Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
1.
J Biol Chem ; 300(3): 105726, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325741

RESUMEN

Hyperlipidemia predisposes individuals to cardiometabolic diseases, the most common cause of global mortality. Microsomal triglyceride transfer protein (MTP) transfers multiple lipids and is essential for the assembly of apolipoprotein B-containing lipoproteins. MTP inhibition lowers plasma lipids but causes lipid retention in the liver and intestine. Previous studies suggested two lipid transfer domains in MTP and that specific inhibition of triglyceride (TG) and not phospholipid (PL) transfer can lower plasma lipids without significant tissue lipid accumulation. However, how MTP transfers different lipids and the domains involved in these activities are unknown. Here, we tested a hypothesis that two different ß-sandwich domains in MTP transfer TG and PL. Mutagenesis of charged amino acids in ß2-sandwich had no effect on PL transfer activity indicating that they are not critical. In contrast, amino acids with bulky hydrophobic side chains in ß1-sandwich were critical for both TG and PL transfer activities. Substitutions of these residues with smaller hydrophobic side chains or positive charges reduced, whereas negatively charged side chains severely attenuated MTP lipid transfer activities. These studies point to a common lipid transfer domain for TG and PL in MTP that is enriched with bulky hydrophobic amino acids. Furthermore, we observed a strong correlation in different MTP mutants with respect to loss of both the lipid transfer activities, again implicating a common binding site for TG and PL in MTP. We propose that targeting of areas other than the identified common lipid transfer domain might reduce plasma lipids without causing cellular lipid retention.


Asunto(s)
Proteínas Portadoras , Interacciones Hidrofóbicas e Hidrofílicas , Fosfolípidos , Triglicéridos , Humanos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Fosfolípidos/sangre , Fosfolípidos/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo , Dominios Proteicos , Mutación , Relación Estructura-Actividad , Sitios de Unión
2.
J Lipid Res ; 63(9): 100257, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931202

RESUMEN

The microsomal triglyceride transfer protein (MTP) is essential for the secretion of apolipoprotein B (apoB)48- and apoB100-containing lipoproteins in the intestine and liver, respectively. Loss of function mutations in MTP cause abetalipoproteinemia. Heterologous cells are used to evaluate the function of MTP in apoB secretion to avoid background MTP activity in liver and intestine-derived cells. However, these systems are not suitable to study the role of MTP in the secretion of apoB100-containing lipoproteins, as expression of a large apoB100 peptide using plasmids is difficult. Here, we report a new cell culture model amenable for studying the role of different MTP mutations on apoB100 secretion. The endogenous MTTP gene was ablated in human hepatoma Huh-7 cells using single guide RNA and RNA-guided clustered regularly interspaced short palindromic repeats-associated sequence 9 ribonucleoprotein complexes. We successfully established three different clones that did not express any detectable MTTP mRNA or MTP protein or activity. These cells were defective in secreting apoB-containing lipoproteins and accumulated lipids. Furthermore, we show that transfection of these cells with plasmids expressing human MTTP cDNA resulted in the expression of MTP protein, restoration of triglyceride transfer activity, and secretion of apoB100. Thus, these new cells can be valuable tools for studying structure-function of MTP, roles of different missense mutations in various lipid transfer activities of MTP, and their ability to support apoB100 secretion, compensatory changes associated with loss of MTP, and in the identification of novel proteins that may require MTP for their synthesis and secretion.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apolipoproteína B-48/metabolismo , Apolipoproteínas B/química , Apolipoproteínas B/genética , Carcinoma Hepatocelular/genética , Proteínas Portadoras , Línea Celular , ADN Complementario , Humanos , Lipoproteínas/metabolismo , Neoplasias Hepáticas/genética , ARN Guía de Kinetoplastida , ARN Mensajero , Ribonucleoproteínas , Triglicéridos/metabolismo
3.
Int J Mol Sci ; 23(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35563610

