyl-alpha1-pyrophosphate (Mg.PRPP) to N-(5'-phosphoribosyl)-anthranilate (PRA) and pyrophosphate (PP(i)) within tryptophan biosynthesis. The ssAnPRT enzyme is highly thermostable (half-life at 85 degrees C = 35 min) but only marginally active at ambient temperatures (turnover number at 37 degrees C = 0.33 s(-1)). To understand the reason for the poor catalytic proficiency of ssAnPRT, we have isolated from an sstrpD library the activated ssAnPRT-D83G + F149S double mutant by metabolic complementation of an auxotrophic Escherichia coli strain. Whereas the activity of purified wild-type ssAnPRT is strongly reduced in the presence of high concentrations of Mg(2+) ions, this inhibition is no longer observed in the double mutant and the ssAnPRT-D83G single mutant. The comparison of the crystal structures of activated and wild-type ssAnPRT shows that the D83G mutation alters the binding mode of the substrate Mg.PRPP. Analysis of PRPP and Mg(2+)-dependent enzymatic activity indicates that this leads to a decreased affinity for a second Mg(2+) ion and thus reduces the concentration of enzymes with the inhibitory Mg(2).PRPP complex bound to the active site. Moreover, the turnover number of the double mutant ssAnPRT-D83G + F149S is elevated 40-fold compared to the wild-type enzyme, which can be attributed to an accelerated release of the product PRA. This effect appears to be mainly caused by an increased conformational flexibility induced by the F149S mutation, a hypothesis which is supported by the reduced thermal stability of the ssAnPRT-F149S single mutant.


Asunto(s)
Antranilato Fosforribosiltransferasa/metabolismo , Magnesio/farmacología , Sulfolobus solfataricus/enzimología , Antranilato Fosforribosiltransferasa/antagonistas & inhibidores , Antranilato Fosforribosiltransferasa/química , Catálisis , Cristalografía por Rayos X , Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobus solfataricus/metabolismo
12.
J Mol Biol ; 376(2): 506-16, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18164726

RESUMEN

The anthranilate phosphoribosyltransferase from Sulfolobus solfataricus (ssAnPRT) forms a homodimer with a hydrophobic subunit interface. To elucidate the role of oligomerisation for catalytic activity and thermal stability of the enzyme, we loosened the dimer by replacing two apolar interface residues with negatively charged residues (mutations I36E and M47D). The purified double mutant I36E+M47D formed a monomer with wild-type catalytic activity but reduced thermal stability. The single mutants I36E and M47D were present in a monomer-dimer equilibrium with dissociation constants of about 1 microM and 20 microM, respectively, which were calculated from the concentration-dependence of their heat inactivation kinetics. The monomeric form of M47D, which is populated at low subunit concentrations, was as thermolabile as monomeric I36E+M47D. Likewise, the dimeric form of I36E, which was populated at high subunit concentrations, was as thermostable as dimeric wild-type ssAnPRT. These findings show that the increased stability of wild-type ssAnPRT compared to the I36E+M47D double mutant is not caused by the amino acid exchanges per se but by the higher intrinsic stability of the dimer compared to the monomer. In accordance with the negligible effect of the mutations on catalytic activity and stability, the X-ray structure of M47D contains only minor local perturbations at the dimer interface. We conclude that the monomeric double mutant resembles the individual wild-type subunits, and that ssAnPRT is a dimer for stability but not for activity reasons.


Asunto(s)
Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Variación Genética , Sulfolobus solfataricus/enzimología , Antranilato Fosforribosiltransferasa/aislamiento & purificación , Rastreo Diferencial de Calorimetría , Catálisis , Cristalografía por Rayos X , Dimerización , Estabilidad de Enzimas , Escherichia coli/genética , Calor , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutación , Plásmidos , Estructura Secundaria de Proteína , Especificidad por Sustrato
13.
J Bacteriol ; 190(3): 815-22, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17557816

RESUMEN

Phosphoribosyl amine (PRA) is an intermediate in purine biosynthesis and also required for thiamine biosynthesis in Salmonella enterica. PRA is normally synthesized by phosphoribosyl pyrophosphate amidotransferase, a high-turnover enzyme of the purine biosynthetic pathway encoded by purF. However, PurF-independent PRA synthesis has been observed in strains having different genetic backgrounds and growing under diverse conditions. Genetic analysis has shown that the anthranilate synthase-phosphoribosyltransferase (AS-PRT) enzyme complex, involved in the synthesis of tryptophan, can play a role in the synthesis of PRA. This work describes the in vitro synthesis of PRA in the presence of the purified components of the AS-PRT complex. Results from in vitro assays and in vivo studies indicate that the cellular accumulation of phosphoribosyl anthranilate can result in nonenzymatic PRA formation sufficient for thiamine synthesis. These studies have uncovered a mechanism used by cells to redistribute metabolites to ensure thiamine synthesis and may define a general paradigm of metabolic robustness.


