Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.140
Filtrar
1.
Am Nat ; 204(2): 121-132, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39008840

RESUMEN

AbstractClimate change will alter interactions between parasites and their hosts. Warming may affect patterns of local adaptation, shifting the environment to favor the parasite or host and thus changing the prevalence of disease. We assessed local adaptation to hosts and temperature in the facultative ciliate parasite Lambornella clarki, which infects the western tree hole mosquito Aedes sierrensis. We conducted laboratory infection experiments with mosquito larvae and parasites collected from across a climate gradient, pairing sympatric or allopatric populations across three temperatures that were either matched or mismatched to the source environment. Lambornella clarki parasites were locally adapted to their hosts, with 2.6 times higher infection rates on sympatric populations compared with allopatric populations, but they were not locally adapted to temperature. Infection peaked at the intermediate temperature of 12.5°C, notably lower than the optimum temperature for free-living L. clarki growth, suggesting that the host's immune response can play a significant role in mediating the outcome of infection. Our results highlight the importance of host selective pressure on parasites, despite the impact of temperature on infection success.


Asunto(s)
Aedes , Interacciones Huésped-Parásitos , Larva , Temperatura , Animales , Aedes/parasitología , Larva/parasitología , Larva/crecimiento & desarrollo , Adaptación Fisiológica , Apicomplexa/fisiología
2.
Open Biol ; 14(6): 230451, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862023

RESUMEN

Plasmodium species encode a unique set of six modular proteins named LCCL lectin domain adhesive-like proteins (LAPs) that operate as a complex and that are essential for malaria parasite transmission from mosquito to vertebrate. LAPs possess complex architectures obtained through unique assemblies of conserved domains associated with lipid, protein and carbohydrate interactions, including the name-defining LCCL domain. Here, we assessed the prevalence of Plasmodium LAP orthologues across eukaryotic life. Our findings show orthologous conservation in all apicomplexans, with lineage-specific repertoires acquired through differential lap gene loss and duplication. Besides Apicomplexa, LAPs are found in their closest relatives: the photosynthetic chromerids, which encode the broadest repertoire including a novel membrane-bound LCCL protein. LAPs are notably absent from other alveolate lineages (dinoflagellates, perkinsids and ciliates), but are encoded by predatory colponemids, a sister group to the alveolates. These results reveal that the LAPs are much older than previously thought and pre-date not only the Apicomplexa but the Alveolata altogether.


Asunto(s)
Evolución Molecular , Filogenia , Plasmodium , Proteínas Protozoarias , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Plasmodium/genética , Plasmodium/metabolismo , Alveolados/genética , Alveolados/metabolismo , Dominios Proteicos , Apicomplexa/genética , Apicomplexa/metabolismo , Lectinas/genética , Lectinas/metabolismo , Lectinas/química
3.
Eur J Protistol ; 94: 126084, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692224

RESUMEN

Gregarines are symbiotic protists that are found in a broad spectrum of invertebrates, including insects, crustaceans, and annelids. Among these the globally distributed amphipod Gammarus pulex is one of the earliest recognized hosts for aquatic gregarines and is prevalent among macroinvertebrates in freshwater environments. In this study, samples of G. pulex were collected in the Water of Leith river, Scotland, UK. Gregarines were identified using light and scanning electron microscopy as well as standard molecular techniques. We identified three septate eugregarine symbionts-Heliospora longissima, Cephaloidophora gammari, and the here newly characterized Cephaloidophora conus n. sp. (formerly Cephaloidophora sp.) associated with Gammarus pulex in the Water of Leith. Prevalences for identified gregarine species were calculated and seasonal dynamics of gregarine infections/colonization were analyzed. Prevalences were highest in autumn and spring reaching almost 50 %. While the two Cephaloidophora species showed similar colonization patterns, the prevalence of Heliospora showed an opposite trend. Identifying gregarine infection/colonization patterns is one step towards better understanding the gregarine-host relationship, as well as possible impacts of the gregarines on their hosts.