RESUMEN

BACKGROUND: medical device-induced infections affect millions of lives worldwide and innovative preventive strategies are urgently required. Antimicrobial peptides (AMPs) appear as ideal candidates to efficiently functionalize medical devices surfaces and prevent bacterial infections. In this scenario, here, we produced antimicrobial polydimethylsiloxane (PDMS) by loading this polymer with an antimicrobial peptide identified in human apolipoprotein B, r(P)ApoBLPro. METHODS: once obtained loaded PDMS, its structure, anti-infective properties, ability to release the peptide, stability, and biocompatibility were evaluated by FTIR spectroscopy, water contact angle measurements, broth microdilution method, time-killing kinetic assays, quartz crystal microbalance analyses, MTT assays, and scanning electron microscopy analyses. RESULTS: PDMS was loaded with r(P)ApoBLPro peptide which was found to be present not only in the bulk matrix of the polymer but also on its surface. ApoB-derived peptide was found to retain its antimicrobial properties once loaded into PDMS and the antimicrobial material was found to be stable upon storage at 4 °C for a prolonged time interval. A gradual and significant release (70% of the total amount) of the peptide from PDMS was also demonstrated upon 400 min incubation and the antimicrobial material was found to be endowed with anti-adhesive properties and with the ability to prevent biofilm attachment. Furthermore, PDMS loaded with r(P)ApoBLPro peptide was found not to affect the viability of eukaryotic cells. CONCLUSIONS: an easy procedure to functionalize PDMS with r(P)ApoBLPro peptide has been here developed and the obtained functionalized material has been found to be stable, antimicrobial, and biocompatible.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Péptidos Antimicrobianos , Apolipoproteínas B/química , Biopelículas , Dimetilpolisiloxanos/química , Humanos , Péptidos/farmacología , Polímeros/farmacología
4.
Nanomedicine ; 37: 102450, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34332115

RESUMEN

Epigenetic inhibitors have shown anticancer effects. Combination chemotherapy with epigenetic inhibitors has shown high effectiveness in gastric cancer clinical trials, but severe side effect and local progression are the causes of treatment failure. Therefore, we sought to develop an acidity-sensitive drug delivery system to release drugs locally to diminish unfavorable outcome of gastric cancer. In this study, we showed that, as compared with single agents, combination treatment with the demethylating agent 5'-aza-2'-deoxycytidine and HDAC inhibitors Trichostatin A or LBH589 decreased cell survival, blocked cell cycle by reducing number of S-phase cells and expression of cyclins, increased cell apoptosis by inducing expression of Bim and cleaved Caspase 3, and reexpressed tumor suppressor genes more effectively in MGCC3I cells. As a carrier, reconstituted apolipoprotein B lipoparticles (rABLs) could release drugs in acidic environments. Orally administrated embedded drugs not only showed inhibitory effects on gastric tumor growth in a syngeneic orthotopic mouse model, but also reduced the hepatic and renal toxicity. In conclusion, we have established rABL-based nanoparticles embedded epigenetic inhibitors for local treatment of gastric cancer, which have good therapeutic effects but do not cause severe side effects.


Asunto(s)
Apolipoproteínas B/farmacología , Sistemas de Liberación de Medicamentos , Epigénesis Genética/efectos de los fármacos , Liposomas/farmacología , Neoplasias Gástricas/terapia , Ácidos/metabolismo , Animales , Apolipoproteínas B/química , Apolipoproteínas B/genética , Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Decitabina/farmacología , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Liposomas/química , Ratones , Nanopartículas/química , Panobinostat/farmacología , Fase S/efectos de los fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
5.
Food Microbiol ; 99: 103804, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119097

RESUMEN

The effectiveness of three novel "host defence peptides" identified in human Apolipoprotein B (ApoB) as novel antimicrobial and antibiofilm agents to be employed in food industry is reported. ApoB-derived peptides have been found to exert significant antimicrobial effects towards Salmonella typhimurium ATCC® 14028 and Salmonella enteritidis 706 RIVM strains. Furthermore, they have been found to retain antimicrobial activity under experimental conditions selected to simulate those occurring during food storage, transportation and heat treatment, and have been found to be endowed with antibiofilm properties. Based on these findings, to evaluate the applicability of ApoB-derived peptides as food biopreservatives, coating solutions composed by chitosan (CH) and an ApoB-derived peptide have been prepared and found to be able to prevent Salmonella cells attachment to different kinds of surfaces employed in food industry. Finally, obtained coating solution has been demonstrated to hinder microbial proliferation in chicken meat samples. Altogether, obtained findings indicate that ApoB-derived peptides are promising candidates as novel biopreservatives for food packaging.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Apolipoproteínas B/química , Conservantes de Alimentos/farmacología , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Pollos , Embalaje de Alimentos , Conservación de Alimentos , Conservantes de Alimentos/química , Almacenamiento de Alimentos , Carne/microbiología , Pruebas de Sensibilidad Microbiana , Salmonella enteritidis/efectos de los fármacos , Salmonella enteritidis/crecimiento & desarrollo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo
6.
Biochim Biophys Acta Gen Subj ; 1865(2): 129803, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249170