Asunto(s)
Proteínas Bacterianas/genética , Mutación , Operón , Ribosamonofosfatos/metabolismo , Salmonella typhimurium/metabolismo , Tiamina/metabolismo , Triptófano/metabolismo , Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Antranilato Sintasa/química , Antranilato Sintasa/genética , Antranilato Sintasa/metabolismo , Proteínas Bacterianas/metabolismo , Medios de Cultivo , Modelos Moleculares , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , ortoaminobenzoatos/metabolismo
14.
J Mol Evol ; 65(5): 496-511, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17938992

RESUMEN

Tryptophan is an essential amino acid that, in eukaryotes, is synthesized either in the plastids of photoautotrophs or in the cytosol of fungi and oomycetes. Here we present an in silico analysis of the tryptophan biosynthetic pathway in stramenopiles, based on analysis of the genomes of the oomycetes Phytophthora sojae and P. ramorum and the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Although the complete pathway is putatively located in the complex chloroplast of diatoms, only one of the involved enzymes, indole-3-glycerol phosphate synthase (InGPS), displays a possible cyanobacterial origin. On the other hand, in P. tricornutum this gene is fused with the cyanobacteria-derived hypothetical protein COG4398. Anthranilate synthase is also fused in diatoms. This fusion gene is almost certainly of bacterial origin, although the particular source of the gene cannot be resolved. All other diatom enzymes originate from the nucleus of the primary host (red alga) or secondary host (ancestor of chromalveolates). The entire pathway is of eukaryotic origin and cytosolic localization in oomycetes; however, one of the enzymes, anthranilate phosphoribosyl transferase, was likely transferred to the oomycete nucleus from the red algal nucleus during secondary endosymbiosis. This suggests possible retention of the complex plastid in the ancestor of stramenopiles and later loss of this organelle in oomycetes.


Asunto(s)
Cloroplastos/metabolismo , Diatomeas/citología , Diatomeas/metabolismo , Triptófano/biosíntesis , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Secuencia de Aminoácidos , Antranilato Fosforribosiltransferasa/genética , Antranilato Fosforribosiltransferasa/metabolismo , Antranilato Sintasa/genética , Antranilato Sintasa/metabolismo , Diatomeas/genética , Evolución Molecular , Indol-3-Glicerolfosfato Sintasa/genética , Indol-3-Glicerolfosfato Sintasa/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Filogenia , Phytophthora/metabolismo , Triptófano/química , Triptófano Sintasa/genética , Triptófano Sintasa/metabolismo
15.
J Mol Biol ; 355(4): 784-97, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16337227

RESUMEN

Mycobacterium tuberculosis, the cause of tuberculosis, presents a major threat to human health worldwide. Biosynthetic enzymes that are essential for the survival of the bacterium, especially in activated macrophages, are important potential drug targets. Although the tryptophan biosynthesis pathway is thought to be non-essential for many pathogens, this appears not to be the case for M.tuberculosis, where a trpD gene knockout fails to cause disease in mice. We therefore chose the product of the trpD gene, anthranilate phosphoribosyltransferase, which catalyses the second step in tryptophan biosynthesis, for structural analysis. The structure of TrpD from M.tuberculosis was solved by X-ray crystallography, at 1.9 A resolution for the native enzyme (R = 0.191, Rfree = 0.230) and at 2.3 A resolution for the complex with its substrate phosphoribosylpyrophosphate (PRPP) and Mg2+ (R = 0.194, Rfree = 0.255). The enzyme is folded into two domains, separated by a hinge region. PRPP binds in the C-terminal domain, together with a pair of Mg ions. In the substrate complex, two flexible loops change conformation compared with the apo protein, to close over the PRPP and to complete an extensive network of hydrogen-bonded interactions. A nearby pocket, adjacent to the hinge region, is postulated by in silico docking as the binding site for anthranilate. A bound molecule of benzamidine, which was essential for crystallization and is also found in the hinge region, appears to reduce flexibility between the two domains.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Antranilato Fosforribosiltransferasa/metabolismo , Pulmón/microbiología , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/fisiología , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Secuencia de Aminoácidos , Benzamidinas/química , Sitios de Unión , Catálisis , Cationes Bivalentes/química , Secuencia Conservada , Cristalografía por Rayos X , Magnesio/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Triptófano/biosíntesis , ortoaminobenzoatos/química
16.
J Bacteriol ; 185(17): 5125-32, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12923085