Asunto(s)
Anfípodos , Apicomplexa , Animales , Anfípodos/parasitología , Escocia , Apicomplexa/fisiología , Apicomplexa/clasificación , Prevalencia , Especificidad de la Especie , Estaciones del Año , Ríos/parasitología , Simbiosis
4.
Curr Biol ; 34(12): 2748-2755.e3, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38821048

RESUMEN

Apicomplexans are obligate intracellular parasites that have evolved from a free-living, phototrophic ancestor. They have been reported from marine environmental samples in high numbers,1 with several clades of apicomplexan-related lineages (ARLs) having been described from environmental sequencing data (16S rRNA gene metabarcoding).2 The most notable of these are the corallicolids (previously ARL-V), which possess chlorophyll-biosynthesis genes in their relic chloroplast (apicoplast) and are geographically widespread and abundant symbionts of anthozoans.3 Corallicolids are related to the Eimeriorina, a suborder of apicomplexan coccidians that include other notable members such as Toxoplasma gondii.4Ophioblennius macclurei, the redlip blenny, along with other tropical reef fishes, is known to be infected by Haemogregarina-like and Haemohormidium-like parasites5 supposedly belonging to the Adeleorina; however, phylogenetics shows that these parasites are instead related to the Eimeriorina.6,7 Hybrid genomic sequencing of apicomplexan-infected O. macclurei blood recovered the entire rRNA operon of this apicomplexan parasite along with the complete mitochondrion and apicoplast genomes. Phylogenetic analyses using this new genomic information consistently place these fish-infecting apicomplexans, hereby informally named ichthyocolids, sister to the corallicolids within Coccidia. The apicoplast genome did not contain chlorophyll biosynthesis genes, providing evidence for another independent loss of this pathway within Apicomplexa. Based on the 16S rRNA gene found in the apicoplast, this group corresponds to the previously described ARL-VI. Screening of fish microbiome studies using the plastid 16S rRNA gene shows these parasites to be geographically and taxonomically widespread in fish species across the globe with implications for commercial fisheries and oceanic food webs.


Asunto(s)
Apicomplexa , Filogenia , Animales , Apicomplexa/genética , Apicomplexa/clasificación , Peces/parasitología , Enfermedades de los Peces/parasitología
5.
Mol Biochem Parasitol ; 259: 111633, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38821187

RESUMEN

Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.


Asunto(s)
Apicomplexa , Proteínas Quinasas , Proteómica , Proteínas Protozoarias , Apicomplexa/metabolismo , Apicomplexa/genética , Proteómica/métodos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato , Animales
6.
Mol Biochem Parasitol ; 259: 111628, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38719028

RESUMEN

Apicomplexan parasites are the primary causative agents of many human diseases, including malaria, toxoplasmosis, and cryptosporidiosis. These opportunistic pathogens undergo complex life cycles with multiple developmental stages, wherein many key steps are regulated by phosphorylation mechanisms. The genomes of apicomplexan pathogens contain protein kinases from different groups including tyrosine kinase-like (TKL) family proteins. Although information on the role of TKL kinases in apicomplexans is quite limited, recent studies have revealed the important role of this family of proteins in apicomplexan biology. TKL kinases in these protozoan pathogens show unique organization with many novel domains thus making them attractive candidates for drug development. In this mini review, we summarize the current understanding of the role of TKL kinases in human apicomplexan pathogens' (Toxoplasma gondii, Plasmodium falciparum and Cryptosporidium parvum) biology and pathogenesis.


Asunto(s)
Apicomplexa , Cryptosporidium parvum , Plasmodium falciparum , Proteínas Protozoarias , Toxoplasma , Humanos , Toxoplasma/enzimología , Toxoplasma/genética , Cryptosporidium parvum/enzimología , Cryptosporidium parvum/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Apicomplexa/enzimología , Apicomplexa/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/química , Fosforilación
7.
Acta Histochem ; 126(4): 152167, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38733697

RESUMEN

Rodlet cells are unique pear-shaped cells found primarily in the epithelium of the teleost fishes. The rodlet cell was first identified by Thèlohan in 1892 who named it Rhabdospora thelohani as it was believed to be a protozoan parasite of the phylum Apicomplexa. The rodlet cell as parasite paradigm persisted for several decades afterwards but has since faded in the last 20 years or so. The rodlet cell is now generally believed to be an immune cell, functioning as an early responder to parasite intrusion. This short review makes a detailed comparison of apicomplexan structure and behavior with that of the rodlet cell to further strengthen the argument against a parasitic nature for the fish cell. It is then proposed that apical microvilli of the rodlet cell serve as a mechanical trigger for rodlet discharge as possible defense against larger ectoparasites.