RESUMEN

Background Microbial transglutaminase (mTG) has been successfully used to produce site-specific protein conjugates derivatized at the level of Gln and/or Lys residues for different biotechnological applications. Here, a recombinant peptide identified in human apolipoprotein B sequence, named r(P)ApoBL and endowed with antimicrobial activity, was studied as a possible acyl acceptor substrate of mTG with at least one of the six Lys residues present in its sequence. Methods The enzymatic crosslinking reaction was performed in vitro using N,N-dimethylcasein, substance P and bitter vetch (Vicia ervilia) seed proteins, well known acyl donor substrates in mTG-catalyzed reactions. Mass spectrometry analyses were performed for identifying the Lys residue(s) involved in the crosslinking reaction. Finally, bitter vetch protein-based antimicrobial films grafted with r(P)ApoBL were prepared and, their biological activity evaluated. Results r(P)ApoBL was able to be enzymatically modified by mTG. In particular, it was demonstrated the highly selective crosslinking of the peptide under study by mTG at level of Lys-18. Interestingly, the biological activity of the peptide when grafted into protein-based films was found to be lost following mTG-catalyzed crosslinking. Conclusions r(P)ApoBL was shown to be an effective acyl acceptor substrate of mTG. The involvement of Lys-18 in the enzymatic reaction was demonstrated. In addition, films grafted with r(P)ApoBL in the presence of mTG lost antimicrobial property. General significance A possible role of mTG as biotechnological tool to modulate the r(P)ApoBL antimicrobial activity was hypothesized, and a potential use in food packaging of protein-based films grafted with r(P)ApoBL was suggested.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Apolipoproteínas B/metabolismo , Proteínas Bacterianas/metabolismo , Streptomyces/enzimología , Transglutaminasas/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Apolipoproteínas B/química , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
7.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192076

RESUMEN

Chronic respiratory infections are the main cause of morbidity and mortality in cystic fibrosis (CF) patients, and are characterized by the development of multidrug resistance (MDR) phenotype and biofilm formation, generally recalcitrant to treatment with conventional antibiotics. Hence, novel effective strategies are urgently needed. Antimicrobial peptides represent new promising therapeutic agents. Here, we analyze for the first time the efficacy of three versions of a cryptide identified in human apolipoprotein B (ApoB, residues 887-922) towards bacterial strains clinically isolated from CF patients. Antimicrobial and anti-biofilm properties of ApoB-derived cryptides have been analyzed by broth microdilution assays, crystal violet assays, confocal laser scanning microscopy and scanning electron microscopy. Cell proliferation assays have been performed to test cryptide effects on human host cells. ApoB-derived cryptides have been found to be endowed with significant antimicrobial and anti-biofilm properties towards Pseudomonas and Burkholderia strains clinically isolated from CF patients. Peptides have been also found to be able to act in combination with the antibiotic ciprofloxacin, and they are harmless when tested on human bronchial epithelial mesothelial cells. These findings open interesting perspectives to cryptide applicability in the treatment of chronic lung infections associated with CF disease.


Asunto(s)
Apolipoproteínas B/metabolismo , Infecciones Bacterianas/etiología , Infecciones Bacterianas/metabolismo , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Apolipoproteínas B/química , Infecciones Bacterianas/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Sinergismo Farmacológico , Interacciones Huésped-Patógeno , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones Oportunistas/tratamiento farmacológico , Infecciones Oportunistas/etiología , Infecciones Oportunistas/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/etiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/ultraestructura
8.
Nat Commun ; 10(1): 3426, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366908

RESUMEN

Apolipoprotein-B (ApoB) is the structural component of atherogenic lipoproteins, lipid-rich particles that drive atherosclerosis by accumulating in the vascular wall. As atherosclerotic cardiovascular disease is the leading cause of death worldwide, there is an urgent need to develop new strategies to prevent lipoproteins from causing vascular damage. Here we report the LipoGlo system, which uses a luciferase enzyme (NanoLuc) fused to ApoB to monitor several key determinants of lipoprotein atherogenicity including particle abundance, size, and localization. Using LipoGlo, we comprehensively characterize the lipoprotein profile of individual larval zebrafish and collect images of atherogenic lipoprotein localization in an intact organism. We report multiple extravascular lipoprotein localization patterns, as well as identify Pla2g12b as a potent regulator of lipoprotein size. ApoB-fusion proteins thus represent a sensitive and specific approach to study atherogenic lipoproteins and their genetic and small molecule modifiers.