RESUMEN

In bacteria, the biosynthetic pathway for the hydroxymethyl pyrimidine moiety of thiamine shares metabolic intermediates with purine biosynthesis. The two pathways branch after the compound aminoimidazole ribotide. Past work has shown that the first common metabolite, phosphoribosyl amine (PRA), can be generated in the absence of the first enzyme in purine biosynthesis, PurF. PurF-independent PRA synthesis is dependent on both strain background and growth conditions. Standard genetic approaches have not identified a gene product singly responsible for PurF-independent PRA formation. This result has led to the hypothesis that multiple enzymes contribute to PRA synthesis, possibly as the result of side products from their dedicated reaction. A mutation that was able to restore PRA synthesis in a purF gnd mutant strain was identified and found to map in the gene coding for the TrpD subunit of the anthranilate synthase (AS)-phosphoribosyl transferase (PRT) complex. Genetic analyses indicated that wild-type AS-PRT was able to generate PRA in vivo and that the P362L mutant of TrpD facilitated this synthesis. In vitro activity assays showed that the mutant AS was able to generate PRA from ammonia and phosphoribosyl pyrophosphate. This work identifies a new reaction catalyzed by AS-PRT and considers it in the context of cellular thiamine synthesis and metabolic flexibility.


Asunto(s)
Ribosamonofosfatos/metabolismo , Salmonella enterica/enzimología , Tiamina/metabolismo , Amidofosforribosiltransferasa/genética , Amoníaco/metabolismo , Antranilato Fosforribosiltransferasa/metabolismo , Antranilato Sintasa/genética , Antranilato Sintasa/metabolismo , Medios de Cultivo , Mutación , Fosfogluconato Deshidrogenasa/genética , Fosfogluconato Deshidrogenasa/metabolismo , Fosforribosil Pirofosfato/metabolismo , Salmonella enterica/crecimiento & desarrollo
17.
FEBS Lett ; 523(1-3): 239-46, 2002 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-12123839

RESUMEN

The structure of anthranilate phosphoribosyltransferase from the enterobacterium Pectobacterium carotovorum has been solved at 2.4 A in complex with Mn(2+)-pyrophosphate, and at 1.9 A without ligands. The enzyme structure has a novel phosphoribosyltransferase (PRT) fold and displays close homology to the structures of pyrimidine nucleoside phosphorylases. The enzyme is a homodimer with a monomer of 345 residues. Each monomer consists of two subdomains, alpha and alpha/beta, which form a cleft containing the active site. The nature of the active site is inferred from the trapped MnPPi complex and detailed knowledge of the active sites of nucleoside phosphorylases. With the anthranilate (An)PRT structure solved, the structures of all the enzymes required for tryptophan biosynthesis are now known.


Asunto(s)
Antranilato Fosforribosiltransferasa/química , Enterobacteriaceae/enzimología , Manganeso/química , Pentosiltransferasa/química , Triptófano/biosíntesis , Secuencia de Aminoácidos , Antranilato Fosforribosiltransferasa/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Difosfatos/química , Difosfatos/metabolismo , Manganeso/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Pentosiltransferasa/metabolismo , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Pirimidina Fosforilasas , Timidina Fosforilasa/química , Triptófano/metabolismo
18.
RNA ; 8(3): 336-44, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12003493

RESUMEN

The mRNA poly(A) tail serves different purposes, including the facilitation of nuclear export, mRNA stabilization, efficient translation, and, finally, specific degradation. The posttranscriptional addition of a poly(A) tail depends on sequence motifs in the 3' untranslated region (3' UTR) of the mRNA and a complex trans-acting protein machinery. In this study, we have replaced the 3' UTR of the yeast TRP4 gene with sequences encoding a hammerhead ribozyme that efficiently cleaves itself in vivo. Expression of the TRP4-ribozyme allele resulted in the accumulation of a nonpolyadenylated mRNA. Cells expressing the TRP4-ribozyme mRNA showed a reduced growth rate due to a reduction in Trp4p enzyme activity. The reduction in enzyme activity was not caused by inefficient mRNA export from the nucleus or mRNA destabilization. Rather, analyses of mRNA association with polyribosomes indicate that translation of the ribozyme-containing mRNA is impaired. This translational defect allows sufficient synthesis of Trp4p to support growth of trp4 cells, but is, nevertheless, of such magnitude as to activate the general control network of amino acid biosynthesis.