Asunto(s)
Apicomplexa , Peces , Animales , Apicomplexa/fisiología
8.
PeerJ ; 12: e17161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560466

RESUMEN

The life history of a parasite describes its partitioning of assimilated resources into growth, reproduction, and transmission effort, and its precise timing of developmental events. The life cycle, in contrast, charts the sequence of morphological stages from feeding to the transmission forms. Phenotypic plasticity in life history traits can reveal how parasites confront variable environments within hosts. Within the protist phylum Apicomplexa major clades include the malaria parasites, coccidians, and most diverse, the gregarines (with likely millions of species). Studies on life history variation of gregarines are rare. Therefore, life history traits were examined for the gregarine Monocystis perplexa in its host, the invasive earthworm Amynthas agrestis at three sites in northern Vermont, United States of America. An important value of this system is the short life-span of the hosts, with only seven months from hatching to mass mortality; we were thus able to examine life history variation during the entire life cycle of both host and parasite. Earthworms were collected (N = 968 over 33 sample periods during one host season), then parasites of all life stages were counted, and sexual and transmission stages measured, for each earthworm. All traits varied substantially among individual earthworm hosts and across the sites. Across sites, timing of first appearance of infected earthworms, date when transmission stage (oocysts packed within gametocysts) appeared, date when number of both feeding (trophic) cells and gametocysts were at maximum, and date when 100% of earthworms were infected differed from 2-8 weeks, surprising variation for a short season available for parasite development. The maximal size of mating cells varied among hosts and across sites and this is reflected in the number of oocysts produced by the gametocyst. A negative trade-off was observed for the number of oocysts and their size. Several patterns were striking: (1) Prevalence reached 100% at all sites by mid season, only one to three weeks after parasites first appeared in the earthworms. (2) The number of parasites per host was large, reaching 300 × 103 cells in some hosts, and such high numbers were present even when parasites first appeared in the host. (3) At one site, few infected earthworms produced any oocysts. (4) The transmission rate to reach such high density of parasites in hosts needed to be very high for a microbe, from >0.33% to >34.3% across the three sites. Monocystis was one of the first protist parasites to have its life cycle described (early 19th century), but these results suggest the long-accepted life cycle of Monocystis could be incomplete, such that the parasites may be transmitted vertically (within the earthworm's eggs) as well as horizontally (leading to 100% prevalence) and merogony (asexual replication) could be present, not recognized for Monocystis, leading to high parasitemia even very early in the host's season.


Asunto(s)
Apicomplexa , Rasgos de la Historia de Vida , Oligoquetos , Parásitos , Animales , Oligoquetos/parasitología , Reproducción , Estadios del Ciclo de Vida , Oocistos
9.
Curr Biol ; 34(8): 1810-1816.e4, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38608678

RESUMEN

Coral reefs are a biodiversity hotspot,1,2 and the association between coral and intracellular dinoflagellates is a model for endosymbiosis.3,4 Recently, corals and related anthozoans have also been found to harbor another kind of endosymbiont, apicomplexans called corallicolids.5 Apicomplexans are a diverse lineage of obligate intracellular parasites6 that include human pathogens such as the malaria parasite, Plasmodium.7 Global environmental sequencing shows corallicolids are tightly associated with tropical and subtropical reef environments,5,8,9 where they infect diverse corals across a range of depths in many reef systems, and correlate with host mortality during bleaching events.10 All of this points to corallicolids being ecologically significant to coral reefs, but it is also possible they are even more widely distributed because most environmental sampling is biased against parasites that maintain a tight association with their hosts throughout their life cycle. We tested the global distribution of corallicolids using a more direct approach, by specifically targeting potential anthozoan host animals from cold/temperate marine waters outside the coral reef context. We found that corallicolids are in fact common in such hosts, in some cases at high frequency, and that they infect the same tissue as parasites from topical coral reefs. Parasite phylogeny suggests corallicolids move between hosts and habitats relatively frequently, but that biogeography is more conserved. Overall, these results greatly expand the range of corallicolids beyond coral reefs, suggesting they are globally distributed parasites of marine anthozoans, which also illustrates significant blind spots that result from strategies commonly used to sample microbial biodiversity.