Asunto(s)
Apolipoproteínas B/química , Aterosclerosis/patología , Lipoproteínas LDL/análisis , Luciferasas/química , Coloración y Etiquetado/métodos , Animales , Apolipoproteínas B/metabolismo , Humanos , Larva/metabolismo , Luciferasas/metabolismo , Fosfolipasas A2/genética , Fosfolipasas A2/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
J Atheroscler Thromb ; 26(7): 583-591, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31061262

RESUMEN

Lipoprotein(a) [Lp(a)], discovered in 1963, has been associated with atherosclerotic cardiovascular disease (ASCVD) independent of other traditional risk factors, including LDL cholesterol. Lp(a) is an apolipoprotein B (apoB)-containing lipoprotein, which contains an LDL-like particle. Unlike LDL, which is a primary therapeutic target to decrease ASCVD, current guidelines recommend measuring Lp(a) for risk assessments because there is no clear evidence demonstrating the clinical benefit of decreasing Lp(a) using classical drugs such as niacin. However, recent Mendelian randomization studies indicate that Lp(a) causally correlates with ASCVD. In addition, novel drugs, including PCSK9 inhibitors, as well as antisense oligonucleotide for apo(a), have exhibited efficacy in decreasing Lp(a) substantially, invigorating a discussion whether Lp(a) could be a novel therapeutic target for further ASCVD risk reduction. This review aims to provide current understanding, and future perspectives, of Lp(a), which is currently considered a mere biomarker but may emerge as a novel therapeutic target in future clinical settings.


Asunto(s)
Aterosclerosis/sangre , Lipoproteína(a)/sangre , Apolipoproteínas B/sangre , Apolipoproteínas B/química , Aterosclerosis/tratamiento farmacológico , Biomarcadores/sangre , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Lipoproteína(a)/química , Niacina/uso terapéutico , Oligonucleótidos Antisentido/uso terapéutico , Inhibidores de PCSK9 , Medición de Riesgo , Factores de Riesgo , Inhibidores de Serina Proteinasa
10.
Biosci Rep ; 39(4)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30867253

RESUMEN

Cholesterol efflux capacity (CEC) in atherosclerotic lesions is the main anti-atherosclerotic function of high-density lipoprotein (HDL). In recent studies, apolipoprotein (apo) B-depleted serum (BDS) obtained with the polyethylene glycol (PEG) precipitation method is used as a cholesterol acceptor (CA) substitution for HDL isolated by ultracentrifugation. However, the suitability of BDS as a CA is controversial. In the present study, CEC obtained from BDS (BDS-CEC) was evaluated based on a parameter, defined as whole-CEC, which was calculated by multiplying CEC obtained using fixed amounts of HDL by cholesterol concentration to HDL-cholesterol (HDL-C) levels in the serum. Significant correlation (r = 0.633) was observed between both CECs. To eliminate systematic errors from possible contamination with serum proteins and low-density lipoprotein (LDL) or very-LDL (VLDL) in BDS-CEC, the deviation of each CEC-BDS from the regression equation was compared with serum protein, LDL, and triglyceride (TG) levels. No correlation was observed between the deviation and the levels of each of these serum components, indicating that the deviations do not derive from systematic error. Further, to evaluate the effects of serum protein on the results, we measured BDS-CEC of reconstituted serum samples prepared using combinations of five levels of serum proteins with five levels of HDL-C. No significant change in BDS-CEC was observed in any combination. These results indicate that BDS-CEC reflects not only the function of HDL but also its concentration in serum.


Asunto(s)
Apolipoproteínas B/química , HDL-Colesterol/química , Lipoproteínas LDL/química , Lipoproteínas VLDL/química , Femenino , Humanos , Liposomas , Masculino
11.
Nano Lett ; 19(4): 2562-2567, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30848605

RESUMEN

The fundamental task of lipoprotein particles is extracellular transport of cholesterol, lipids, and fatty acids. Besides, cholesterol-rich apoB-containing lipoprotein particles (i.e., low density lipoprotein LDL) are key players in progression of atherosclerotic cardiovascular disease and are associated with familial hypercholesterolemia (FH). So far, lipoprotein particle binding to the cell membrane and subsequent cargo transfer is directly linked to the lipoprotein receptors on the target cell surface. However, our observations showed that lipoprotein particle cargo transport takes place even in the absence of the receptor. This finding suggests that an alternative mechanism for lipoprotein-particle/membrane interaction, besides the receptor-mediated one, exists. Here, we combined several complementary biophysical techniques to obtain a comprehensive view on the nonreceptor mediated LDL-particle/membrane. We applied a combination of atomic force and single-molecule-sensitive fluorescence microscopy (AFM and SMFM) to investigate the LDL particle interaction with membranes of increasing complexity. We observed direct transfer of fluorescently labeled amphiphilic lipid molecules from LDL particles into the pure lipid bilayer. We further confirmed cargo transfer by fluorescence cross-correlation spectroscopy (FCCS) and spectral imaging of environment-sensitive probes. Moreover, the integration of the LDL particle into the membranes was directly visualized by high-speed atomic force microscopy (HS-AFM) and cryo-electron microscopy (cryo-EM). Overall, our data show that lipoprotein particles are able to incorporate into lipid membranes upon contact to transfer their cargo in the absence of specific receptors.