Asunto(s)
Regiones no Traducidas 3'/genética , Antranilato Fosforribosiltransferasa/metabolismo , Poli A/metabolismo , ARN Catalítico/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/enzimología , Regiones no Traducidas 3'/metabolismo , Transporte Activo de Núcleo Celular , Antranilato Fosforribosiltransferasa/genética , Sitios de Unión , División Celular/fisiología , Expresión Génica/genética , Plásmidos , Poli A/genética , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN Catalítico/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Triptófano/metabolismo
19.
Genetics ; 145(1): 197-205, 1997 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9017401

RESUMEN

Nine blue fluorescent mutants of the flowering plant Arabidopsis thaliana were isolated by genetic selections and fluorescence screens. Each was shown to contain a recessive allele of trp1, a previously described locus that encodes the tryptophan biosynthetic enzyme phosphoribosylanthranilate transferase (PAT, called trpD in bacteria). The trp1 mutants consist of two groups, tryptophan auxotrophs and prototrophs, that differ significantly in growth rate, morphology, and fertility. The trp1 alleles cause plants to accumulate varying amounts of blue fluorescent anthranilate compounds, and only the two least severely affected of the prototrophs have any detectable PAT enzyme activity. All four of the trp1 mutations that were sequenced are G to A or C to T transitions that cause an amino acid change, but in only three of these is the affected residue phylogenetically conserved. There is an unusually high degree of sequence divergence in the single-copy gene encoding PAT from the wild-type Columbia and Landsberg erecta ecotypes of Arabidopsis.


Asunto(s)
Alelos , Antranilato Fosforribosiltransferasa/genética , Arabidopsis/enzimología , Proteínas Fúngicas/genética , Genes Recesivos , Secuencia de Aminoácidos , Antranilato Fosforribosiltransferasa/metabolismo , Arabidopsis/genética , Secuencia de Bases , ADN de Plantas , Inhibidores Enzimáticos/farmacología , Fluorescencia , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Mutagénesis , ARN Mensajero , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacología
20.
J Biol Chem ; 270(11): 6081-7, 1995 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-7890741

RESUMEN

In order to study the tryptophan biosynthetic enzymes of the plant Arabidopsis thaliana, polyclonal antibodies were raised against five of the tryptophan biosynthetic pathway proteins: anthranilate synthase alpha subunit, phosphoribosylanthranilate transferase, phosphoribosylanthranilate isomerase, and the tryptophan synthase alpha and beta subunits. Immunoblot analysis of Arabidopsis leaf protein extracts revealed that the antibodies identify the corresponding proteins that are enriched in Arabidopsis chloroplast fractions. Precursors of phosphoribosylanthranilate isomerase and tryptophan synthase alpha subunit were synthesized by in vitro translation. The precursors were efficiently imported and processed by isolated spinach chloroplasts, and the cleavage sites within the precursors were determined. These results provide the first direct evidence that the tryptophan biosynthetic enzymes from Arabidopsis are synthesized as higher molecular weight precursors and then imported into chloroplasts and processed into their mature forms.


Asunto(s)
Isomerasas Aldosa-Cetosa , Antranilato Fosforribosiltransferasa/metabolismo , Antranilato Sintasa/metabolismo , Arabidopsis/enzimología , Carbohidrato Epimerasas/metabolismo , Cloroplastos/enzimología , Triptófano Sintasa/metabolismo , Triptófano/biosíntesis , Secuencia de Aminoácidos , Antranilato Fosforribosiltransferasa/análisis , Antranilato Fosforribosiltransferasa/biosíntesis , Antranilato Sintasa/análisis , Antranilato Sintasa/biosíntesis , Carbohidrato Epimerasas/análisis , Carbohidrato Epimerasas/biosíntesis , Clonación Molecular , Precursores Enzimáticos/metabolismo , Escherichia coli , Glutatión Transferasa/análisis , Glutatión Transferasa/biosíntesis , Immunoblotting , Sustancias Macromoleculares , Datos de Secuencia Molecular , Peso Molecular , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/biosíntesis , Triptófano Sintasa/análisis , Triptófano Sintasa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...