Asunto(s)
Antozoos , Arrecifes de Coral , Antozoos/parasitología , Animales , Apicomplexa/fisiología , Apicomplexa/genética , Apicomplexa/clasificación , Simbiosis , Frío , Dinoflagelados/fisiología , Dinoflagelados/genética , Interacciones Huésped-Parásitos
10.
Parasitology ; 151(5): 468-477, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38629122

RESUMEN

Haemogregarine (Apicomplexa: Adeleorina) parasites are considered to be the most common and widespread haemoparasites in reptiles. The genus Hepatozoon (Apicomplexa: Adeleorina: Hepatozoidae) can be found parasitizing a broad range of species and, in reptiles, they infect mainly peripheral blood erythrocytes. The present study detected and characterized a haemogregarine isolated from the lizard species, Ameiva ameiva, collected from the municipality of Capanema, Pará state, north Brazil. Blood smears and imprints from lungs, brain, heart, kidney, liver, bone marrow and spleen were observed using light microscopy and the parasite was genetically identified by molecular analysis. Morphological, morphometric and molecular data were obtained. Parasite gamonts were found in 49.5% (55/111) of the blood smears from A. ameiva, and were characterized as oval, averaging 12.0 ± 0.8 × 5.9 ± 0.6 µm2 in size, which displaced the nuclei of parasitized monocytes laterally. Parasite forms resembling immature gamonts were observed in the spleen and bone marrow of the lizards. Furthermore, phylogenetic analyses of 18S rRNA sequences did not reveal gene similarity with other Hepatozoon spp. sequences from reptiles. Thus, morphological and molecular analyses have identified a new species of Hepatozoon parasite, Hepatozoon lainsoni sp. nov., which infects monocytes of the A. ameiva lizard.


Asunto(s)
Coccidiosis , Lagartos , Filogenia , Animales , Lagartos/parasitología , Brasil , Coccidiosis/veterinaria , Coccidiosis/parasitología , Eucoccidiida/genética , Eucoccidiida/aislamiento & purificación , Eucoccidiida/clasificación , ARN Ribosómico 18S/análisis , ARN Ribosómico 18S/genética , Apicomplexa/genética , Apicomplexa/aislamiento & purificación , Apicomplexa/clasificación , Eritrocitos/parasitología , ADN Protozoario
11.
Eur J Protistol ; 94: 126080, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636336

RESUMEN

Gregarines are the most biodiverse group of apicomplexan parasites. This group specializes on invertebrate hosts (e.g., ascidians, crustaceans, and polychaetes). Marine gregarines are of particular interest because they are considered to be the earliest evolving apicomplexan lineage, having subsequently speciated (and radiated) through virtually all existing animal groups. Still, mechanisms governing the broad (global) distribution and speciation patterns of apicomplexans are not well understood. The present study examines Pacific lecudinids, one of the most species-rich and diverse groups of marine gregarines. Here, marine polychaetes were collected from intertidal zones. Single trophozoite cells were isolated for light and electron microscopy, as well as molecular phylogenetic analyses using the partial 18S rRNA gene. The cytochrome c oxidase subunit 1 gene was used to confirm morphology-based host identification. This study introduces Undularius glycerae n. gen., n. sp. and Lecudina kitase n. sp. (Hokkaido, Japan), as well as Difficilina fasoliformis n. sp. (California, USA). Occurrences of Lecudina cf. longissima and Lecudina cf. tuzetae (California, USA) are also reported. Phylogenetic analysis revealed a close relationship between L. pellucida, L. tuzetae, and L. kitase n. sp. Additionally, clustering among North Atlantic and Pacific L. tuzetae formed a species complex, likely influenced by biogeography.


Asunto(s)
Apicomplexa , Filogenia , ARN Ribosómico 18S , Apicomplexa/genética , Apicomplexa/clasificación , Apicomplexa/ultraestructura , Apicomplexa/citología , ARN Ribosómico 18S/genética , Océano Pacífico , Biodiversidad , Poliquetos/parasitología , Animales , Especificidad de la Especie , Especiación Genética
12.
Curr Opin Microbiol ; 79: 102484, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688159

RESUMEN

Long noncoding RNAs (lncRNA) are emerging as important regulators of gene expression in eukaryotes. In recent years, a large repertoire of lncRNA were discovered in Apicomplexan parasites and were implicated in several mechanisms of gene expression, including marking genes for activation, contributing to the formation of subnuclear compartments and organization, regulating the deposition of epigenetic modifications, influencing chromatin and chromosomal structure and manipulating host gene expression. Here, we aim to update recent knowledge on the role of lncRNAs as regulators in Apicomplexan parasites and highlight the possible molecular mechanisms by which they function. We hope that some of the hypotheses raised here will contribute to further investigation and lead to new mechanistic insight and better understanding of the role of lncRNA in parasite's biology.