Asunto(s)
Membrana Celular/ultraestructura , Enfermedad de la Arteria Coronaria/patología , Hiperlipoproteinemia Tipo II/metabolismo , Lipoproteínas LDL/química , Apolipoproteínas B/química , Fenómenos Biofísicos , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Enfermedad de la Arteria Coronaria/metabolismo , Microscopía por Crioelectrón , Progresión de la Enfermedad , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Humanos , Hiperlipoproteinemia Tipo II/patología , Membrana Dobles de Lípidos/química , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/ultraestructura , Microscopía de Fuerza Atómica
12.
J Lipid Res ; 59(7): 1094-1102, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29650752

RESUMEN

A better understanding of intracellular lipoprotein assembly may help identify proteins with important roles in lipid disorders. apoB-containing lipoproteins (B-lps) are macromolecular lipid and protein micelles that act as specialized transport vehicles for hydrophobic lipids. They are assembled predominantly in enterocytes and hepatocytes to transport dietary and endogenous fat, respectively, to different tissues. Assembly occurs in the endoplasmic reticulum (ER) and is dependent on lipid resynthesis in the ER and on a chaperone, namely, microsomal triglyceride transfer protein (MTTP). Precursors for lipid synthesis are obtained from extracellular sources and from cytoplasmic lipid droplets. MTTP is the major and essential lipid transfer protein that transfers phospholipids and triacylglycerols to nascent apoB for the assembly of lipoproteins. Assembly is aided by cell death-inducing DFF45-like effector B and by phospholipid transfer protein, which may facilitate additional deposition of triacylglycerols and phospholipids, respectively, to apoB. Here, we summarize the current understanding of the different steps in the assembly of B-lps and discuss the role of lipid transfer proteins in these steps to help identify new clinical targets for lipid-associated disorders, such as heart disease.


Asunto(s)
Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Proteínas Portadoras/metabolismo , Animales , Humanos
13.
Bioconjug Chem ; 29(4): 1373-1383, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29528625

RESUMEN

Peptides with an N-terminal cysteine residue allow site-specific modification of proteins and peptides and chemical synthesis of proteins. They have been widely used to develop new strategies for imaging, drug discovery, diagnostics, and chip technologies. Here we present a method to produce recombinant peptides with an N-terminal cysteine residue as a convenient alternative to chemical synthesis. The method is based on the release of the desired peptide from a recombinant fusion protein by mild acid hydrolysis of an Asp-Cys sequence. To test the general validity of the method we prepared four fusion proteins bearing three different peptides (20-37 amino acid long) at the C-terminus of a ketosteroid isomerase-derived and two Onconase-derived carriers for the production of toxic peptides in E. coli. The chosen peptides were (C)GKY20, an antimicrobial peptide from the C-terminus of human thrombin, (C)ApoBL, an antimicrobial peptide from an inner region of human Apolipoprotein B, and (C)p53pAnt, an anticancer peptide containing the C-terminal region of the p53 protein fused to the cell penetrating peptide Penetratin. Cleavage efficiency of Asp-Cys bonds in the four fusion proteins was studied as a function of pH, temperature, and incubation time. In spite of the differences in the amino acid sequence (GTGDCGKY, GTGDCHVA, GSGTDCGSR, SQGSDCGSR) we obtained for all the proteins a cleavage efficiency of about 70-80% after 24 h incubation at 60 °C and pH 2. All the peptides were produced with very good yield (5-16 mg/L of LB cultures), high purity (>96%), and the expected content of free thiol groups (1 mol per mole of peptide). Furthermore, (C)GKY20 was modified with PyMPO-maleimide, a commercially available fluorophore bearing a thiol reactive group, and with 6-hydroxy-2-cyanobenzothiazole, a reagent specific for N-terminal cysteines, with yields of 100% thus demonstrating that our method is very well suited for the production of fully reactive peptides with an N-terminal cysteine residue.