Asunto(s)
Apicomplexa , Epigénesis Genética , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Apicomplexa/genética , Apicomplexa/metabolismo , Animales , Regulación de la Expresión Génica , Interacciones Huésped-Parásitos/genética , Humanos , Cromatina/metabolismo , Cromatina/genética
13.
Curr Opin Microbiol ; 79: 102472, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581913

RESUMEN

Apicomplexan parasites have complex life cycles, often requiring transmission between two different hosts, facing periods of dormancy within the host or in the environment to maximize chances of transmission. To support survival in these different conditions, tightly regulated and correctly timed gene expression is critical. The modification of histones and nucleosome composition makes a significant contribution to this regulation, and as eukaryotes, the fundamental mechanisms underlying this process in apicomplexans are similar to those in model eukaryotic organisms. However, single-celled intracellular parasites face unique challenges, and regulation of gene expression at the epigenetic level provides tight control for responses that must often be rapid and robust. Here, we discuss the recent advances in understanding the dynamics of histone modifications across Apicomplexan life cycles and the molecular mechanisms that underlie epigenetic regulation of gene expression to promote parasite life cycle progression, dormancy, and transmission.


Asunto(s)
Apicomplexa , Epigénesis Genética , Código de Histonas , Histonas , Estadios del Ciclo de Vida , Apicomplexa/genética , Apicomplexa/metabolismo , Apicomplexa/crecimiento & desarrollo , Animales , Histonas/metabolismo , Histonas/genética , Humanos , Interacciones Huésped-Parásitos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
14.
Curr Opin Microbiol ; 79: 102477, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663181

RESUMEN

Apicomplexan and trypanosomatid parasites have evolved a wide range of post-transcriptional processes that allow them to replicate, differentiate, and transmit within and among multiple different tissue, host, and vector environments. In this review, we highlight the recent advances that point toward the regulatory potential of RNA modifications in mediating these processes on the coding and noncoding transcriptome throughout the life cycle of protozoan parasites. We discuss the recent technical advancements enabling the study of the 'epitranscriptome' and how parasites evolved RNA modification-mediated mechanisms adapted to their unique lifestyles.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN Protozoario , ARN Protozoario/genética , ARN Protozoario/metabolismo , Animales , Apicomplexa/genética , Apicomplexa/metabolismo , Transcriptoma , Estadios del Ciclo de Vida/genética
15.
Trends Parasitol ; 40(5): 416-426, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38637184

RESUMEN

The micropore, a mysterious structure found in apicomplexan species, was recently shown to be essential for nutrient acquisition in Plasmodium falciparum and Toxoplasma gondii. However, the differences between the micropores of these two parasites questions the nature of a general apicomplexan micropore structure and whether the formation process model from Plasmodium can be applied to other apicomplexans. We analyzed the literature on different apicomplexan micropores and found that T. gondii probably harbors a more representative micropore type than the more widely studied ones in Plasmodium. Using recent knowledge of the Kelch 13 (K13) protein interactome and gene depletion phenotypes in the T. gondii micropore, we propose a model of micropore formation, thus enriching our wider understanding of micropore protein function.


Asunto(s)
Apicomplexa , Plasmodium falciparum , Toxoplasma , Apicomplexa/fisiología , Apicomplexa/genética , Toxoplasma/genética , Toxoplasma/fisiología , Plasmodium falciparum/fisiología , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
16.
Int J Paleopathol ; 45: 46-54, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657471

RESUMEN

OBJECTIVE: To analyze the presence of protozoan parasites in bird coprolites from the Tremembé Formation (Oligocene of the Taubaté Basin). MATERIALS: Twenty avian coprolites embedded in pyrobituminous shale matrices. METHODS: Samples were rehydrated and subjected to spontaneous sedimentation. RESULTS: Paleoparasitological analyses revealed oocysts compatible with the Eimeriidae family (Apicomplexa) and one single Archamoebae (Amoebozoa) cyst. CONCLUSIONS: The present work increases the amount of information about the spread of infections throughout the Cenozoic Era and reveals that the Brazilian paleoavifauna played an important role in the Apicomplexa and Amoebozoa life cycles. SIGNIFICANCE: This is the first record of protozoans in avian coprolites from the Oligocene of Brazil. These findings can help in the interpretation of phylogenies of coccidian parasites of modern birds, as certain taxonomic characters observed in the Oligocene Protozoa characterize monophyletic groups in current molecular phylogenetic analyses. LIMITATIONS: None of the oocysts were sporulated; therefore, it is not possible to identify the morphotypes to genus or species. SUGGESTIONS FOR FURTHER RESEARCH: Our results create new perspectives related to biogeographic studies of the parasitic groups described and may improve the understanding of the temporal amplitude of parasitic evolutionary relationships between Protozoans and birds.


Asunto(s)
Aves , Brasil , Animales , Fósiles , Heces/parasitología , Amebozoos/genética , Filogenia , Apicomplexa/genética , Oocistos , Paleopatología , Enfermedades de las Aves/parasitología , Enfermedades de las Aves/historia
17.
Ticks Tick Borne Dis ; 15(3): 102328, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432073

RESUMEN

Tick-borne Apicomplexan parasites pose a significant threat to both public health and animal husbandry. Identifying potential pathogenic parasites and gathering their epidemiological data are essential for prospectively preventing and controlling infections. In the present study, genomic DNA of ticks collected from two goat flocks (Goatflock1 and Goatflock2) and one dog group (Doggroup) were extracted and the 18S rRNA gene of Babesia/Theileria/Colpodella spp. was amplified by PCR and sequenced. Phylogenetic analysis was conducted based on the obtained sequences. The differences in pathogen positive rates between ticks of different groups were statistically analyzed using the Chi-square or continuity-adjusted Chi-square test. As a result, two pathogenic Theileria (T.) luwenshuni genotypes, one novel pathogenic Colpodella sp. HLJ genotype, and two potential novel Colpodella spp. (referred to as Colpodella sp. struthionis and Colpodella sp. yiyuansis in this study) were identified in the Haemaphysalis (H.) longicornis ticks. Ticks of Goatflock2 had a significantly higher positive rate of Colpodella spp. than those from Goatflock1 (χ2=92.10; P = 8.2 × 10-22) and Doggroup (χ2=42.34; P = 7.7 × 10-11), and a significantly higher positive rate of T. luwenshuni than Doggroup (χ2=5.38; P = 0.02). However, the positive rates of T. luwenshuni between Goatflock1 and Goatflock2 were not significantly different (χ2=2.02; P = 0.16), and so as the positive rates of both pathogens between Goatflock1 and Doggroup groups (P > 0.05). For either Colpodella spp. or T. luwenshuni, no significant difference was found in prevalence between male and female ticks. These findings underscore the potential importance of Colpodella spp. in domestic animal-attached ticks, as our study revealed two novel Colpodella spp. and identified Colpodella spp. in H. longicornis for the first time. The study also sheds light on goats' potential roles in the transmission of Colpodella spp. to ticks and provides crucial epidemiological data of pathogenic Theileria and Colpodella. These data may help physicians, veterinarians, and public health officers prepare suitable detection and treatment methods and develop prevention and control strategies.


Asunto(s)
Apicomplexa , Ixodidae , Theileria , Garrapatas , Femenino , Masculino , Animales , Perros , Garrapatas/parasitología , Haemaphysalis longicornis , Cabras/parasitología , Prevalencia , Filogenia , Ixodidae/parasitología , Theileria/genética , China/epidemiología
18.
Mol Phylogenet Evol ; 195: 108060, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38485105

RESUMEN

Apicomplexans are a diverse phylum of unicellular eukaryotes that share obligate relationships with terrestrial and aquatic animal hosts. Many well-studied apicomplexans are responsible for several deadly zoonotic and human diseases, most notably malaria caused by Plasmodium. Interest in the evolutionary origin of apicomplexans has also spurred recent work on other more deeply-branching lineages, especially gregarines and sister groups like squirmids and chrompodellids. But a full picture of apicomplexan evolution is still lacking several lineages, and one major, diverse lineage that is notably absent is the adeleorinids. Adeleorina apicomplexans comprises hundreds of described species that infect invertebrate and vertebrate hosts across the globe. Although historically considered coccidians, phylogenetic trees based on limited data have shown conflicting branch positions for this subgroup, leaving this question unresolved. Phylogenomic trees and large-scale analyses comparing cellular functions and metabolism between major subgroups of apicomplexans have not incorporated Adeleorina because only a handful of molecular markers and a couple organellar genomes are available, ultimately excluding this group from contributing to our understanding of apicomplexan evolution and biology. To address this gap, we have generated complete genomes from mitochondria and plastids, as well as multiple deep-coverage single-cell transcriptomes of nuclear genes from two Adeleorina species, Klossia helicina and Legerella nova, and inferred a 206-protein phylogenomic tree of Apicomplexa. We observed distinct structures reported in species descriptions as remnant host structures surrounding adeleorinid oocysts. Klossia helicina and L. nova branched, as expected, with monoxenous adeleorinids within the Adeleorina and their mitochondrial and plastid genomes exhibited similarity to published organellar adeleorinid genomes. We show with a phylogeneomic tree and subsequent phylogenomic analyses that Adeleorina are not closely related to any of the currently sampled apicomplexan subgroups, and instead fall as a sister to a large clade encompassing Coccidia, Protococcidia, Hematozoa, and Nephromycida, collectively. This resolves Adeleorina as a key independently-branching group, separate from coccidians, on the tree of Apicomplexa, which now has all known major lineages sampled.