Asunto(s)
Cisteína/química , Péptidos/química , Proteínas Recombinantes de Fusión/química , Ácidos/química , Secuencia de Aminoácidos , Apolipoproteínas B/química , Apolipoproteínas B/genética , Ácido Aspártico/química , Ácido Aspártico/genética , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/genética , Cisteína/genética , Escherichia coli/química , Escherichia coli/genética , Humanos , Hidrólisis , Péptidos/genética , Proteínas Recombinantes de Fusión/genética , Trombina/química , Trombina/genética , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
14.
Biochem Pharmacol ; 130: 34-50, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28131846

RESUMEN

Host defence peptides (HDPs) are short, cationic amphipathic peptides that play a key role in the response to infection and inflammation in all complex life forms. It is increasingly emerging that HDPs generally have a modest direct activity against a broad range of microorganisms, and that their anti-infective properties are mainly due to their ability to modulate the immune response. Here, we report the recombinant production and characterization of two novel HDPs identified in human Apolipoprotein B (residues 887-922) by using a bioinformatics method recently developed by our group. We focused our attention on two variants of the identified HDP, here named r(P)ApoBL and r(P)ApoBS, 38- and 26-residue long, respectively. Both HDPs were found to be endowed with a broad-spectrum antimicrobial activity while they show neither toxic nor haemolytic effects towards eukaryotic cells. Interestingly, both HDPs were found to display a significant anti-biofilm activity, and to act in synergy with either commonly used antibiotics or EDTA. The latter was selected for its ability to affect bacterial outer membrane permeability, and to sensitize bacteria to several antibiotics. Circular dichroism analyses showed that SDS, TFE, and LPS significantly alter r(P)ApoBL conformation, whereas slighter or no significant effects were detected in the case of r(P)ApoBS peptide. Interestingly, both ApoB derived peptides were found to elicit anti-inflammatory effects, being able to mitigate the production of pro-inflammatory interleukin-6 and nitric oxide in LPS induced murine macrophages. It should also be emphasized that r(P)ApoBL peptide was found to play a role in human keratinocytes wound closure in vitro. Altogether, these findings open interesting perspectives on the therapeutic use of the herein identified HDPs.


Asunto(s)
Apolipoproteínas B/química , Fragmentos de Péptidos/uso terapéutico , Células 3T3 , Animales , Apolipoproteínas B/uso terapéutico , Dicroismo Circular , Células HeLa , Humanos , Ratones , Fragmentos de Péptidos/química , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapéutico , Espectrofotometría Ultravioleta
15.
Biochim Biophys Acta Biomembr ; 1859(2): 135-145, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27814978

RESUMEN

Apolipoprotein B (apoB) is a large amphipathic protein that is the structural scaffold for the formation of several classes of lipoproteins involved in lipid transport throughout the body. The goal of the present study was to identify specific domains in the apoB sequence that contribute to its lipid binding properties. A sequence analysis algorithm was developed to identify stretches of hydrophobic amino acids devoid of charged amino acids, which are referred to as hydrophobic cluster domains (HCDs). This analysis identified 78 HCDs in apoB with hydrophobic stretches ranging from 6 to 26 residues. Each HCD was analyzed in silico for secondary structure and lipid binding properties, and a subset was synthesized for experimental evaluation. One HCD peptide, B38, showed high affinity binding to both isolated HDL and LDL, and could exchange between lipoproteins. All-atom molecular dynamics simulations indicate that B38 inserts 3.7Å below the phosphate plane of the bilayer. B38 forms an unusual α-helix with a broad hydrophobic face and polar serine and threonine residues on the opposite face. Based on this structure, we hypothesized that B38 could efflux cholesterol from cells. B38 showed a 12-fold greater activity than the 5A peptide, a bihelical Class A amphipathic helix (EC50 of 0.2658 vs. 3.188µM; p<0.0001), in promoting cholesterol efflux from ABCA1 expressing BHK-1 cells. In conclusion, we have identified novel domains within apoB that contribute to its lipid biding properties. Additionally, we have discovered a unique amphipathic helix design for efficient ABCA1-specific cholesterol efflux.


Asunto(s)
Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Lípidos/química , Estructura Secundaria de Proteína/fisiología , Transportador 1 de Casete de Unión a ATP/química , Transportador 1 de Casete de Unión a ATP/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Sitios de Unión/fisiología , Células Cultivadas , HDL-Colesterol/química , HDL-Colesterol/metabolismo , LDL-Colesterol/química , LDL-Colesterol/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Péptidos/metabolismo , Unión Proteica/fisiología
16.
Curr Opin Lipidol ; 27(5): 473-83, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27472409