Asunto(s)
Apicomplexa , Genoma de Plastidios , Animales , Humanos , Filogenia , Plastidios/genética , Genoma , Apicomplexa/genética
19.
J Eukaryot Microbiol ; 71(3): e13021, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38480471

RESUMEN

Freshwater bivalves play key ecological roles in lakes and rivers, largely contributing to healthy ecosystems. The freshwater pearl mussel, Margaritifera margaritifera, is found in Europe and on the East coast of North America. Once common in oxygenated streams, M. margaritifera is rapidly declining and consequently assessed as a threatened species worldwide. Deterioration of water quality has been considered the main factor for the mass mortality events affecting this species. Yet, the role of parasitic infections has not been investigated. Here, we report the discovery of three novel protist lineages found in Swedish populations of M. margaritifera belonging to one of the terrestrial groups of gregarines (Eugregarinorida, Apicomplexa). These lineages are closely related-but clearly separated-from the tadpole parasite Nematopsis temporariae. In one lineage, which is specifically associated with mortality events of M. margaritifera, we found cysts containing single vermiform zoites in the gills and other organs of diseased individuals using microscopy and in situ hybridization. This represents the first report of a parasitic infection in M. margaritifera that may be linked to the decline of this mussel species. We propose a tentative life cycle with the distribution of different developmental stages and potential exit from the host into the environment.


Asunto(s)
Bivalvos , Agua Dulce , Filogenia , Animales , Suecia , Agua Dulce/parasitología , Bivalvos/parasitología , Apicomplexa/clasificación , Apicomplexa/aislamiento & purificación , Apicomplexa/genética , Apicomplexa/fisiología , Branquias/parasitología
20.
Parasitology ; 151(4): 400-411, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38465385

RESUMEN

Individual organisms can host multiple species of parasites (or symbionts), and one species of parasite can infect different host species, creating complex interactions among multiple hosts and parasites. When multiple parasite species coexist in a host, they may compete or use strategies, such as spatial niche partitioning, to reduce competition. Here, we present a host­symbiont system with two species of Selenidium (Apicomplexa, Gregarinida) and one species of astome ciliate co-infecting two different species of slime feather duster worms (Annelida, Sabellidae, Myxicola) living in neighbouring habitats. We examined the morphology of the endosymbionts with light and scanning electron microscopy (SEM) and inferred their phylogenetic interrelationships using small subunit (SSU) rDNA sequences. In the host 'Myxicola sp. Quadra', we found two distinct species of Selenidium; S. cf. mesnili exclusively inhabited the foregut, and S. elongatum n. sp. inhabited the mid to hindgut, reflecting spatial niche partitioning. Selenidium elongatum n. sp. was also present in the host M. aesthetica, which harboured the astome ciliate Pennarella elegantia n. gen. et sp. Selenidium cf. mesnili and P. elegantia n. gen. et sp. were absent in the other host species, indicating host specificity. This system offers an intriguing opportunity to explore diverse aspects of host­endosymbiont interactions and competition among endosymbionts.


Asunto(s)
Apicomplexa , Especificidad del Huésped , Filogenia , Simbiosis , Animales , Apicomplexa/fisiología , Apicomplexa/genética , Apicomplexa/clasificación , Apicomplexa/ultraestructura , Coinfección/parasitología , Coinfección/veterinaria , Cilióforos/fisiología , Cilióforos/clasificación , Cilióforos/genética , Anélidos , Interacciones Huésped-Parásitos , Microscopía Electrónica de Rastreo , Enfermedades de las Aves/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...