RESUMEN

PURPOSE OF REVIEW: Today, it is no longer a hypothesis, but an established fact, that increased plasma concentrations of cholesterol-rich apolipoprotein-B (apoB)-containing lipoproteins are causatively linked to atherosclerotic cardiovascular disease (ASCVD) and that lowering plasma LDL concentrations reduces cardiovascular events in humans. Here, we review evidence behind this assertion, with an emphasis on recent studies supporting the 'response-to-retention' model - namely, that the key initiating event in atherogenesis is the retention, or trapping, of cholesterol-rich apoB-containing lipoproteins within the arterial wall. RECENT FINDINGS: New clinical trials have shown that ezetimibe and anti-PCSK9 antibodies - both nonstatins - lower ASCVD events, and they do so to the same extent as would be expected from comparable plasma LDL lowering by a statin. These studies demonstrate beyond any doubt the causal role of apoB-containing lipoproteins in atherogenesis. In addition, recent laboratory experimentation and human Mendelian randomization studies have revealed novel information about the critical role of apoB-containing lipoproteins in atherogenesis. New information has also emerged on mechanisms for the accumulation in plasma of harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoproteins in states of overnutrition. Like LDL, these harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoprotein remnants become retained and modified within the arterial wall, causing atherosclerosis. SUMMARY: LDL and other cholesterol-rich, apoB-containing lipoproteins, once they become retained and modified within the arterial wall, cause atherosclerosis. This simple, robust pathophysiologic understanding may finally allow us to eradicate ASCVD, the leading killer in the world.


Asunto(s)
Apolipoproteínas B/metabolismo , Arterias/metabolismo , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Colesterol/metabolismo , Animales , Apolipoproteínas B/química , Humanos , Agregado de Proteínas , Factores de Riesgo
17.
J Clin Lipidol ; 10(3): 604-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27206948

RESUMEN

BACKGROUND: One genetic cause of markedly low plasma concentrations of apolipoprotein (apo) B and low density lipoprotein (LDL)-cholesterol is familial hypobetalipoproteinemia. OBJECTIVE: We aimed to determine the molecular basis for the marked hypocholesterolemia consistent with heterozygous familial hypobetalipoproteinemia in a black female subject of Xhosa lineage. METHODS: Coding regions of APOB, MTTP, PCSK9,ANGPTL3, SAR1B and APOC3 were sequenced, and APOE was genotyped. COS-7 cells were transfected with plasmids containing apoB variants. Western blotting was used to detect cellular and secreted apoB, and co-immunoprecipitation performed to assess binding with the microsomal triglyceride transfer protein (MTP). RESULTS: Sequence analysis of the APOB gene revealed her to be heterozygous for two novel variants, c.751G>A (A224T) and c.2854G>C (V925L). She was also homozygous for the APOEε2 allele, and did not carry a PCSK9 loss-of-function mutation. Although Ala(224) is within the postulated MTP binding region in apoB, it is not conserved among mammalian species. Subsequent genotyping showed that Ala224Thr is found in a southern African population (n=654) with an allele frequency of 1.15% and is not associated with plasma lipid levels. Val(925), like Ala(224), is within the N-terminal 1000 amino acids required for lipoprotein assembly, but was not found in the population screen. However, in vitro studies showed that apoB V925L did not affect apoB48 production or secretion nor have a deleterious effect on MTP interaction with apoB. CONCLUSION: Taken together, this suggests that the hypocholesterolemia in our case may be a result of being homozygous for APOEε2 with a low baseline cholesterol.


Asunto(s)
Apolipoproteínas B/genética , Población Negra/genética , Hipobetalipoproteinemias/genética , Mutación Missense , Adulto , Animales , Apolipoproteínas B/química , Apolipoproteínas E/genética , Células COS , Chlorocebus aethiops , Femenino , Homocigoto , Humanos , Modelos Moleculares , Dominios Proteicos , Sudáfrica/etnología , Adulto Joven
18.
Biol Pharm Bull ; 39(1): 1-24, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26725424

RESUMEN

Increased levels of apolipoprotein B (apoB)-containing lipoproteins, such as low density lipoproteins (LDL) and chylomicron remnants, are associated with the development of atherosclerosis. Chylomicrons containing apoB-48 are secreted from the intestine during the postprandial state, whereas very low density lipoproteins (VLDL) containing apoB-100 are constitutively formed in the liver. Chylomicron remnants and VLDL remnants are produced by the lipoprotein lipase-mediated lipolysis of triglycerides, which is activated by apolipoprotein C-II bound on the particle surfaces. The hepatic uptake of these remnants is facilitated by apolipoprotein E (apoE), but is inhibited by apolipoproteins C-I, C-II and C-III. In the plasma, VLDL remnants are further converted into LDL by the hydrolysis of triglycerides. ApoB-100 is responsible for the hepatic uptake of LDL. LDL receptor, LDL receptor-related protein and heparan sulfate proteoglycans are involved in the hepatic clearance of lipoproteins containing apoB-100 and/or apoE. The subendothelial retention and modification of apoB-containing lipoproteins are crucial events in the initiation of atherosclerosis. In the subendothelium, the uptake of modified lipoproteins by macrophages leads to the formation of foam cells storing excess amounts of cholesteryl esters and subsequently to apoptosis. This review describes the current knowledge about the metabolism and modification of apoB-containing lipoproteins involved in dyslipidemia and atherogenesis. In particular, I focus on the effects of apolipoproteins, lipid composition and particle size on lipoprotein metabolism and on the roles of cholesterol, sphingomyelinase and apoB denaturation in macrophage foam cell formation and apoptosis. A detailed understanding of these mechanisms will help to develop new therapeutic strategies.


Asunto(s)
Apolipoproteínas B/metabolismo , Aterosclerosis/metabolismo , Dislipidemias/metabolismo , Apolipoproteínas B/química , Aterosclerosis/sangre , Dislipidemias/sangre , Humanos
19.
J Lipid Res ; 57(3): 482-91, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26802169

RESUMEN

Autosomal dominant hypercholesterolemia (ADH) is a human disorder characterized phenotypically by isolated high-cholesterol levels. Mutations in the low density lipoprotein receptor (LDLR), APOB, and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes are well known to be associated with the disease. To characterize the genetic background associated with ADH in France, the three ADH-associated genes were sequenced in a cohort of 120 children and 109 adult patients. Fifty-one percent of the cohort had a possible deleterious variant in LDLR, 3.1% in APOB, and 1.7% in PCSK9. We identified 18 new variants in LDLR and 2 in PCSK9. Three LDLR variants, including two newly identified, were studied by minigene reporter assay confirming the predicted effects on splicing. Additionally, as recently an in-frame deletion in the APOE gene was found to be linked to ADH, the sequencing of this latter gene was performed in patients without a deleterious variant in the three former genes. An APOE variant was identified in three patients with isolated severe hypercholesterolemia giving a frequency of 1.3% in the cohort. Therefore, even though LDLR mutations are the major cause of ADH with a large mutation spectrum, APOE variants were found to be significantly associated with the disease. Furthermore, using structural analysis and modeling, the identified APOE sequence changes were predicted to impact protein function.


Asunto(s)
Apolipoproteínas B/genética , Hiperlipoproteinemia Tipo II/genética , Mutación , Adulto , Apolipoproteínas B/química , Apolipoproteínas E/genética , Niño , Estudios de Cohortes , Exones/genética , Femenino , Francia , Técnicas de Genotipaje , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Masculino , Modelos Moleculares , Fenotipo , Proproteína Convertasa 9/genética , Conformación Proteica en Hélice alfa , Receptores de LDL/genética , Adulto Joven
20.
Sci Rep ; 5: 18184, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26643808

RESUMEN

Familial hypercholesterolaemia (FH) is an inherited autosomal dominant disorder resulting from defects in the low-density lipoprotein receptor (LDLR), in the apolipoprotein B (APOB) or in the proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. In the majority of the cases FH is caused by mutations occurring within LDLR, while only few mutations in APOB and PCSK9 have been proved to cause disease. p.(Arg3527Gln) was the first mutation in APOB being identified and characterized. Recently two novel pathogenic APOB variants have been described: p.(Arg1164Thr) and p.(Gln4494del) showing impaired LDLR binding capacity, and diminished LDL uptake. The objective of this work was to analyse the structure of p.(Arg1164Thr) and p.(Gln4494del) variants to gain insight into their pathogenicity. Secondary structure of the human ApoB100 has been investigated by infrared spectroscopy (IR) and LDL particle size both by dynamic light scattering (DLS) and electron microscopy. The results show differences in secondary structure and/or in particle size of p.(Arg1164Thr) and p.(Gln4494del) variants compared with wild type. We conclude that these changes underlie the defective binding and uptake of p.(Arg1164Thr) and p.(Gln4494del) variants. Our study reveals that structural studies on pathogenic variants of APOB may provide very useful information to understand their role in FH disease.


Asunto(s)
Sustitución de Aminoácidos , Apolipoproteínas B/química , Apolipoproteínas B/genética , Codón , Hiperlipoproteinemia Tipo II/genética , Mutación , Apolipoproteína B-100/química , Apolipoproteína B-100/genética , Apolipoproteína B-100/ultraestructura , Apolipoproteínas B/metabolismo , Apolipoproteínas B/ultraestructura , Línea Celular , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/ultraestructura , Linfocitos/metabolismo , Tamaño de la Partícula , Unión Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...